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Abstract

Preferential feed-in tariffs (FITSbr solar generated electricitgcrease the demand for solar
photovoltaic systems. This can thus induce equiprpeices to increase, creating greater
potential for PV systems producers to collect renthere is however a possible
countervailing force: public authorities in chamfesetting FITs may seek to limit these rents
by adjusting tariffs to a level as close as posstbl the cost ofolar-generated electricity.
This paper analyses the interactions between feedakiffs, silicon prices and module prices,
using weekly price data and FIT values in Germatayy, Spain, and France from January
2005 to May 2012. Relying methodologically on thea@er causality tests, we show that
since the end of the period of silicon shortag2089, module price variations cause changes
in FITs, and not the reverse. This suggests thatrégulators have been successful at

preventing FITs from inflating module prices.
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1 Introduction

The preferential feed-in tariff (FITs, hereaftechemefor solar generated electricity the
most common policy tool to stimulate the instatiatiof solar photovoltaic (PV) generation
capacities, particularly in Europe and Japan, s & a growing number of emerging
economies such as China and Intizhis mechanism works by setting a guaranteed ptce
which grid operators are obliged to buy electriditgm solar energy sources. Solar PV
generated power is offered a higher price reldtivether sources, reflecting higher costs. The
mark-up can be substantial, even compared withr areewable energy sources like wind.
For example, the FIT in Germany for rooftop mounid installations was about 24 €-
ct/kWh in 2012, compared to less than 9 €-ct fashmme wind (Lang and Mutschler, 2012).

This price premium is financed by the consumerstteicity bill.

A direct consequence of FITs is to stimulate theaed for PV systems and services. The
economic law of supply and demand then predictisttha will increase prices in the market
for PV systems, at least in the short-run. In theeace of fierce competition, FITs can then
generate rents for PV systems producers and/othBbcompanies installing those systems.
This is problematic from the perspective of expansof solar energy because higher PV
system prices imply higher PV-generated electrictagts, thereby hindering the diffusion of
this source of energy. This is also bad news fioeperspective of consumers who ultimately

pick up the bill2

L A notable exception is the US in which 29 stategehapted instead for the use of Renewable Portfolio
Standards (RPSs). RPSs are mandates requiringuéityhto have a minimum percentage of power tisagold
or produced by renewable energy sources. The PRSjisntity instrument in contrast to the FIT whisha
price instrument.

2 The price impacts are more complicated in the lnng-because increased installation capacity can
generate learning-by-doing effects and lead to @hictions and hence lower prices.



There is however a possible countervailing foraglie authorities in charge of setting the
level of FITs may seek to avoid such windfall ptofoy adjusting FITs to a level as close as
possible to the cost cfolar-generated electricity. Doing so limits thedan on electricity
consumersand bridges the gap between the prices of coromaltiand PV-generated
electricity. Yet getting the FIT level correct isffitult for regulators due to information
asymmetry. Specifically, they are imperfectly infeed about both production and installation

costs.

This paper seeks to contribute towards understgrttiminteractions between the FITs and
the PV price dynamics in two upstream markets:ntiagket of PV panels and the market of
polysilicon. Using time series data on FITs, parates and polysilicon prices, our main aim
is to test whether FITs influence panel and siligmites or vice versa. If the direction of
causality goes from the FITs to PV market pricks imeans that market forces dominate the
regulators who seek to reduce rents. If the diveds the reverse, this suggests that regulators
are successful at adjusting the level of FITs togpevolution and thereby limiting rents in the
upstream PV value chain. Our main focus is on theket for PV modules, but the analysis
takes the role of polysilicon price into accountdngse previous analysis on the period of
polysilicon shortage before 2009 showed that as riten material input for panels

production, its price significantly influences papseces (de la Tour et al., 2013).

The panel data used for this analysis consistseakiy polysilicon and module spot price,
and FITs values in Germany, Italy, France and Sfraim January 2005 to May 2012. To
focus on market effects, we control for underlyiogg-term cost drivers, as measured by the
experience effect. Methodologically, we use then@ea causality test to find the direction of

the causality between the variables. This appraacblves using a vector autoregressive



(VAR) framework to test whether past values of oreriable can provide statistical
information about the current and future valuesimdther variable. We also use polynomial
growth models to study the variation of module gsiavhen a decline in the level FITs is
observed. These methods allow investigating caiesalivhereas other strategies tend to
identify only correlations. The main limit is thae only look at short-term price effects. In
the long run, these short-term effects arguablip@nrfce production costs of PV systems, an
impact we do not measure in the paper. Another meskis that we cannot estimate the size
of the effects. For instance, assume that a 10%ease of module prices causes an increase in
the level of FITs. We are able to establish theditsl of this hypothesis, but not the size of
the resulting FIT increase. Thus the size of paénents cannot be quantified. In this
example, identifying the causality only says tlegulators react in the right direction, but not

whether the response is sufficiently strong to prévents to rise.

