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Abstract 

Preferential feed-in tariffs (FITs) for solar generated electricity increase the demand for solar 

photovoltaic systems. This can thus induce equipment prices to increase, creating greater 

potential for PV systems producers to collect rents. There is however a possible 

countervailing force: public authorities in charge of setting FITs may seek to limit these rents 

by adjusting tariffs to a level as close as possible to the cost of solar-generated electricity. 

This paper analyses the interactions between feed-in tariffs, silicon prices and module prices, 

using weekly price data and FIT values in Germany, Italy, Spain, and France from January 

2005 to May 2012. Relying methodologically on the Granger causality tests, we show that 

since the end of the period of silicon shortage in 2009, module price variations cause changes 

in FITs, and not the reverse. This suggests that the regulators have been successful at 

preventing FITs from inflating module prices. 
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1 Introduction  

The preferential feed-in tariff (FITs, hereafter) scheme for solar generated electricity is the 

most common policy tool to stimulate the installation of solar photovoltaic (PV) generation 

capacities, particularly in Europe and Japan, but also in a growing number of emerging 

economies such as China and India.1 This mechanism works by setting a guaranteed price at 

which grid operators are obliged to buy electricity from solar energy sources. Solar PV 

generated power is offered a higher price relative to other sources, reflecting higher costs. The 

mark-up can be substantial, even compared with other renewable energy sources like wind. 

For example, the FIT in Germany for rooftop mounted PV installations was about 24 €-

ct/kWh in 2012, compared to less than 9 €-ct for onshore wind (Lang and Mutschler, 2012). 

This price premium is financed by the consumers’ electricity bill. 

A direct consequence of FITs is to stimulate the demand for PV systems and services. The 

economic law of supply and demand then predicts that this will increase prices in the market 

for PV systems, at least in the short-run. In the absence of fierce competition, FITs can then 

generate rents for PV systems producers and/or for the companies installing those systems. 

This is problematic from the perspective of expansion of solar energy because higher PV 

system prices imply higher PV-generated electricity costs, thereby hindering the diffusion of 

this source of energy. This is also bad news from the perspective of consumers who ultimately 

pick up the bill. 2 

                                                 
1 A notable exception is the US in which 29 states have opted instead for the use of Renewable Portfolio 

Standards (RPSs). RPSs are mandates requiring each utility to have a minimum percentage of power that is sold 

or produced by renewable energy sources. The PRS is a quantity instrument in contrast to the FIT which is a 

price instrument. 
2 The price impacts are more complicated in the long-run because increased installation capacity can 

generate learning-by-doing effects and lead to cost reductions and hence lower prices. 
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There is however a possible countervailing force: public authorities in charge of setting the 

level of FITs may seek to avoid such windfall profits by adjusting FITs to a level as close as 

possible to the cost of solar-generated electricity. Doing so limits the burden on electricity 

consumers and bridges the gap between the prices of conventional and PV-generated 

electricity. Yet getting the FIT level correct is difficult for regulators due to information 

asymmetry. Specifically, they are imperfectly informed about both production and installation 

costs. 

This paper seeks to contribute towards understanding the interactions between the FITs and 

the PV price dynamics in two upstream markets: the market of PV panels and the market of 

polysilicon. Using time series data on FITs, panel prices and polysilicon prices, our main aim 

is to test whether FITs influence panel and silicon prices or vice versa. If the direction of 

causality goes from the FITs to PV market prices, this means that market forces dominate the 

regulators who seek to reduce rents. If the direction is the reverse, this suggests that regulators 

are successful at adjusting the level of FITs to price evolution and thereby limiting rents in the 

upstream PV value chain. Our main focus is on the market for PV modules, but the analysis 

takes the role of polysilicon price into account because previous analysis on the period of 

polysilicon shortage before 2009 showed that as the main material input for panels 

production, its price significantly influences panel prices (de la Tour et al., 2013). 

The panel data used for this analysis consists of weekly polysilicon and module spot price, 

and FITs values in Germany, Italy, France and Spain from January 2005 to May 2012. To 

focus on market effects, we control for underlying long-term cost drivers, as measured by the 

experience effect. Methodologically, we use the Granger causality test to find the direction of 

the causality between the variables. This approach involves using a vector autoregressive 
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(VAR) framework to test whether past values of one variable can provide statistical 

information about the current and future values of another variable. We also use polynomial 

growth models to study the variation of module prices when a decline in the level FITs is 

observed. These methods allow investigating causalities whereas other strategies tend to 

identify only correlations. The main limit is that we only look at short-term price effects. In 

the long run, these short-term effects arguably influence production costs of PV systems, an 

impact we do not measure in the paper. Another weakness is that we cannot estimate the size 

of the effects. For instance, assume that a 10% increase of module prices causes an increase in 

the level of FITs. We are able to establish the validity of this hypothesis, but not the size of 

the resulting FIT increase. Thus the size of potential rents cannot be quantified. In this 

example, identifying the causality only says that regulators react in the right direction, but not 

whether the response is sufficiently strong to prevent rents to rise. 

