Decarbonizing electricity generation with intermittent sources of energy

Stefan Ambec and Claude Crampes

Toulouse School of Economics

December 2015

Motivation

- ▶ Intermittent sources of energy (wind, solar,...)
- Retail price of electricity does not vary with wind or sun
- Pollution (greenhouse gases, SO2, NOX,...)
- Several policy instruments:
 - Carbon tax
 - Feed-in tariff (FIT) or feed-in premium (FIP)
 - Renewable portfolio standard (RPS)
- Impact of policies with intermittent energy and non-reactive consumers

Overview

- First-best energy mix with wind power capacity back-up with thermal power
- Carbon tax implements first-best but not FIT or RPS: too much electricity consumption
- Tax on electricity consumption should complement FIT or RPS to implement first-best
- Social benefit of energy storage and smart meters
- ▶ With a monopoly thermal power producer:
 - Introduction of wind power competitive fringe increases electricity price
 - ► First-best achieved with state-contingent carbon tax or price cap and carbon tax

Related literature

Optimal and decentralized mix of energy with intermittent sources:

Ambec and Crampes (2012), Rubin and Babcock (2013), Garcia, Alzate and Barrera (2012), Rouillon (2013), Baranes, Jacquemin and Poudou (2014)

► Pollution externalities and R&D spillovers with clean and dirty technologies:

Fischer and Newell (2008), Acemoglu et al. (2012)

Fossil source *f*

- Production q_f with marginal cost c
- ▶ Capacities K_f with marginal r_f
- Capacity constraint $q_f \leq K_f$
- ▶ Long term private marginal cost of 1 kWh is $c + r_f$
- Environmental damage par kWh of fossil fuel $\delta > 0$
- ▶ Long term social marginal cost of 1 kWh is $c + r_f + \delta$

Intermittent source i

- ▶ Production q_i with 0 marginal cost
- ▶ Capacities K_i with marginal cost $r_i \in [\underline{r}_i, +\infty)$ with distribution f and cumulative F and total capacity \bar{K}
- ▶ Capacity constraint $q_i \le K_i$
- Available only in state w (not in state \overline{w}) which occurs with probability ν (probability $1-\nu$)
- ▶ Long term marginal cost of ν kWh (1 kWh in state w) is r_i
- **L**ong term marginal cost of 1 kWh on average $\frac{r_i}{\nu}$

Consumers

- ▶ Utility or Surplus S(q) concave (S' > 0, S'' < 0)
- ▶ Demand function $D(p) = S'^{-1}(p)$
- Constant retail price / non-reactive consumers: $q = q^w = q^{\bar{w}} = K_f$

Social optimum

 K_f , K_i and q_f^w maximize:

$$\nu \left[S(\bar{K}F(K_i) + q_f^w) - (c + \delta)q_f^w \right] + (1 - \nu) \left[S(K_f) - (c + \delta)K_f \right]$$
$$-\bar{K} \int_{\underline{r_i}}^{\tilde{r_i}} r_i dF(r_i) - r_f K_f$$

s.t.

$$K_i + q_f^w = K_f$$

 $K_f \ge q_f^w \ge 0$
 $K_i = \bar{K}F(\tilde{r}_i)$

Social optimum

Competitive equilibrium

Competitive equilibrium with carbon tax au

Merit order

First result

 $\qquad \qquad \textbf{Pigou tax } \tau = \delta \text{ implements first-best}$

Feed-in tariff (FIT)

- Regulated price for intermittent energy pⁱ
- ► Tax t per kWh consumed
- Budget-balance constraint:

$$K_f t \geq \nu(p^i - p^w)K_i$$

- ▶ First-best if $p^i = c + \delta$ and $p + t = c + r_f + \delta$ therefore $t = \delta$: budget surplus!
- ▶ If $p^i = c + \delta$ to obtain K_i and tax t that binds the budget-balance constraint then **over-consumption**!
- Same story with feed-in premium

Renewable Portfolio Standard (RPS)

- ightharpoonup Share lpha of energy consumption supplied with renewable energy
- Renewable energy credits (REC) issue for each kWh of renewable energy
- Retailers buy REC at price g to comply with RPS
- Zero profit condition for wind power producers and retailers:

$$p^w + g = \frac{r_i}{\nu}$$

$$p = \nu p^{w} + (1 - \nu)p^{\bar{w}} + \alpha g$$

- lacktriangle Optimal share $lpha^*$ leads to a price of REC $g=\delta$
- ► Retail price $p = c + r_f + \delta \alpha < c + r_f + \delta$ too low, too much electricity consumption
- ▶ Must be complemented with a tax on electricity or fossil fuel

$$\tau = \delta \left(1 - \alpha \right) < \delta$$

Energy storage facility

Energy storage

- \triangleright s kWh can stored in state w to be used in stated \bar{w}
- ► Energy cost of storing (pumping) $\lambda \leq 1$: λs kWh produced in state \bar{w} with s stored in state w
- Private and social benefit of storing energy?
- Efficient storage maximizes:

$$\nu \left[S(\bar{K}F(K_i) + q_f^w - s) - (c + \delta)q_f^w \right]$$

$$+ (1 - \nu) \left[S(K_f + \lambda s) - (c + \delta)K_f \right]$$

$$-\bar{K} \int_{\underline{r}_i}^{\tilde{r}_i} r_i dF(r_i) - r_f K_f$$

$$K_i + q_f^w - s = K_f + \lambda s$$

s.t.

