Systemic risk in energy derivative markets: a graph-theory analysis

D. Lautier & F. Raynaud
University Paris-Dauphine
Ecole Polytechnique Fédérale de
Lausanne

Objectives

- Empirical study on systemic risk in derivative markets
- Approach in three dimensions
 - Observation time
 - Spatial integration
 - Maturity of the transactions
- Influence of physical as well as derivative markets
- Integration as a necessary condition for systemic risk to appear
- Correlations, co-movements

Selected markets

- Choice directed by:
- Concerns about speculation in commodities

Energy products

Development of bio fuels

Agricultural products

- Portfolio management / Commodities as a new class of assets

Financial instruments

- Organized markets with the highest transaction volumes
- 14 markets (> 760 000 daily futures prices (settlement))
- 1998 **-** 2011

Methodology

- Huge volume of data + 3 dimensional analysis
- Price system = complex evolving system
- Use of methods originated from statistical physics
- Graph-theory and networks
- Graph: Nodes: time series of daily futures returns
 - Links: correlations between the price returns
- Full connected graph:
 all possible connections between N nodes (time series of price returns) with (N(N-1)/2) links

4

Example of the crude oil market (1 market, maturity dimension)

Methodology

- Information in the graph is filtered
 - most relevant links
 - highest correlations
- Minimum Spanning Trees (MST)

Mantegna (1999)

Path for the propagation of prices fluctuations

- 1. How did we get minimum spanning trees?
- 2. Our results with the MST, in the 3 dimensions:

maturity, space, 3D

3. Dynamical analysis on the graphs and on the MST

1. Minimum spanning trees

ho Synchronous correlation coefficients ho of prices returns r :

$$r_{i} = \frac{\left(\ln F_{i}(t) - \ln F_{i}(t - \Delta t)\right)}{\Delta t}$$

$$\rho_{ij}(t) = \frac{\left\langle r_i r_j \right\rangle - \left\langle r_i \right\rangle \left\langle r_j \right\rangle}{\sqrt{\left(\left\langle r_i^2 \right\rangle - \left\langle r_i \right\rangle^2\right) \left(\left\langle r_j^2 \right\rangle - \left\langle r_j \right\rangle^2\right)}}$$

- With: F(t), futures prices at t
- Correlation matrix C, (NxN), symmetric

8

From correlations to distances

- Non linear transformation
- Distances d between two nodes defined as follows:

$$d_{ij} = \sqrt{2\left(1-\rho_{ij}\right)}$$

- Distance matrix D, (NxN)
- Full connected graph
 - represents all the possible connections between N nodes
 - weighted by the distances

Minimum spanning tree

- All the nodes of the graph are spanned
- No loops
- Result: links of the MST are a subset of the initial graph
- The information space is reduced from (N(N-1)/2) to (N-1)
- In this study: shortest path linking all nodes
 Easiest path for the transmission of prices shocks

10

2. Topology of the MST

Star-like tree

2. Topology of the MST

2.1. Maturity dimension

Heating oil – Month 1 to 18

Samuelson effect

12

Evolution of the integration through time: Eurodollar

1998-2001

Evolution of the integration through time: Eurodollar

Evolution of the integration through time: Eurodollar

1998-2001

2001-2004

2004-2009

Evolution of the integration through time, US natural gas

Evolution of the integration through time, US natural gas

17

Evolution of the integration through time, US natural gas

2.4 Allometric coefficients

- Quantifying the degree of linearity in the trees
- The root is the node with the highest connectivity
- Starting from this root, two coefficients A_i and B_i are assigned to each node i:

$$A_i = \sum_j A_j + 1$$

$$B_i = \sum_j B_j + A_i$$

$$B \sim A^{\eta}$$

Where η is the allometric exponent η stands between 1+ (star-like) and 2- (chain-like)