The econometric analysis shows that since 2009, the direction of causality is from panel price 

to FITs and not the reverse. This result suggests that regulators have been adjusting tariff 

levels according to the module price hence limiting the rents collected by panel 

manufacturers. During the period before 2009, however, no significant effects are found. We 

discuss below how changes in FIT regime around 2009 could explain this observation. We 

also examine the very short-term effects of changes in FIT levels, and show that module 

prices tend to increase before FITs decrease, indicating that firms anticipate policy changes 

and this influences their pricing strategies. However, this effect is temporary. 

Providing evidence on how FITs influence panel price is useful for policy makers for 

several reasons. First, the potential cost of getting FITs wrong (i.e. potential windfall profits) 

is high, with panel prices typically representing forty percent of the overall cost of PV 
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electricity generation. Second, getting FITs wrong is also politically problematic in many 

countries because it can imply transferring rents from domestic electricity consumers to 

foreign panel producers as the bulk of world PV panels production is located in China. High 

rents can also induce market overheating which is costly and often followed by drastic 

production cuts, which harm the industry’s long-term development as illustrated by the 

French or Spanish cases. Lastly, the potential increase of panel prices reduces the 

effectiveness of FITs as it increases the overall cost of PV systems.3   

An empirical literature has developed on the role and impacts of FITs. Some studies have 

estimated the impact of FITs on the deployment of solar PV capacities, electricity costs, 

employment, or innovation (e.g. Leepa and Unfried, 2013, Frondel et al., 2010; Hoppmann et 

al., 2013). To the best of our knowledge, there are no academic works to date on the 

interactions between FITs and PV system prices, other than the contribution by Prest (2012) 

who investigates from a legal point of view how FITs should be adjusted to changes in the 

markets for PV systems. 

Panel and silicon prices reflect the production costs plus profit margins. Costs are driven by 

technology-specific factors such as scale effect, R&D, learning-by-doing brought by the 

accumulation of experience. In contrast, the profit margin component - the difference between 

price and cost - is driven by market conditions such as competition, demand and supply 

balance and strategic behaviours. A substantial amount of literature focuses on the analysis 

and prediction of the cost of solar PV modules and systems using several methodologies: 

econometric estimation of learning curves (Yu et al., 2011; Poponi, 2003; de la Tour et al., 

2013); expert elicitation surveys (Bosetti et al., 2012); and engineering studies (Nemet, 2006; 

                                                 
3 These are undeniably less hot issues in the short term as PV panel producers are said to sell at a loss for a 

couple of years because of production overcapacity. But overcapacity cannot but disappear in the future. 
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Branker et al., 2011). The analysis of pricing issues is far less developed although it is worth 

mentioning a recent paper by Candelise et al. (2013) who look at both cost and price issues. 

Contributions in the grey literature also stresses the importance of market forces such as 

demand/supply imbalance or input price are responsible for recent deviation in module price 

from the historical trend (Hayward and Graham , Solarbuzz, 2012). None of these studies 

considers the role of FITs. 

The remaining of this paper is structured as follows. Section 2 introduces the analytical 

framework and the hypotheses to be tested later on. The dataset and preliminary diagnostics 

are presented in Section 3. Section 4 explores the direction of the causality and tests the 

hypotheses set out by the analytical framework. Section 5 analyses the influence of past and 

future FIT changes on module prices using polynomial growth models. Section 6 concludes 

the paper. 

2    Background and tested assumptions   

Before introducing a simple framework used to formulate hypotheses about the influence 

of FITs on silicon price on module price, it is worth describing briefly the crystalline PV 

production chain. Panel production from silicon involves several steps (see Figure 1, adapted 

from de la Tour et al., 2011). The silicon is crystallised, forming ingots which are sliced into 

wafers. The wafers are processed and assembled by pairs into cells, which are soldered and 

encapsulated to build modules. The deployment of the PV system then requires combining the 

modules with complementary equipment (such as batteries and inverters) into integrated 

systems which, once installed, can generate power. The PV module cost is typically between 

a third and a half of the total capital cost of a PV system (IRENA, 2012). 
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The upstream production of polysilicon is a key step in the PV chain, given silicon is the 

main material input and accounts for 20% of the module costs (IRENA, 2012). This stage also 

accounts for the largest share of the energy use in PV production. Other material inputs – 

glass, aluminium and silver - account for a small part of the manufacturing cost and/or have 

stable prices. 

Polysilicon is a commodity, that is, a good which is supplied without qualitative 

differentiation across the market. Once silicon exceeds the minimum purity level of 99.999%, 

this leaves little room for product differentiation. In commodity markets, it is well-known 

from the industrial organization literature that the intensity of competition is strongly 

influenced by production capacity and that this gives rise to price instability (for instance, see 

Tirole, 1988). When production capacity is insufficient to cover demand, producers enjoy 

considerable market power to increase prices above the marginal production cost. 