Social and private marginal benefit of storage

The FOCs lead to a social marginal benefit of:

$$\lambda[(1-\nu)(c+\delta)+r_f]-\tilde{r}_i$$

Private marginal benefit of storage with carbon tax:

$$(1-\nu)p^{\bar{w}}-\nu p^w$$

- ▶ Equal to the social benefit with equilibrium prices $p^{\bar{w}}=c+\tau+rac{r_f}{1u}$, $p^w=rac{ ilde{r}_i}{
 u}$ and Pigou tax $\delta= au$
- Private incentives in competitive market aligned with social welfare

Smart meters with contingent pricing

Smart meters with state-contingent prices

- Share β of reactive consumers paying wholesale price $p^{\overline{w}}$ and p^w
- Share $1-\beta$ of non reactive consumers paying fixed price $p=\nu p^w+(1-\nu)p^{\bar{w}}$
- Market clearing conditions:

$$egin{array}{lll} \mathcal{K}_f &=& eta q_r^{ar{w}} + (1-eta) q_{ar{r}} \ ar{\mathcal{K}} F(ilde{r}_i) + q_f^w &=& eta q_r^w + (1-eta) q_{ar{r}} \end{array}$$

Marginal benefit of making consumers reactive

Expected welfare with a proportion β of reactive consumers:

$$\beta[\nu S(q_r^w) + (1-\nu)S(q_r^{\bar{w}})] + (1-\beta)S(q_{\bar{r}}) - \nu(c+\delta)q_f^w - (1-\nu)(c+\delta)K_f$$
$$-\bar{K} \int_{r_i}^{\tilde{r}_i} r_i dF(r_i) - r_f K_f.$$

Differentiating with respect to β:

$$\underbrace{\left[\nu S(q_r^w) + (1-\nu)S(q_r^{\overline{w}}) - S(q_{\overline{r}})\right]}_{-} - \tilde{r}_i \underbrace{\left(q_r^w - q_{\overline{r}}\right)}_{+}$$

$$+ \left[(1-\nu)(c+\delta) + r_f\right] \underbrace{\left(q_{\overline{r}} - q_r^{\overline{w}}\right)}_{+}$$

Risk-averse consumers prefer fixed price contract

Environmental policy with market power

- Monopoly thermal power producer
- Competitive fringe of of wind power producers
- Impact of competition from wind power on price?
- Optimal tax? Regulation instruments to reach first-best?

Program of the monopoly thermal power

 q_f^w and K_f maximize:

$$u \left[P(q_f^w + K_i) - (c + \tau^w) \right] q_f^w + (1 - \nu) \left[P(K_f) - (c + \tau^{\bar{w}}) \right] K_f - r_f K_f$$

s.t.

$$P(K_i + q_f^w) = \frac{\tilde{r}_i}{\nu}$$

$$K_i = \bar{K}F(\tilde{r}_i)$$

First-order conditions

$$q_f^w : P(q_f^w + K_i) + P'(q_f^w + K_i) \left(1 + \frac{dK_i}{dq_f^w}\right) q_f^w = c + \tau^w$$
 $K_f : P(K_f) + P'(K_f)K_f = c + \tau^{\bar{w}} + \frac{r_f}{1 - \nu}$

Implementation of first-best

State-contigent taxes;

$$\begin{array}{lcl} \tau^w & = & \delta + \frac{p^w}{\epsilon} \left(1 + \frac{dK_i}{dq_f^w} \right) \frac{q_f^w}{K_f} \\ \\ \tau^{\bar{w}} & = & \delta + \frac{p^{\bar{w}}}{\epsilon} \end{array}$$

with $\tau^{\bar{w}} < \tau^w$

• Price cap $p^{\bar{w}}$ and carbon tax τ^w

► Environmental policies in a model with intermittent energy (wind power) and constant retailing electricity price

- Environmental policies in a model with intermittent energy (wind power) and constant retailing electricity price
- ► Aim of environmental policy: reducing electricity consumption and increasing wind power production

- Environmental policies in a model with intermittent energy (wind power) and constant retailing electricity price
- ► Aim of environmental policy: reducing electricity consumption and increasing wind power production
- A carbon tax does the job

- Environmental policies in a model with intermittent energy (wind power) and constant retailing electricity price
- ► Aim of environmental policy: reducing electricity consumption and increasing wind power production
- A carbon tax does the job
- ▶ Too much electricity with FIT, FIP or RPS

- Environmental policies in a model with intermittent energy (wind power) and constant retailing electricity price
- ► Aim of environmental policy: reducing electricity consumption and increasing wind power production
- A carbon tax does the job
- Too much electricity with FIT, FIP or RPS
- Marginal value of storage = cost difference

- Environmental policies in a model with intermittent energy (wind power) and constant retailing electricity price
- ► Aim of environmental policy: reducing electricity consumption and increasing wind power production
- A carbon tax does the job
- ▶ Too much electricity with FIT, FIP or RPS
- Marginal value of storage = cost difference
- Social value of smart meters not always positive because risk

- Environmental policies in a model with intermittent energy (wind power) and constant retailing electricity price
- ► Aim of environmental policy: reducing electricity consumption and increasing wind power production
- A carbon tax does the job
- Too much electricity with FIT, FIP or RPS
- Marginal value of storage = cost difference
- Social value of smart meters not always positive because risk
- Competitive fringe of wind power produce is not enough to get efficiency

- Environmental policies in a model with intermittent energy (wind power) and constant retailing electricity price
- ► Aim of environmental policy: reducing electricity consumption and increasing wind power production
- A carbon tax does the job
- Too much electricity with FIT, FIP or RPS
- Marginal value of storage = cost difference
- Social value of smart meters not always positive because risk
- Competitive fringe of wind power produce is not enough to get efficiency
- Regulation with state-contingent carbon taxes or price cap and carbon tax