The econometric analysis shows that since 2009]itketion of causality is from panel price
to FITs and not the reverse. This result suggdwss regulators have been adjusting tariff
levels according to the module price hence limititlee rents collected by panel
manufacturers. During the period before 2009, h@awneno significant effects are found. We
discuss below how changes in FIT regime around 2@Q8d explain this observation. We
also examine the very short-term effects of changeBIT levels, and show that module
prices tend to increase before FITs decrease,atidg that firms anticipate policy changes

and this influences their pricing strategies. Hoarevhis effect is temporary.

Providing evidence on how FITs influence panel gonis useful for policy makers for
several reasons. First, the potential cost of gt Ts wrong (i.e. potential windfall profits)

is high, with panel prices typically representingty percent of the overall cost of PV



electricity generation. Second, getting FITs wrasgalso politically problematic in many
countries because it can imply transferring remgsnf domestic electricity consumers to
foreign panel producers as the bulk of world PVatamproduction is located in China. High
rents can also induce market overheating whichostlg and often followed by drastic
production cuts, which harm the industry’s longytedevelopment as illustrated by the
French or Spanish cases. Lastly, the potentialeas® of panel prices reduces the

effectiveness of FITs as it increases the oveast of PV system3.

An empirical literature has developed on the rald anpacts of FITs. Some studies have
estimated the impact of FITs on the deployment a&rsPV capacities, electricity costs,

employment, or innovation (e.g. Leepa and Unfrizafl 3, Frondel et al., 2010; Hoppmann et
al., 2013). To the best of our knowledge, there moeacademic works to date on the
interactions between FITs and PV system pricesrdtian the contribution by Prest (2012)
who investigates from a legal point of view how &I3hould be adjusted to changes in the

markets for PV systems.

Panel and silicon prices reflect the productiontegdus profit margins. Costs are driven by
technology-specific factors such as scale effe&DRlearning-by-doing brought by the

accumulation of experience. In contrast, the progirgin component - the difference between
price and cost - is driven by market conditionshsas competition, demand and supply
balance and strategic behaviours. A substantialuamof literature focuses on the analysis
and prediction of the cost of solar PV modules agstems using several methodologies:
econometric estimation of learning curves (Yu et 2011; Poponi, 2003; de la Tour et al.,

2013); expert elicitation surveys (Bosetti et 2012); and engineering studies (Nemet, 2006;

% These are undeniably less hot issues in the shiont &s PV panel producers are said to sell atsaftosa
couple of years because of production overcapagityyovercapacity cannot but disappear in the &utur



Branker et al., 2011). The analysis of pricing e&ssis far less developed although it is worth
mentioning a recent paper by Candelise et al. (R@4® look at both cost and price issues.
Contributions in the grey literature also strestes importance of market forces such as
demand/supply imbalance or input price are resptm$or recent deviation in module price

from the historical trend (Hayward and Graham ,a8mizz, 2012). None of these studies

considers the role of FITs.

The remaining of this paper is structured as folo®ection 2 introduces the analytical
framework and the hypotheses to be tested latemlo@.dataset and preliminary diagnostics
are presented in Section 3. Section 4 explorediteetion of the causality and tests the
hypotheses set out by the analytical frameworkti@e& analyses the influence of past and
future FIT changes on module prices using polynbgriawth models. Section 6 concludes

the paper.

2 Background and tested assumptions

Before introducing a simple framework used to folaitel hypotheses about the influence
of FITs on silicon price on module price, it is wordescribing briefly the crystalline PV
production chain. Panel production from siliconahaes several steps (see Figure 1, adapted
from de la Tour et al., 2011). The silicon is cay$ed, forming ingots which are sliced into
wafers. The wafers are processed and assembleditsyipto cells, which are soldered and
encapsulated to build modules. The deploymente@fif system then requires combining the
modules with complementary equipment (such as fedteand inverters) into integrated
systems which, once installed, can generate poler.PV module cost is typically between

a third and a half of the total capital cost ofagystem (IRENA, 2012).



The upstream production of polysilicon is a keypstethe PV chain, given silicon is the
main material input and accounts for 20% of the n®@dosts (IRENA, 2012). This stage also
accounts for the largest share of the energy udeVirproduction. Other material inputs —
glass, aluminium and silver - account for a smalt pf the manufacturing cost and/or have

stable prices.

Polysilicon is a commodity, that is, a good which supplied without qualitative
differentiation across the market. Once siliconexts the minimum purity level of 99.999%,
this leaves little room for product differentiatiom commodity markets, it is well-known
from the industrial organization literature thate tintensity of competition is strongly
influenced by production capacity and that thisegivise to price instability (for instance, see
Tirole, 1988). When production capacity is insuffit to cover demand, producers enjoy
considerable market power to increase prices abithve marginal production cost.
Undersupply can persist since it typically takes twars to build a silicon production pl4nt.
This occurred before 2009, leading to a dramaticepincrease. Since the price peak,
overcapacity has prevailed and prices declined @anaequence (Candelise et al., 2013). We

will come back to the evolution of the silicon matlkelow.