Undersupply can persist since it typically takes two years to build a silicon production plant.4 

This occurred before 2009, leading to a dramatic price increase. Since the price peak, 

overcapacity has prevailed and prices declined as a consequence (Candelise et al., 2013). We 

will come back to the evolution of the silicon market below. 

To a large extent, crystalline PV panels are also commodities with little product 

differentiation. In the current context of oversupply driven by over-optimistic expectations 

about the growth of PV markets, economic theory also predicts very low prices (Tirole, 

1988). In fact what we observe today are very low prices, probably below the long-term 

marginal production costs of many manufacturers. This has led major panel producer such as 

Q-Cells or SunTech Power to bankruptcy in 2012 and 2013 (Sweet, 2013; Hoium, 2013). 

                                                 
4 In contrast, facilities manufacturing cells and modules can operate in less than a year (de 

la Tour et al., 2011).  
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Supply is also a function of the learning effect which steadily reduces costs through the 

accumulation of experience (Candelise et al., 2013). The price of silicon is another potential 

driver of PV panel prices; this hypothesis will be tested below. 

  

Figure 1: Crystalline photovoltaic production chain 

 

 

Source: de la Tour et al. (2011) 

 

In line with the analysis developed in the introduction, we now formulate a set of assumptions 

which will be tested in the rest of the paper. The first assumption is based on the economic 

law of supply and demand which predicts that increasing the level of FITs raise module 

prices, thereby creating rents in the cell and module production segments. Hence,  

Hypothesis 1a: FITs positively influence module prices.  

However, the direction of causality can also reverse in situations where the regulator reacts to 

the market price and lowers FITs, in order to minimize windfall profits for manufacturers of 

PV systems, to limit the burden placed on electricity users and, more generally, to keep the 

cost of PV electricity as low as possible. Hence: 
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Hypothesis 1b: FITs follow module price, reducing rents in the downstream segments of the 

industry, i.e. PV systems installation and electricity production.  

As argued before, the dynamics of module prices have also been affected by evolution in the 

upstream silicon market as panel production is the main market for silicon (87% in 2011, 

SolarBuzz 2012). The theory of industrial organization then predicts two possible outcomes. 

Silicon producers can be price makers in the industrial economic sense. That is, they enjoy 

sufficient market power to pass through a silicon price increase to module price. 

Alternatively, they can be price takers, meaning that they consider the market price as 

exogenously given in the case where the silicon market is sufficiently competitive. This leads 

to two exclusive assumptions: 

Hypothesis 2a: Silicon prices influence module prices. (Silicon producers make the price in 

the silicon market.) 

Hypothesis 2b: Silicon prices follow module prices. (Silicon producers are price takers.)  

3 Preliminary diagnostics 

    In order to investigate the hypotheses formulated in the previous section, we consider 

weekly data on silicon and module spot prices provided by PV Insights5 . Solar PV 

components are not traded on public exchanges. In order to provide solar PV companies with 

reliable and concise information on prices, PV Insights make weekly price estimates based on 

prices for privately traded components which they collect from various contributors. The 

precise methodology they use is confidential. We rely on weekly data on these estimated spot 

prices over the period January 2005 to May 2012. 
                                                 
5 PV Insights is an international solar PV research firm which produces reports, advisory 

service, and price reports. http://pvinsights.com 
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    The data on Feed-in-Tariffs values for Germany, Italy, France, and Spain have been 

extracted by the authors from various sources: International Energy Agency 

(http://www.iea.org), the Solar Feed In Tariff website (http://www.solarfeedintariff.net), PV 

Magazine (http://www.pv-magazine.com/), RES LEGAL website (http://www.res-legal.de/) 

and Solarenergie - Förderverein Deutschland (http://www.sfv.de). Other countries such as 

Japan and United States are not considered in this paper since they implemented alternative 

PV technology development policies (e.g. renewable portfolio standards or investment 

subsidies) or do not account for a significant share of the global market. The four European 

countries considered cover more than 60% of the global market share. A practical problem is 

that, among countries, different tariffs are set for different types of PV systems (e.g. ground 

based, commercial and residential). To have a common metrics for measuring the level of 

FITs in place in each country, we calculate a single FIT value which is equal to the weighted 

average of a specific type of FIT, weighted by their market share in any given period. Data 

sources are indicated in Appendix A. 

Figure 2 reports the average FITs evolution for Germany, Italy, France, and Spain and 

shows that the dynamics are different in each country. While German and Italian FITs have 

been decreasing steadily, more chaotic variation was observed in the Spanish and French 

markets. On the period considered, there have been 11 changes to FIT levels in Germany, 14 

in Italy, 6 in Spain, and 9 in France. 



11 
 

Figure 2 Average FIT evolution in the main countries 

 

 

Source: See Annex A 

Figure 3 depicts the silicon and PV module’s spot price fluctuations from January 2005 to 

May 2012 and reveals that the price dynamics significantly changed during this period. 