15/05/2014 Dauphine

MATURITIES	Static	CI95%	Dynamic	CI95%
Light crude	1.994	1.9058 - 2.0822	1.910	1.8904 - 1.929
Brent crude	1.889	1.883 - 1.894	1.888	1.88 - 1.895
Heating oil	1.899	1.891 - 1.906	1.886	1.874 - 1.898
Gasoil	1.880	1.874 - 1.885	1.845	1.835 - 1.854
Nat. gas (US)	1.750	1.677 - 1.822	1.796	1.745 - 1.847
Nat. Gas (Eu)	1.874	1.87 - 1.877	1.832	1.83 - 1.834
Wheat	1.864	1.609 - 2.118	1.761	1.694 - 1.827
Soy bean	1.848	1.661 - 2.034	1.680	1.623 - 1.736
Soy oil	1.889	1.883 - 1.894	1.856	1.832 - 1.879
Corn	1.880	1.874 - 1.885	1.772	1.731 - 1.813
Eurodollar	1.927	1.817 - 2.036	1.846	1.806 - 1.885
Gold	1.732	1.552 - 1.912	1.826	1.788 - 1.863
SPATIAL	1.493	1.383 - 1.602	1.621	1.574 - 1.668
3D	1.757	1.712 - 1.802	1.850	1.673 - 2.023

MATURITIES	Static	CI95%	Dynamic	CI95%
Light crude	1.994	1.9058 - 2.0822	1.910	1.8904 – 1.929
Brent crude	1.889	1.883 - 1.894	1.888	1.88 - 1.895
Heating oil	1.899	1.891 - 1.906	1.886	1.874 - 1.898
Gasoil	1.880	1.874 - 1.885	1.845	1.835 - 1.854
Nat. gas (US)	1.750	1.677 - 1.822	1.796	1.745 - 1.847
Nat. Gas (Eu)	1.874	1.87 - 1.877	1.832	1.83 - 1.834
Wheat	1.864	1.609 - 2.118	1.761	1.694 - 1.827
Soy bean	1.848	1.661 - 2.034	1.680	1.623 - 1.736
Soy oil	1.889	1.883 - 1.894	1.856	1.832 - 1.879
Corn	1.880	1.874 - 1.885	1.772	1.731 - 1.813
Eurodollar	1.927	1.817 - 2.036	1.846	1.806 - 1.885
Gold	1.732	1.552 - 1.912	1.826	1.788 - 1.863
SPATIAL	1.493	1.383 - 1.602	1.621	1.574 - 1.668
3D	1.757	1.712 - 1.802	1.850	1.673 - 2.023

3. Dynamical studies

3.1. Full connected graph: mean correlations and their variances (3-D)

3.2. Node's strength

- Full connected graph
- The node's strength S_i indicates the closeness of one node i to all others:

$$S_i = \sum_{i \neq j} \frac{1}{d_{ij}}$$

3.3. Normalized tree's length

Sum of the lengths of the links belonging to the MST:

$$L(t) = \frac{1}{N-1} \sum_{(i,j) \in MST} d_{ij}$$

The more the length shortens, the more integrated

the system is

Spatial dimension

3.4. Survival ratios

- Robustness of the topology over time
- The survival ratio S_R refers to the fractions of edges in the MST, that survives between two consecutive trading days:

$$S_R(t) = \frac{1}{N-1} |E(t) \cap E(t-1)|$$

E(t): set of edges at t

Pruning the trees

Analysis of inter-market and inter-sectors reorganizations

Consider only the links between markets, whatever the

maturity is considered

Pathological configuration: an example

Pathological configuration: an example

36

Most stable links

Main results - Extensions

MAIN RESULTS

1. Topology

- Chain-like trees in the maturity dimension
- Star-like trees in the spatial and 3-D dimensions

2. Emerging taxonomy

- Trees organized around the three sectors of activity
- Center of the graph: two crude oils

3. Integration

- Increases in all dimensions (spatial, maturity, 3D)
- Progresses at the heart of the system

EXTENSIONS

- 1. Introducing directions in the graph
- 2. Event studies / financial crises

 Dauphine

1. Introducing directions in the graph

- Full connected graph
- Information flows:
 - static analysis
 - dynamic analysis

Full connected graph, maturity dimension

Information flows: static analysis

Figure: Average information transfer between maturities, 2001-2011

Figure: Information transfer between maturities, 2001-2011

2. Event studies / financial crises

Centrality measures