To a large extent, crystalline PV panels are alsmroodities with little product
differentiation. In the current context of overslypdriven by over-optimistic expectations
about the growth of PV markets, economic theory asedicts very low prices (Tirole,
1988). In fact what we observe today are very lawgs, probably below the long-term
marginal production costs of many manufacturerss Flas led major panel producer such as

Q-Cells or SunTech Power to bankruptcy in 2012 2043 (Sweet, 2013; Hoium, 2013).

*In contrast, facilities manufacturing cells andduales can operate in less than a year (de
la Tour et al., 2011).



Supply is also a function of the learning effectishhsteadily reduces costs through the

accumulation of experience (Candelise et al., 20IBg price of silicon is another potential

driver of PV panel prices; this hypothesis willtested below.

Figure 1: Crystalline photovoltaic production chain
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In line with the analysis developed in the introiilue, we now formulate a set of assumptions

which will be tested in the rest of the paper. Tingt assumption is based on the economic

law of supply and demand which predicts that insireg the level of FITs raise module

prices, thereby creating rents in the cell and negwduction segments. Hence,

Hypothesis 1a: FITs positively influence module prices.

However, the direction of causality can also regenssituations where the regulator reacts to

the market price and lowers FITs, in order to mimarwindfall profits for manufacturers of

PV systems, to limit the burden placed on eledyriosers and, more generally, to keep the

cost of PV electricity as low as possible. Hence:



Hypothesis 1b: FITs follow module price, reducing rents in theashstream segments of the

industry, i.e. PV systems installation and elettiriproduction.

As argued before, the dynamics of module price® leso been affected by evolution in the
upstream silicon market as panel production isntan market for silicon (87% in 2011,
SolarBuzz 2012). The theory of industrial organ@atthen predicts two possible outcomes.
Silicon producers can barice makers in the industrial economic sense. That is, thegyen
sufficient market power to pass through a silicoricep increase to module price.
Alternatively, they can berice takers, meaning that they consider the market price as
exogenously given in the case where the silicorketas sufficiently competitive. This leads

to two exclusive assumptions:

Hypothesis 2a: Silicon prices influence module prices. (Silicoroducers make the price in

the silicon market.)

Hypothesis 2b: Silicon prices follow module prices. (Silicon piiecers are price takers.)

3 Preliminary diagnostics

In order to investigate the hypotheses fornaalah the previous section, we consider
weekly data on silicon and module spot prices mreti by PV Insight3. Solar PV
components are not traded on public exchangesdier do provide solar PV companies with
reliable and concise information on prices, PVdhss make weekly price estimates based on
prices for privately traded components which thejlect from various contributors. The
precise methodology they use is confidential. Wi o@ weekly data on these estimated spot

prices over the period January 2005 to May 2012.

® PV Insights is an international solar PV resediech which produces reports, advisory
service, and price reports. http://pvinsights.com



The data on Feed-in-Tariffs values for Germdtgly, France, and Spain have been
extracted by the authors from various sources: rdatonal Energy Agency
(http://www.iea.org), the Solar Feed In Tariff wabghttp://www.solarfeedintariff.net), PV
Magazine (http://www.pv-magazine.com/), RES LEGAkhsite (http://www.res-legal.de/)
and Solarenergie - Forderverein Deutschland (httpw.sfv.de). Other countries such as
Japan and United States are not considered imp#per since they implemented alternative
PV technology development policies (e.g. renewagtdetfolio standards or investment
subsidies) or do not account for a significant shafrthe global market. The four European
countries considered cover more than 60% of thbajylmarket share. A practical problem is
that, among countries, different tariffs are setdidferent types of PV systems (e.g. ground
based, commercial and residential). To have a cammetrics for measuring the level of
FITs in place in each country, we calculate a grigJll value which is equal to the weighted
average of a specific type of FIT, weighted by ithrearket share in any given period. Data

sources are indicated in Appendix A.

Figure 2 reports the average FITs evolution forn@ary, Italy, France, and Spain and
shows that the dynamics are different in each eguNYhile German and Italian FITs have
been decreasing steadily, more chaotic variatios wlaserved in the Spanish and French
markets. On the period considered, there have bgainanges to FIT levels in Germany, 14

in Italy, 6 in Spain, and 9 in France.
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Figure 2 Average FIT evolution in the main countries
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Figure 3 depicts the silicon and PV module’s spatepfluctuations from January 2005 to
May 2012 and reveals that the price dynamics sganfly changed during this period.
Silicon prices increased markedly from 56$/kg i92@0 396 $/kg in 2008. This corresponds
to a period of global silicon shortage from 20052@09. Meanwhile, module prices also
increased from 2.55 $/Wp in 2005 to 3.56 $/Wp i0&0After the end of 2009, prices appear
to be much more stable, with silicon prices retugnio January 2005 levels, indicating the

end to the shortage period and module prices faligwlmost the same trend.
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Silicon and module prices seem to be synchroniseslighout the period. However, the
rate of price increase is considerably lower fordales (40%) compared to silicon (607%).
Two facts can potentially explain this observati¢ip:silicon costs represents only 20% of
total module codt and (ii) silicon is sold by and large through determ contracts (about
80%) and thus the average purchase price did setini the same proportions as the spot

price.