Silicon prices increased markedly from 56$/kg in 2005 to 396 $/kg in 2008. This corresponds 

to a period of global silicon shortage from 2005 to 2009. Meanwhile, module prices also 

increased from 2.55 $/Wp in 2005 to 3.56 $/Wp in 2008. After the end of 2009, prices appear 

to be much more stable, with silicon prices returning to January 2005 levels, indicating the 

end to the shortage period and module prices following almost the same trend. 
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Silicon and module prices seem to be synchronised throughout the period. However, the 

rate of price increase is considerably lower for modules (40%) compared to silicon (607%). 

Two facts can potentially explain this observation: (i) silicon costs represents only 20% of  

total module cost6, and (ii) silicon is sold by and large through long-term contracts (about 

80%) and thus the average purchase price did not rise in the same proportions as the spot 

price.  

 

Figure 3 Silicon and PV modules spot price evolution from January 2005 to May 2012 

  

Source: PV Insights 

 

    In order to have a preliminary intuition about the relationship between FITs and module 

prices, a good starting point is to understand how the evolution of panel prices compares to 

that of the FITs implemented in various countries. However, the comparison is not 

                                                 
6 See Photon Consulting annual report 2012 (p. 154) for more information. 
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straightforward since the two variables are not expressed in the same unit: whereas FITs are 

measured in terms of a unit of electricity ($/kWh), module prices are expressed in terms of 

production capacity ($/kWp).7 To allow for comparison, we convert the FIT into the net 

present value of the electricity generated over its lifetime by a module of a standard capacity 

of 1 kWp and sold at this FIT. The net present value of the electricity generated by the 

module in a country indexed i is given by the following expression: 

 ����,� = �	
�,� �∑ 
�	×	�������������� �            (1)

where �	
�,� is the feed-in tariff in country i at time t, T is the lifetime of the PV system and r 

is the discount rate. The product ��	 ×	 !	� is the electricity produced each year in country i 

by the PV system, with �� denoting the Performance Ratio of the installation (the ratio of the 

actual and theoretically possible energy output) and  !	�, the country-specific Annual Solar 

Irradiation (the sum of the quantity of solar energy reaching the installation over a year). We 

take the following values for the different parameters: a discount rate of 10%, a lifetime of 25 

years, and a performance ratio of 0.75 (IRENA, 2012). The ASI is assumed to be 1200 

kWh/kWp/year for Germany, 1500 for Italy, 1700 for Spain, and 1350 for France. These 

figures are obtained from the SolarGIS website.8 

The net present value of electricity given by Equation (1) needs to be compared to the price 

of the whole PV system, of which the panel price accounted for around 40% in 2011 (Photon 

Consulting, 2012). To obtain the price of a PV system, we add to the module price, the price 

of other components such as the inverter, wire and mounting system. Weekly values of the 

                                                 
7 Watt-peak (Wp) is a measure of the nominal power of a photovoltaic device under 

laboratory illumination conditions. 
8 Source: http://solargis.info/ 
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prices of other components are computed using the annual price trends obtained from Photon 

international (2012). 

For each country, Figure 4 compares the cost of a PV system (the shaded area) with the net 

present values of the electricity produced by a PV system sold at the national FIT level. It 

shows that the German FIT follows PV system price the most closely. In contrast, important 

divergences can be observed between the FIT and module price in 2007/2008 in Spain and in 

2009/2010 in France, following the uncontrolled developments of the PV market and the 

subsequent sharp FIT cuts. The significant gap in 2010/2011 in Italy can also be explained by 

the fast market growth during this period, which multiplied by 13 in two years, from 720 MW 

in 2009 to 9300 MW in 2011 according to the EPIA (2012). 

Figure 4 Comparison of PV systems price (shaded area) with the value of the FIT corresponding 

to all the electricity produced by a PV system over its lifetime (line) 
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4 Econometric analysis 

    In this section, we analyse the relationship between prices by using a multivariate 

econometric approach. More specifically, we test each of the hypotheses given in Section 2 to 

identify the price dynamics during the period. 

4.1 Construction of the time series 

 Before analysing the interdependencies between prices, one needs to construct consistent 

time series. This requires solving two problems. First, module and silicon prices are observed 

at the world level whereas the FITs are country specific. The analysis thus requires 

constructing a world-level FIT variable averaging the national FITs. We use the average of 

countries’ FITs, weighted by the size of the national electricity markets. Formally, this world-

level variable is computed with the following formula: 

 �	
� = ∑ �	
�,� ∗ #$#%�,��    (2)

where #$#%�,� is the size of the electricity market of country i at time t. 

