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Abstract 

This paper analyses the relative influence of domestic and foreign demand-pull 

policies in wind power across OECD countries on the rate of innovation in this 

technology. We use annual wind power generation to capture the stringency of the 

portfolio of demand-pull policies in place (e.g., guaranteed tariffs, investment and 

production tax credits), and patent data as an indicator of innovation activity. We find 

that wind technology improvements respond positively to policies both home and 

abroad, but the marginal effect of domestic policies is 12 times greater. The influence of 

foreign polices is reduced by barriers to technology diffusion, in particular lax 

intellectual property rights. Reducing such barriers therefore constitutes a powerful 

policy leverage for boosting environmental innovation globally. 
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1 Introduction 

One of the central objectives of environmental policies is to foster innovation in 

environment-friendly technologies and pave way towards ‘green’ growth. Political 

leaders across countries frequently argue that ambitious environmental and climate 

domestic policies can help local firms achieve technological leadership, thereby boosting 

the competitiveness of the national economy and creating jobs.1 However, domestic 

policies may also boost innovation activities abroad, and thus strengthen foreign 

competitors. Indeed, the fact that 44% of the applications for patents worldwide in 2008 

were filed by non-residents (WIPO 2010) clearly indicates that innovators look beyond 

national borders. 

If innovators are influenced not only by domestic, but also foreign market 

conditions, then environmental policies may fail to give rise to competitive advantage 

for domestic companies. This concern has led to particularly heated political debates in 

the renewable energy sector, as this source of energy has been heavily subsidized 

through guaranteed feed-in tariffs in many developed countries, while major global 

suppliers of wind or solar photovoltaic equipment are located in China or India. Yet the 

existence of cross-country policy spillovers implies a stronger overall impact of 

domestic policies on global innovation, and thus on green growth. 

A first objective is to study the relative impact of domestic and foreign policies 

promoting wind power on innovation. We primarily focus on policies that stimulate the 

deployment of wind power capacities, such as feed-in tariffs or renewable portfolio 

standards. These are usually referred to as demand-pull policies as they foster the 

demand for innovation. A major practical difficulty to study the cross-border impact of 

demand-pull policies, however, is finding data measuring the level of demand-pull 



 3 

regulation that are reliable and comparable across countries. We overcome this 

difficulty by using annual wind electricity generation in each country to proxy for the 

level of demand-pull policies for wind generation. We also examine the influence of 

public R&D support in wind technologies. 

When developing a technology, innovators look forward to the diffusion stage, at 

which time they will reap the benefits of their invention. Considering the diffusion stage 

is thus necessary to understand the impact of foreign determinants on innovation. A 

second objective of the paper is to investigate the drivers of the international diffusion 

of wind power technology. 

Reasoning backward, we first identify the factors driving international technology 

diffusion based on a panel dataset describing the cross-border transfer of inventions, as 

measured by patent filings, from 28 OECD (inventor) countries to 79 recipient countries 

between 1991 and 2008. We show that local demand for wind power exerts a positive 

influence on technology inflows. However, barriers to trade and lax intellectual property 

rights regimes significantly hinder the transfer of patented inventions. This suggests 

that foreign demand might be less effective in inducing innovation relative to domestic 

demand.  

We test the latter assumption by estimating the relative impact of domestic and 

foreign demand for wind power on innovation with a panel covering the same 28 

inventor (OECD) countries2 over the period 1991-2008. In certain specifications, we use 

our results on technology diffusion to weigh the variables capturing the level of foreign 

policies, the idea being that foreign demand originating from countries with lower 

barriers to diffusion are more likely to influence inventors. We find that innovation 

efforts increase in response to both stronger domestic and foreign demand. However, 
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the marginal effect of domestic demand on the rate of innovation is much stronger than 

that of the foreign demand. 

Our focus on wind power is motivated by three reasons. First, wind power 

accounted for the largest additions of renewable energy capacity in recent years, ahead 

of hydro power and far ahead of solar, geothermal, biomass and marine energy (IEA, 

2012). Second, the wind turbines market is a globalized market, with the top 10 

companies in 2009 based in six different coutries, including two emerging economies3, 

making it an interesting case to study cross-country spillovers of innovation. Third, the 

competition from these emerging economies has given rise to heated policy debates, in 

particular over the pertinence of introducing measures to protect domestic industries. 

The topic of this paper makes a contribution to the well-developed empirical 

literature on green innovation. Most studies ignore cross-country policy spillovers as 

they relate domestic innovation to domestic policies (Jaffe and Palmer 1997; 

Brunnermeier and Cohen 2003; Newell et al. 1999; Popp 2002; Crabb and Johnson 2010; 

Johnstone et al. 2010). Our finding that environmental policies also promote foreign 

innovation means that these studies underestimate their overall impact. 

A few empirical studies have begun exploring the effect of foreign environmental 

or climate regulation on technological innovation. Their conclusions are, however, 

mostly based on correlation analysis, which may not provide sufficient evidence of 

causality. Lanjouw and Mody (1996) observe that strict vehicle emission regulations in 

the US seemingly spurred innovation in Japan and Germany. Popp (2006), by contrast, 

finds that innovation in air pollution control devices for coal-fired power plants is 

positively correlated with stringency of environmental regulation in the home country, 

but is not influenced by the stringency of foreign environmental regulation. Popp et al. 