Figure 3 Silicon and PV modules spot price evolution from January 2005 to May 2012
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In order to have a preliminary intuition abol relationship between FITs and module
prices, a good starting point is to understand kHoevevolution of panel prices compares to

that of the FITs implemented in various countriéfowever, the comparison is not

® See Photon Consulting annual report 2012 (p. fd4nore information.
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straightforward since the two variables are notresged in the same unit: whereas FITs are
measured in terms of a unit of electricity ($/kWhjodule prices are expressed in terms of
production capacity ($/kWp)To allow for comparison, we convert the FIT inttetnet
present value of the electricity generated ovelifaime by a module of a standard capacity
of 1 kWp and sold at this FIT. The net present @atdi the electricity generated by the

module in a country indexads given by the following expression:

PR X ASI;
NPV, = FIT;; (351 Z252")

1)

whereFIT; . is the feed-in tariff in countryat timet, T is the lifetime of the PV system amd

is the discount rate. The prodiRR x ASI; is the electricity produced each year in country
by the PV system, witRR denoting the Performance Ratio of the installafibwe ratio of the
actual and theoretically possible energy output) 48Y;, the country-specific Annual Solar
Irradiation (the sum of the quantity of solar energaching the installation over a year). We
take the following values for the different paraarst a discount rate of 10%, a lifetime of 25
years, and a performance ratio of 0.75 (IRENA, 20The ASI is assumed to be 1200
kWh/kWplyear for Germany, 1500 for Italy, 1700 f8pain, and 1350 for France. These

figures are obtained from the SolarGIS web%ite.

The net present value of electricity given by Egua{l) needs to be compared to the price
of the whole PV system, of which the panel pricecanted for around 40% in 2011 (Photon
Consulting, 2012). To obtain the price of a PV egstwe add to the module price, the price

of other components such as the inverter, wire modnting system. Weekly values of the

" Watt-peak (Wp) is a measure of the nominal power ghotovoltaic device under
laboratory illumination conditions.
8 Sourcehttp://solargis.info/
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prices of other components are computed usingrthea price trends obtained from Photon

international (2012).

For each country, Figure 4 compares the cost of ayBtem (the shaded area) with the net
present values of the electricity produced by adystem sold at the national FIT level. It
shows that the German FIT follows PV system pri@emost closely. In contrast, important
divergences can be observed between the FIT andlenpdce in 2007/2008 in Spain and in
2009/2010 in France, following the uncontrolled elepments of the PV market and the
subsequent sharp FIT cuts. The significant ga@itD2011 in Italy can also be explained by

the fast market growth during this period, whichltiplied by 13 in two years, from 720 MW

in 2009 to 9300 MW in 2011 according to the EPIAX2).

Figure 4 Comparison of PV systems price (shaded area) with the value of the FIT corresponding

to all the electricity produced by a PV system over itslifetime (line)

NPV &

German NPV & Ital
6 price \ 6 price y
(€/kWp) (€/kWp)
—
4 4 |\_
2 2
0 0
N NnWwWOWONDNNOOWOOOOOOOO «H«—nN
8 8885538383388 3949 QRRPILRLYIRLYIRR Y F F G
TZ2EIZTZTZTEICITIY 5555883858585 5858¢%
=) =) =] =] =) =) =) - = - - 3
2828383838385 8 2<TowT03090324 830z
NPV & Spain NPV & France
6 price pal 6 price
(€/kWp) (€/kWp)
4 4
2 2
0 0 =
N uNnWwWOWONDNNOOOOOOOOOO «H ««nN N uNnWwWOWONDNNOOWOOOOOOOO «H «—«nN
QRRILYIRLYIRR QY Q F QRRILRLYIRLYIRRQQ F
C C > 5 Q0 5 O >4+ = wwc c O >4+ = C C > 5 Q0 5 O >4+ = wwc c O >4+ =
o o =] O © O O © o o S o O © O O ©
232<$$“Q§O§2230§O§ EEZ<$$“Q§O§EQEQ§O§

14



4 Econometric analysis

In this section, we analyse the relationshipwben prices by using a multivariate
econometric approach. More specifically, we tesheat the hypotheses given in Section 2 to

identify the price dynamics during the period.