The second problem is that module prices are known to be influenced by long-term drivers, 

in particular learning-by-doing improvements. This needs to be controlled for, in order to 

focus on market effects. We do so by adopting the learning curve theory which predicts that 

learning-by-doing decreases price through the accumulation of experience measured by 

cumulative production according to the following formula: 

 &'()$#� = &'()$#�* ∗ + %)&_-.'(�%)&_-.'(�*/
01

 (3)
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Here, &'()$#�  is module price at time t, %)&_-.'(�  is the cumulative PV module 

production at the same date,9 to is an arbitrarily chosen reference date and E is the experience 

parameter, measuring the intensity of the learning-by-doing process. We use an experience 

parameter of 0.338, corresponding to a learning rate of 20.1%, which has been estimated in 

the study by de la Tour et al. (2013) who used the same data.10 Using data on cumulative 

production extracted from Photon consulting annual reports, we are able to predict the value 

of &'()$#�* , which is the module price equivalent to &'()$#�	if no learning would have 

happened since 23. &'()$#�3  denotes the corresponding predicted variable. 

4.2 Unit root properties 

    We now investigate the unit root properties of each series: the silicon price, the deflated 

module price (&'()$#�3 ), and the FIT index (�	
� ), both in logarithm and in first log-

difference. Testing is necessary as the estimations carried out subsequently require knowing 

the time series property of the price series (i.e. unit root or stationarity).  

To do so we rely on three types of tests, namely the traditional ADF (1981), Schmidt-

Phillips (1992, hereafter SS), and KPSS (1992)'s tests. While the first two consider the null 

hypothesis of unit root, the latter is based on the null of stationarity. 

However, in the particular case of the price of silicon, using these tests would not be 

relevant since that price has experienced periods of relative instability during the shortage 

period from 2005 to 2009, suggesting potential breaks in its dynamics. Since the seminal 

                                                 
9 Since the learning effect is a slow process which cannot be affected to the production of a 

particular week or even month, we create a proxy for weekly cumulative production following 

the yearly production trend obtained from Photon Consulting (2012). 
10 A learning rate of 20.1 means that unit cost decreases by 20.1% for each doubling of 

cumulative production. 
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paper of Perron (1989), researchers have acknowledged the importance of allowing for a 

structural break in unit root tests. More precisely, Perron has shown that the ability of 

traditional tests to reject a unit root decreases when the stationary alternative is true and an 

existing structural break is ignored. Following Perron (1989), two types of approaches are 

often used. The first assumes exogenous break where break point is known a priori, and the 

second determines endogenously break points from the data. One widely used endogenous 

procedures is the minimum test of Zivot and Andrews (1992, hereafter ZA), which selects the 

point where the t-statistic testing the null of a unit root is the most negative. Given a loss of 

power from ignoring one break, it is logical to expect a similar loss of power from ignoring 

two or more breaks in the one-break test. Perron and Vogelsang (1992, hereafter PV) and 

Lumsdaine and Papell (1997, hereafter LP) contribute in this direction by extending the 

minimum ZA unit root test to include two structural breaks. One important issue coming from 

the ZA, PV and LP tests is that they assume no break(s) under the unit root null and derive 

their critical values accordingly. Thus, the alternative hypothesis would be "structural breaks 

are present", which includes the possibility of a unit root with break(s). As such, rejecting the 

null does not necessarily imply rejecting the unit root per se, but would imply rejecting a unit 

root without breaks. To deal with these issues, we propose using the Lee and Strazicich 

(2003) endogenous two-breaks LM unit root test, which allows for breaks under both the null 

and alternative hypotheses. 

Results for series in first log-difference are reported in Table 1 and shows that series are 

integrated all of the same order I(1), meaning that they are stationary in first log-difference.11 

Looking at the LM test of Lee and Strazicich (2003), all series are I(1) without breaks, with 

the exception that silicon price is I(1) with one structural break. This break most probably 

                                                 
11 Results for series in logarithm (not reported here) indicate that each serie have unit root. 
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corresponds to the end of the silicon shortage period. To confirm this fact, we use the 

structural break test of Bai and Perron (2005) to precisely date-stamp the point break. It 

reports a break at 5/31/2009.  

    We therefore split our analysis into two periods corresponding to the break point: the 

shortage period from 1/05/2005 to 5/31/2009 and the post-shortage period from 6/01/2009 to 

5/30/2012, to see whether prices behaviour vary accordingly. Table 1 reports ADF, SS, and 

KPSS tests for each period and reveals same results than for the whole study period. 

 

Table 1: Unit root test for Silicon price, Module price and FIT index (whole sample: 1/05/2005-
5/30/2012) 
 
 
 Silicon Price Deflated module Price FIT index 
ADF -4.674* -5.300* -19.983* 
SP -4.212* -5.108* -8.881* 
KPSS 0.041 0.064 0.198 
LM -5.183* -5.985* -8.913* 
 
Notes: ADF and SP tests are based on the null of unit root. KPSS test is based on the null of stationarity. The 
LM unit root tests assume two breaks under both the null and alternative hypothesis. * denotes rejection of the 
null hypothesis at 1% significance level. 