4.1 Construction of the time series

Before analysing the interdependencies betweaegrone needs to construct consistent
time series. This requires solving two problemssti-module and silicon prices are observed
at the world level whereas the FITs are countryci$ige The analysis thus requires
constructing a world-level FIT variable averagiig thational FITs. We use the average of
countries’ FITs, weighted by the size of the natiaglectricity markets. Formally, this world-

level variable is computed with the following fortau
FIT, = X FIT; * elec;, (2)
whereelec;, is the size of the electricity market of countit timet.

The second problem is that module prices are krtovire influenced by long-term drivers,
in particular learning-by-doing improvements. Thiseds to be controlled for, in order to
focus on market effects. We do so by adopting ¢aening curve theory which predicts that
learning-by-doing decreases price through the aotation of experience measured by

cumulative production according to the followingrfala:

cum_prod >_E
— t
— 3)

dule; = modul
module, = module, * (cum_prodto
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Here, module, is module price at time, cum_prod, is the cumulative PV module
production at the same daltg, is an arbitrarily chosen reference date Erid the experience
parameter, measuring the intensity of the leartipgloing process. We use an experience
parameter of 0.338, corresponding to a learning 0&t20.1%, which has been estimated in
the study by de la Tour et al. (2013) who usedsémme datd’ Using data on cumulative
production extracted from Photon consulting anmapbrts, we are able to predict the value

of module,,, which is the module price equivalentrtmdule, if no learning would have

happened sincg. module denotes the corresponding predicted variable.

4.2 Unit root properties

We now investigate the unit root propertiegath series: the silicon price, the deflated
module price frodule?), and the FIT index KIT,), both in logarithm and in first log-
difference. Testing is necessary as the estimatansed out subsequently require knowing

the time series property of the price series (ingt root or stationarity).

To do so we rely on three types of tests, namedytthaditional ADF (1981), Schmidt-
Phillips (1992, hereafter SS), and KPSS (1992¥tstaNVhile the first two consider the null

hypothesis of unit root, the latter is based onnilikk of stationarity.

However, in the particular case of the price ofceil, using these tests would not be
relevant since that price has experienced periédelative instability during the shortage

period from 2005 to 2009, suggesting potential kseia its dynamics. Since the seminal

® Since the learning effect is a slow process whaimot be affected to the production of a
particular week or even month, we create a proxyvieekly cumulative production following
the yearly production trend obtained from Photom<Zdiing (2012).

19°A learning rate of 20.1 means that unit cost desee by 20.1% for each doubling of
cumulative production.

16



paper of Perron (1989), researchers have acknoedetlye importance of allowing for a
structural break in unit root tests. More preciséherron has shown that the ability of
traditional tests to reject a unit root decreasesemthe stationary alternative is true and an
existing structural break is ignored. Following f@ear (1989), two types of approaches are
often used. The first assumes exogenous break vinead point is known a priori, and the
second determines endogenously break points frerd#ita. One widely used endogenous
procedures is the minimum test of Zivot and André¥#92, hereafter ZA), which selects the
point where the t-statistic testing the null ofratuoot is the most negative. Given a loss of
power from ignoring one break, it is logical to ekpa similar loss of power from ignoring
two or more breaks in the one-break test. Perrah\avgelsang (1992, hereafter PV) and
Lumsdaine and Papell (1997, hereafter LP) contilint this direction by extending the
minimum ZA unit root test to include two structutakaks. One important issue coming from
the ZA, PV and LP tests is that they assume nokfseander the unit root null and derive
their critical values accordingly. Thus, the altgime hypothesis would be "structural breaks
are present”, which includes the possibility ofrét noot with break(s). As such, rejecting the
null does not necessarily imply rejecting the wait per se, but would imply rejecting a unit
root without breaks. To deal with these issues, pr@pose using the Lee and Strazicich
(2003) endogenous two-breaks LM unit root test,citallows for breaks under both the null

and alternative hypotheses.

Results for series in first log-difference are népd in Table 1 and shows that series are
integrated all of the same order (1), meaning thay are stationary in first log-differente.
Looking at the LM test of Lee and Strazicich (2QC4) series are 1(1) without breaks, with

the exception that silicon price is 1(1) with orteustural break. This break most probably

1 Results for series in logarithm (not reported herdicate that each serie have unit root.
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corresponds to the end of the silicon shortageoderio confirm this fact, we use the
structural break test of Bai and Perron (2005) tecisely date-stamp the point break. It

reports a break at 5/31/2009.

We therefore split our analysis into two pesamrresponding to the break point: the
shortage period from 1/05/2005 to 5/31/2009 andothet-shortage period from 6/01/2009 to
5/30/2012, to see whether prices behaviour vargrdaagly. Table 1 reports ADF, SS, and

KPSS tests for each period and reveals same réisatidor the whole study period.

Table 1: Unit root test for Silicon price, Modulgge and FIT index (whole sample: 1/05/2005-
5/30/2012)

Silicon Price Deflated module Price FIT index
ADF -4.674* -5.300* -19.983*
SP -4.212* -5.108* -8.881*
KPSS 0.041 0.064 0.198
LM -5.183* -5.985* -8.913*

Notes: ADF and SP tests are based on the null ibfroot. KPSS test is based on the null of statiitpaThe
LM unit root tests assume two breaks under botttieand alternative hypothesis. * denotes regectf the
null hypothesis at 1% significance level.

Table 2. Unit root test for silicon price, deflatesbdule price and FIT index for shortage and
post-shortage periods

Shortage: 1/05/2005-5/31/2009 Post-shortage: 6/01/2009-5/30/2012

ADF SP KPSS ADF SS KPSS
Silicon price -4,983* -3.621* 0.197 -4.547* -4.619* 0.130
Deflated module price -6.784* -3.689* 0.146 -7.129 -4,957* 0.067
FIT index -15.034*  -14.793* 0.125 -13.114 -13.004* 0.276

Notes: ADF and SP tests are based on the nullibfamt. KPSS test is based on the null of statawitp. *
denotes rejection of the null hypothesis at 1%ifiance level.
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4.3 Causality

In this section, we investigate the shart-relationships between silicon price,
deflated module price and FIT index for both shgetand post-shortage periods using the
well known Granger causality tests (Granger, 19&anger has developed a methodology
based on vector autoregressive (VAR) models to fastausality between two stationary

processes. Consider the following VAR(p) specifnad

Xe =YooV + X0y BiXe—i + pge (4)
Y; = Z &Y + Z @O Xe_i + Uat
i=1 i=1

where it is assumed that the disturbanggs~BB(0,%, ) and u,.~BB(0,%,,) are
uncorrelated and both variables are 1(0) processas.said to “Granger causes” Y if past
values of X provide statistically significant infoation about future values of Y beyond what
could have been done with past values of Y onlys Hpproach has the advantage of being
very easy to apply in many kinds of empirical stsdsince it can jointly provide results for
the two null hypotheses thgta; and}; §; are both not different from zero.

Our variables all being (1), we investigate caigdbetween prices of silicon, predicted
module fnodule?), and the FIT indexHIT,) in first log-differences. Given that we have
identified one structural break at 5/31/2009, wét spur analysis into two episodes and
estimate different VAR(2) models for shortage armbtgshortage periods respectivefy.
Some bias and size distortion affecting the asytigptbeory of the test can emerge when the

sample data is not long enough (i.e. the so-caltedll sample bias). To deal with this issue,

12\We use Akaike criterion for lag selection wherefind p=2.
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we rely on a bootstrap Granger causality approahichwallows more precise testing of
inferences than the asymptotic method.

Results of the Granger causality tests are repamntd@dbles 3 and 4. The test clearly indicates
that module price causes FITs during post-shonegied (Hypothesis 10} During the first
period, the test does not yield any conclusionndigg causal relationships, at least at the 5%
or even the 10% significance level. Turning nexthe relationships with silicon prices, the
tables show that, during the shortage period,iliprice Granger causes module price in a
unidirectional way (Hypothesis 2a). However, theerse effect appears during the post-

shortage period when the module price Granger sahsesilicon one (Hypothesis 2b).

How can these results be interpreted? The findimgthe silicon price is perfectly in line with
economic theory which predicts that, in commoditgrkets, producers have market power
only in cases with production capacity constraifiise shift in market power from silicon
producers to module manufacturers can also be duthé PV industry becoming an
increasingly dominant buyer in the silicon markatertaking the semi-conductor industry

since 2007 (SolarBuzz 2012).

Looking at Figure 4 helps understand why modulegxicause FITs after 2009 but not
before. Before 2009, FIT levels were very stabledified only once a year in Germany, and
even less frequently in other countries. Their lavas set well in advance, sometimes years
ahead* FITs were thus very rigid, explaining why they bwot follow module price

closely. Around 2009, FITs became much more flexibith intra-year adjustments to follow

13 As suggested by a referee, we also perform asstobss check, the linear dependence
test developed by Geweke (1982). Results availaba request to authors confirm those of
Granger approach.

4 This was adapted to the steady and predictablee pdiecrease triggered by the
experience effect before the silicon shortage.
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module prices. Germany revised its Renewable Ene3gurces Act (EEG) in 2009
introducing a new responsive FIT scheme. The néwree set a benchmark FIT for each PV
class (e.g., ground-mounted, residential rooftd)t, if annual solar installations are to
exceed a certain threshold (e.g., 1,500 MW/yeaf|Tahigher than the benchmark applies
and vice versa if the pace of deployment falls Wwedocertain threshold (Kreycik et al., 2011).
In Spain where an uncapped FIT was previously sseslipport solar electricity generation
until 2008, a new legislation (RD 1578/2008) impbs@& annual cap on solar PV installations
of 500 MW for 2009 and 2010 and a lower cap of OV for 2011 and 2012 (Kreycik et al.,
2011). A similar decision was made in France in120lhe fact that FITs track module price
more closely in the recent years should then berpntted as a consequence of the

modifications in FIT-setting mechanisms.