 

Table 2. Unit root test for silicon price, deflated module price and FIT index for shortage and 
post-shortage periods 

Shortage: 1/05/2005-5/31/2009 Post-shortage: 6/01/2009-5/30/2012 
ADF SP KPSS ADF SS KPSS 

Silicon price -4.983* -3.621* 0.197 -4.547* -4.619* 0.130 
Deflated module price -6.784* -3.689* 0.146 -7.129 -4.957* 0.067 
FIT index -15.034* -14.793* 0.125 -13.114 -13.004* 0.276 

Notes: ADF and SP tests are based on the null of unit root. KPSS test is based on the null of stationnarity. * 
denotes rejection of the null hypothesis at 1% significance level. 
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4.3 Causality 

        In this section, we investigate the short-run relationships between silicon price, 

deflated module price and FIT index for both shortage and post-shortage periods using the 

well known Granger causality tests (Granger, 1969). Granger has developed a methodology 

based on vector autoregressive (VAR) models to test for causality between two stationary 

processes. Consider the following VAR(p) specifications 

where it is assumed that the disturbances 5��~77�0, Σ:;�  and 5<�~77�0, Σ:=�  are 

uncorrelated and both variables are I(0) processes. X is said to “Granger causes” Y if past 

values of X provide statistically significant information about future values of Y beyond what 

could have been done with past values of Y only. This approach has the advantage of being 

very easy to apply in many kinds of empirical studies since it can jointly provide results for 

the two null hypotheses that ∑α� and ∑δ� are both not different from zero. 

Our variables all being I(1), we investigate causality between prices of silicon, predicted 

module (&'()$#�3), and the FIT index (�	
�)  in first log-differences. Given that we have 

identified one structural break at 5/31/2009, we split our analysis into two episodes and 

estimate different VAR(2) models for shortage and post-shortage periods respectively.12 

Some bias and size distortion affecting the asymptotic theory of the test can emerge when the 

sample data is not long enough (i.e. the so-called small sample bias). To deal with this issue, 

                                                 
12 We use Akaike criterion for lag selection where we find p=2. 

@� = ∑ α�A�0�B��� + ∑ β�@�0�B��� + 5��  (4)

A� =Eδ�A�0�
F

���
+Eφ�@�0�

F

���
+ 5<� (5)
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we rely on a bootstrap Granger causality approach which allows more precise testing of 

inferences than the asymptotic method. 

Results of the Granger causality tests are reported in Tables 3 and 4. The test clearly indicates 

that module price causes FITs during post-shortage period (Hypothesis 1b).13 During the first 

period, the test does not yield any conclusion regarding causal relationships, at least at the 5% 

or even the 10% significance level. Turning next to the relationships with silicon prices, the 

tables show that, during the shortage period, silicon price Granger causes module price in a 

unidirectional way (Hypothesis 2a). However, the reverse effect appears during the post-

shortage period when the module price Granger causes the silicon one (Hypothesis 2b).  

How can these results be interpreted? The findings on the silicon price is perfectly in line with 

economic theory which predicts that, in commodity markets, producers have market power 

only in cases with production capacity constraints. The shift in market power from silicon 

producers to module manufacturers can also be due to the PV industry becoming an 

increasingly dominant buyer in the silicon market, overtaking the semi-conductor industry 

since 2007 (SolarBuzz 2012). 

Looking at Figure 4 helps understand why module prices cause FITs after 2009 but not 

before. Before 2009, FIT levels were very stable, modified only once a year in Germany, and 

even less frequently in other countries. Their level was set well in advance, sometimes years 

ahead.14 FITs were thus very rigid, explaining why they could not follow module price 

closely. Around 2009, FITs became much more flexible with intra-year adjustments to follow 

                                                 
13 As suggested by a referee, we also perform as robustness check, the linear dependence 

test developed by Geweke (1982). Results available upon request to authors confirm those of 
Granger approach. 

14  This was adapted to the steady and predictable price decrease triggered by the 

experience effect before the silicon shortage. 
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module prices. Germany revised its Renewable Energy Sources Act (EEG) in 2009 

introducing a new responsive FIT scheme. The new scheme set a benchmark FIT for each PV 

class (e.g., ground-mounted, residential rooftop). But, if annual solar installations are to 

exceed a certain threshold (e.g., 1,500 MW/year), a FIT higher than the benchmark applies 

and vice versa if the pace of deployment falls below a certain threshold (Kreycik et al., 2011). 

In Spain where an uncapped FIT was previously used to support solar electricity generation 

until 2008, a new legislation (RD 1578/2008) imposed an annual cap on solar PV installations 

of 500 MW for 2009 and 2010 and a lower cap of 400 MW for 2011 and 2012 (Kreycik et al., 

2011). A similar decision was made in France in 2011. The fact that FITs track module price 

more closely in the recent years should then be interpreted as a consequence of the 

modifications in FIT-setting mechanisms. 

These findings can be viewed as good news as they show that, after an initial period of 

learning, regulators of the countries covered by the study have been able to adapt the level of 

the FITs to the evolution of the module markets. Importantly, this does not come from a 

change in the module markets which occurred simultaneously (an increase of the competition 

between module manufacturers). This reflects a change in regulators’ behaviour which 

became more responsive to market evolutions. 