These findings can be viewed as good news as they shat, after an initial period of
learning, regulators of the countries covered leydtudy have been able to adapt the level of
the FITs to the evolution of the module marketspdmantly, this does not come from a
change in the module markets which occurred simatiasly (an increase of the competition
between module manufacturers). This reflects a gham regulators’ behaviour which

became more responsive to market evolutions.

Table 3: Causality test results (shortage perid@b/2005-5/31/2009)

X-Y Silicon Price Module Price FIT index
Silicon price - 0.014* 0.577
Module price 0.660 - 0.898
FIT index 0.117 0.974 -

Notes: P-values from Monte Carlo simulation with(D are reported. ** denotes rejection of the péitho
causality at 5% significance level.
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Table 4: Causality test results (post-shortage26(19-5/30/2012)

X-Y Silicon Price Module Price FIT index
Silicon price - 0.399 0.721
Module price 0.000* - 0.054***
FIT index 0:827 0.199 -

Notes: P-values from Monte Carlo simulation with(0D are reported. *, ** and *** denote respectivel
rejection of the null of no causality at 1%, 5% dfds significance levels

5 Anticipation of feed-in tariffs change

Vector autoregressive models use past (laggedesas explanatory variables. However,
FITs could be announced, and therefore anticipaehths or even years ahead. This section
further investigates the FITs’ effect on modulecpriby analysing the effect &fiture FIT
changes on module price. Our approach examinegatition of module prices prior to falls
in FIT levels (which occurred 24 times in total @3 all countries studies during the period
considered). A simple theoretical reasoning suggestt firms would anticipate a decrease in
FITs by purchasing more modules before the chaageenefit from the higher FITs, which
would eventually increase price. Anecdotal evidesuggports this behaviour indeed occurred.
For instance, the observation of monthly PV inatadh levels and the FIT evolution in
Germany depicted in Figure 5 clearly indicate ihatimn peaks, measured by the number of
connections to the grid, during the months befowgpsl in FITs. Leepa and Unfried (2013)
have thoroughly analysed this pattern in a recemical study of the impact of cut-off in

feed-in tariffs on photovoltaic capacity.

While Figure 5 describes the impacts of anticigatiFIT changes on installed capacity,

what about the impacts on module prices? To antivigiquestion, we build a difference-in-
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difference indicator to measure short-term priceat@ns: the variabléeviation; is the
deviation of the first log-difference of module g&jAlmodule;, compared to a business as

usual (BAU) scenario at date

deviation, = Almodule, — Almodule,**? (6)

If deviation, is positive, this indicates that the increase odale price in week exceeds

the BAU scenario prediction.
Figure 5 Impact of the feed-in tariff reductions on monthly capacity addition in Ger many
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Source: Enerdata, from German Ministry for Environment, Solar Wirtshaft
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We rely on results from Section 5 to calculate B#&U price i.e. that module pricing
adheres to different rules during and after theail shortage. During the silicon shortage, the

price is driven by the silicon price. We thus assuhe following relationship:

BAU

Almodule,”"" = A + o,Alsilicon,_, + o,Alsilicon,_, + 1, (7)

wheren; ~ BB(0, g,). After the silicon shortage, the BAU price is asgdl constant:

AlmoduletBAU =B (8)

Based on the estimations of Equations (7) antf,(&)e report in Figure 6 the dynamics of
deviation; over a 1 year-period around a particular FIT deseeoccurring simultaneously in
Germany and Italy on January 1st 2007. We can wvésarpositive effect during the few
months before the decrease, and a negative onwvalftks. This pattern suggests there is an
announcement effect such that predicted upcomirangds in the level of FITs induce
module buyers to anticipate their purchase beftwe ¢hange occurs. This produces a
temporary price adjustment around the date of Fange: the price increases before the

change together with the demand, then decreasewafts.

15 Previous results from VAR model show that the legth for silicon price is two
weeks.
1 Results of estimations are presented in Appendix B
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Figure 6: Deviation of module prices compared to a business as usual scenario before and after a

FIT decreasein January 2007.
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In order to gain further understanding of the dyitaeffect of a FIT decrease on module
prices, we now estimate a polynomial growth modéle model explains the deviation of
module prices by a polynomial function of the tilmefore the following FIT decrease. The

regression equation is:

deviation, = Y>_; b,(before,)* +uv, 9)

wherebefore; is the number of weeks before the following FlTcrgase and, is an

i.i.d. error term process.

Predictedleviation, is computed by Equation (9)over a 40-week period and depicted
in Figure 7. As expected, the graph shows a pesitleviation before FIT decreases.

However, the impact becomes negative 5 weeks heftwese results are easy to interpret. In

1" Results of estimation are relegated in Appendix C.
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order to be able to connect the PV installatioroleethe FIT decreases, firms installing PV
systems need to buy the modules a few weeks b&fomamall projects, or a few months for

big installations. This boosts module demand dutimg months before the FIT cuts, and
therefore increases the module price. A few weedorb the FIT drop, firms lose this

incentive since there is not enough time to conepltlé installation and connect to the grid
before change. This lowers the demand, decrealsengnbdule price, which encourages firms
to wait to benefit from this reduction, eventuatlgcreasing price even more. Our results

indicate that this occurs up to five weeks befbreedecrease.

Figure 7 Simulation of the deviation of thefirst order derivate of module price from a business

as usual scenario beforea FIT decrease
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7 Conclusion

This paper aimed to analyse the influence of feethiiffs and silicon prices on module

prices. We rely on a database of silicon and modwdekly spot price, and FIT values in
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Germany, Italy, Spain, and France from January 2608day 2012. We find the direction of

causality relations using Granger causality tests.

These tests show that since the end of the pefisdia@n shortage in 2009, module price
variations cause changes in FITs, and not viceavei&his is good news as it suggests that
regulators have been able to prevent FITs to mffabdule prices, limiting the creation of
rents in the PV panel industry. This can be expldiby changes in FIT regimes in major
markets towards volume responsive systems such &eimany in 2009, in Spain and in
France in 2009 and 2011. In addition, the fierceapetition prevailing on the module market

has also played a role in keeping module priceectogroduction cost.

Nevertheless, analysis using polynomial growth nodeows FIT give rise to inflationary
short-term effects on module price. During peritedding up to drops in FIT levels, module
prices increases are observed. The interpretagostraightforward: a higher demand is
triggered by the market anticipating the FIT drepd firms rushing to install more PV

capacity before the drop. This inflation is tempgy&owever.

The analysis also suggests that the silicon prioeedmodule price only during the silicon
shortage, suggesting that silicon producers heldk@hgpower. This is in line with the
observation that there was under-capacity in silipppduction before 2009. After the end of
the shortage period, silicon producers lost theirket power and we find that module prices
began to drive silicon prices. This can be expldibg an increasing competition with new
players entering the market, including many Chingsporations such as LDK Solar, which

directed the situation from shortage to excessuymtaoh.

As explained in introduction, the existing litenatuends to neglect short-term price effects

on the market of PV systems, focusing instead ernldhg-term evolution of costs (arguably
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driven by learning-by doing and innovation). As wenclude, it is worth questioning the
impact of the market-driven mechanisms studiechenfresent paper on the long-term solar
PV cost trajectories. The question amounts to #aduation of the impacts of potential rents
on the long-term cost of PV systems. Giving a defianswer is difficult as there are two
schools of thought on the role of rents on inn@ratiin the Schumpeterian view, rents are
necessary to provide innovators with sufficienteintives to devote resources in risky long-
term R&D projects. Others claim the opposite thébe competition, which limits rents,
boosts innovation as technological progress iothg solution to escape from a neck-to-neck
competition with competitors producing the samedéadized products (e.g. Hart, 1983; for

a general discussion, see Aghion et al., 2005).
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Appendices

A Data sources

We use multiple data sources which are listed below
1) FIT values

International Energy Agency (http://www.iea.org)

Solar Feed In Tariff website (http://www.solarfesdriff.net)

PV Magazine (http://www.pv-magazine.com/)

RES LEGAL website (http://www.res-legal.de/)

Solarenergie-Forderverein Deutschland

(http://www.sfv.de/druckver/lokal/mails/sj/verguditm)

2) Silicon and module prices
PV poly silicon weekly spot price and silicon satandule prices are obtained from PV

Insights (http://pvinsights.com )

3) Worldwide cumulative production of PV electricity

Used to deflate module prices. Extracted from Piotmsulting annual reports.
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B. Regression results of the BAU model (Equations 7 and 8)

Before After
Dependent variable D. In(module, ) D. In(module, )
LD. In(silicon;) 0.2160*** -
(0.041)
L2D. In(silicon,) 0.0935** -
(0.041)
Constant 0.0006 -0.0022**
(0.001) (0.001)
Observations 234 150
R-squared 0.3746 0.0000
Adj. R-squared 0.3692 0.0000

Standard errors in parentheses. *** p<0.01, ** B8).* p<0.1 Regression performed during

the silicon shortage. L stands for the operatot g, F for Forward lag, and D for first order

derivative.
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C Regression results of the polynomial growth model

Dependent variable deviation;
before; 0.001057984***
(0.000)
(before,)” -0.000039290***
(0.000)
(before,)® 0.000000386*
(0.000)
Constant -0.005062572***
(0.001)
Observations 380
R-squared 0.0651
Adj. R-squared 0.0576

Standard errors in parentheses. *** p<0.01, ** B8).* p<0.1
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