 

Table 3: Causality test results (shortage period: 1/05/2005-5/31/2009) 

@ → A Silicon Price Module Price FIT index 
Silicon price - 0.014** 0.577 
Module price 0.660 - 0.898 
FIT index 0.117 0.974 - 
Notes: P-values from Monte Carlo simulation with 10,000 are reported. ** denotes rejection of the null of no 
causality at 5% significance level.  
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Table 4: Causality test results (post-shortage: 6/1/2009-5/30/2012) 

@ → A Silicon Price Module Price FIT index 
Silicon price - 0.399 0.721 
Module price 0.000* - 0.054*** 
FIT index 0:827 0.199 - 
Notes: P-values from Monte Carlo simulation with 10,000 are reported. *, ** and *** denote respectively 
rejection of the null of no causality at 1%, 5% and 10% significance levels. 

 

5 Anticipation of feed-in tariffs change 

Vector autoregressive models use past (lagged) values as explanatory variables. However, 

FITs could be announced, and therefore anticipated, months or even years ahead. This section 

further investigates the FITs’ effect on module price, by analysing the effect of future FIT 

changes on module price. Our approach examines the variation of module prices prior to falls 

in FIT levels (which occurred 24 times in total across all countries studies during the period 

considered). A simple theoretical reasoning suggests that firms would anticipate a decrease in 

FITs by purchasing more modules before the change, to benefit from the higher FITs, which 

would eventually increase price. Anecdotal evidence supports this behaviour indeed occurred. 

For instance, the observation of monthly PV installation levels and the FIT evolution in 

Germany depicted in Figure 5 clearly indicate installation peaks, measured by the number of 

connections to the grid, during the months before drops in FITs. Leepa and Unfried (2013) 

have thoroughly analysed this pattern in a recent empirical study of the impact of cut-off in 

feed-in tariffs on photovoltaic capacity. 

 While Figure 5 describes the impacts of anticipating FIT changes on installed capacity, 

what about the impacts on module prices? To answer this question, we build a difference-in-
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difference indicator to measure short-term price variations: the variable (#IJK2J'L�  is the 

deviation of the first log-difference of module price, Δl&'()$#�,	compared to a business as 

usual (BAU) scenario at date t: 

 (#IJK2J'L� ≡ Δl&'()$#� P Δl&'()$#�
Q�R       (6)

If (#IJK2J'L� is positive, this indicates that the increase in module price in week t exceeds 

the BAU scenario prediction. 

Figure 5 Impact of the feed-in tariff reductions on monthly capacity addition in Germany 

 

Source: Enerdata, from German Ministry for Environment, SolarWirtshaft 
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We rely on results from Section 5 to calculate the BAU price i.e. that module pricing 

adheres to different rules during and after the silicon shortage. During the silicon shortage, the 

price is driven by the silicon price. We thus assume the following relationship15: 

 Δ$&'()$#�
Q�R =  + S�Δ$TJ$J%'L�0� +	S<Δ$TJ$J%'L�0< + U�       (7)

where U� ∼ 77(0, SW). After the silicon shortage, the BAU price is assumed constant: 

 Δ$&'()$#�
Q�R = 7          (8)

Based on the estimations of Equations (7) and (8)16, we report in Figure 6 the dynamics of 

(#IJK2J'L� over a 1 year-period around a particular FIT decrease occurring simultaneously in 

Germany and Italy on January 1st 2007. We can observe a positive effect during the few 

months before the decrease, and a negative one afterwards. This pattern suggests there is an 

announcement effect such that predicted upcoming changes in the level of FITs induce 

module buyers to anticipate their purchase before the change occurs. This produces a 

temporary price adjustment around the date of FIT change: the price increases before the 

change together with the demand, then decreases afterwards. 

                                                 
15 Previous results from VAR model show that the lag length for silicon price is two 

weeks. 
16 Results of estimations are presented in Appendix B. 
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Figure 6: Deviation of module prices compared to a business as usual scenario before and after a 

FIT decrease in January 2007. 

 

 

In order to gain further understanding of the dynamic effect of a FIT decrease on module 

prices, we now estimate a polynomial growth model. The model explains the deviation of 

module prices by a polynomial function of the time before the following FIT decrease. The 

regression equation is:  

 (#IJK2J'L� = ∑ 	XY�X#Z'.#��Y 	+[Y�� \�																																			         (9)

where X#Z'.#� is the number of weeks before the following FIT decrease and \�  is an 

i.i.d. error term process.  

    Predicted (#IJK2J'L�	is computed by Equation (9)17 over a 40-week period and depicted 

in Figure 7. As expected, the graph shows a positive deviation before FIT decreases. 

However, the impact becomes negative 5 weeks before. These results are easy to interpret. In 

                                                 
17 Results of estimation are relegated in Appendix C. 
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order to be able to connect the PV installation before the FIT decreases, firms installing PV 

systems need to buy the modules a few weeks before for small projects, or a few months for 

big installations. This boosts module demand during the months before the FIT cuts, and 

therefore increases the module price. A few weeks before the FIT drop, firms lose this 

incentive since there is not enough time to complete the installation and connect to the grid 

before change. This lowers the demand, decreasing the module price, which encourages firms 

to wait to benefit from this reduction, eventually decreasing price even more. Our results 

indicate that this occurs up to five weeks before the decrease. 

 

Figure 7 Simulation of the deviation of the first order derivate of module price from a business 

as usual scenario before a FIT decrease 

 

 

7 Conclusion 

This paper aimed to analyse the influence of feed-in tariffs and silicon prices on module 

prices. We rely on a database of silicon and module weekly spot price, and FIT values in 
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Germany, Italy, Spain, and France from January 2005 to May 2012. We find the direction of 

causality relations using Granger causality tests.  

These tests show that since the end of the period of silicon shortage in 2009, module price 

variations cause changes in FITs, and not vice versa.  This is good news as it suggests that 

regulators have been able to prevent FITs to inflate module prices, limiting the creation of 

rents in the PV panel industry. This can be explained by changes in FIT regimes in major 

markets towards volume responsive systems such as in Germany in 2009, in Spain and in 

France in 2009 and 2011. In addition, the fierce competition prevailing on the module market 

has also played a role in keeping module price close to production cost. 

Nevertheless, analysis using polynomial growth models shows FIT give rise to inflationary 

short-term effects on module price. During periods leading up to drops in FIT levels, module 

prices increases are observed. The interpretation is straightforward: a higher demand is 

triggered by the market anticipating the FIT drop, and firms rushing to install more PV 

capacity before the drop. This inflation is temporary, however. 

The analysis also suggests that the silicon price drove module price only during the silicon 

shortage, suggesting that silicon producers held market power. This is in line with the 

observation that there was under-capacity in silicon production before 2009. After the end of 

the shortage period, silicon producers lost their market power and we find that module prices 

began to drive silicon prices. This can be explained by an increasing competition with new 

players entering the market, including many Chinese corporations such as LDK Solar, which 

directed the situation from shortage to excess production. 

As explained in introduction, the existing literature tends to neglect short-term price effects 

on the market of PV systems, focusing instead on the long-term evolution of costs (arguably 
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driven by learning-by doing and innovation). As we conclude, it is worth questioning the 

impact of the market-driven mechanisms studied in the present paper on the long-term solar 

PV cost trajectories. The question amounts to the evaluation of the impacts of potential rents 

on the long-term cost of PV systems. Giving a definite answer is difficult as there are two 

schools of thought on the role of rents on innovation. In the Schumpeterian view, rents are 

necessary to provide innovators with sufficient incentives to devote resources in risky long-

term R&D projects. Others claim the opposite thesis that competition, which limits rents,  

boosts innovation as technological progress is the only solution to escape from a neck-to-neck 

competition with competitors producing the same standardized products (e.g. Hart, 1983; for 

a general discussion, see Aghion et al., 2005). 
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Appendices 

A Data sources 

We use multiple data sources which are listed below. 

1) FIT values 

International Energy Agency (http://www.iea.org) 

Solar Feed In Tariff website (http://www.solarfeedintariff.net) 

PV Magazine (http://www.pv-magazine.com/) 

RES LEGAL website (http://www.res-legal.de/)  

Solarenergie-Förderverein Deutschland 

(http://www.sfv.de/druckver/lokal/mails/sj/verguetu.htm) 

2) Silicon and module prices   

PV poly silicon weekly spot price and silicon solar module prices are obtained from PV 

Insights (http://pvinsights.com ) 

3) Worldwide cumulative production of PV electricity 

Used to deflate module prices. Extracted from Photon consulting annual reports.  
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B. Regression results of the BAU model (Equations 7 and 8) 

 

 Before After 
Dependent variable D. ln^&'()$#� _ D. ln^&'()$#� _ 
LD.	ln(TJ$J%'L�) 0.2160*** 

(0.041) 
- 

L2D.	ln(TJ$J%'L�) 0.0935** 
(0.041) 

- 

Constant 0.0006 
(0.001) 

-0.0022** 
(0.001) 

Observations 234 150 
R-squared 0.3746 0.0000 
Adj. R-squared 0.3692 0.0000 

 

Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 Regression performed during 

the silicon shortage. L stands for the operator for Lag, F for Forward lag, and D for first order 

derivative. 
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C Regression results of the polynomial growth model 

 

Dependent variable  (#IJK2J'L� X#Z'.#�  0.001057984*** 
(0.000) 

�X#Z'.#��2  -0.000039290*** 
(0.000) 

�X#Z'.#��3  0.000000386* 
(0.000) 

Constant -0.005062572*** 
(0.001) 

Observations 380 
R-squared 0.0651 
Adj. R-squared 0.0576 

 

Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 
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