(2011) examine the case of chlorine-free technology in the pulp and paper industry and 
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find a positive correlation between both domestic and foreign regulation and 

innovation. But whether these results can be interpreted as causation remains an open 

question.  

In a paper developed independently and at the same time as ours, Peters et al. 

(2012) analyse the impact of foreign demand-pull policies on innovation in the 

photovoltaic energy sector. They also find that a positive and significant effect of foreign 

demand on domestic innovation, which suggests that this pattern is robust, at least 

across renewable energy technologies. However, the magnitude of the impact of foreign 

demand is smaller than in this paper. Although differences in sample and in explanatory 

variables make it difficult to compare the results of the two papers4, this may suggest 

that barriers to technology diffusion are higher in the solar PV than in the wind industry, 

which is a relatively more mature technology. 

This paper is also related to the literature on the international diffusion of clean 

technologies. In particular, Dechezleprêtre et al. (2012) examines the drivers behind the 

flows of climate-related patents across countries. This paper’s approach and results are 

similar, but whereas Dechezleprêtre et al. (2012) primarily assesses the influence of 

generic policy variables (IPR, barriers to trade and FDI), this paper looks specifically at 

environmental policy variables. Dekker et al. (2012) uses patent data to look at the 

impact of the Convention on Long-Range Transboundary Air Pollution on innovation 

and international technology diffusion. They show that signatory countries experience 

an increase in the inflow of foreign patents as well as in domestic innovation. Yet it does 

not address the influence on innovation by foreign inventors, which is the central 

question of this paper. 

The paper proceeds as follows. Section 2 briefly presents the recent trends in the 

deployment of wind power technology at the global level and discusses the policies that 
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support this deployment. Section 3 presents the data. We explain how we extracted 

patent data from the World Patent Statistical Database (PATSTAT) and discuss the use of 

patents to measure innovation and technology diffusion. We also explain how we proxy 

the level of wind policies and present descriptive statistics on innovation and demand, 

both at home and abroad. In section 4, we present and discuss our hypotheses. Section 5 

presents our econometric strategy and results on the international diffusion of 

technologies. Section 6 is dedicated to the econometric analysis of innovation. The final 

section summarises the main findings. 

 

2 Background information on wind power 

The wind power industry is developing very quickly: between 2000 and 2009, 

installation of wind capacity has grown at an annual average rate of 30% at the global 

level. This corresponds to a doubling of capacities every three years. Globally, wind 

turbines produced 340 terawatt-hours (TWh) of electricity in 2009, representing less 

than 2% of total electricity generation. In a few countries, however, high levels of wind 

power penetration have been achieved. These include Denmark (20% of total electricity 

production), Portugal and Spain (14%), Ireland (11%), and Germany (8%).  

 The cost of generation associated with wind technology remains high relative to 

the conventional fuels used for power generation, although this might change in the near 

future as costs have been constantly diminishing during the past 20 years. Costs vary 

according to a number of factors, including the size of the turbine and wind availability. 

According to the IEA Wind Technology Roadmap, the life-cycle cost of electricity 

generation from wind ranges from a low of 70 USD/MWh under the best circumstances 

to a high of 130 USD/MWh (IEA, 2009). This is in contrast to coal plants, where costs 

range from 20 USD/MWh to 50 USD/MWh. Gas-fired electricity costs range between 40 
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USD/MWh and 55 USD/MWh and nuclear electricity costs range between 20 USD/MWh 

and 30 USD/MWh (IEA, 2005). 

 Since wind power generation is not yet competitive with conventional 

technologies, the massive deployment of wind turbines across the world has been 

driven mainly by public policy support.5 These include feed-in tariffs, a guaranteed price 

at which electricity suppliers must purchase renewable electricity from producers and a 

popular measure implemented in European countries. Germany introduced an attractive 

feed-in tariff for wind power in 1990 and wind power capacity increased by 60% 

annually between 1990 and 2001.6 In the US, 30 States, including Texas, Florida and 

California, have adopted Renewable Portfolio Standards, which place an obligation on 

electricity supply companies to produce a specified fraction of their electricity from 

renewable energy sources. Other states have implemented investment tax credits, 

production tax credits, feed-in tariffs, and tradable certificates. As a result, the US 

represented 26% of the wind capacities installed worldwide in 2009.  

 Several policies usually coexist in a given jurisdiction. For instance, in his study 

on the development of wind power in California, Nemet (2009) shows that up to four 

policies were in place at the same time in the 1980s, including federal investment tax 

credit, oil windfall profits tax credit, the California alternative energy tax credit, and 

standard offer contracts. This has important methodological implications for the 

empirical study of innovation: estimating the specific impact of one component of the 

policy mix on innovation is hardly feasible.7 In this paper, we overcome this difficulty by 

focusing directly on the joint result of these policies; that is, annual wind power 

generation. 

 

3 Data  
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Addressing the paper’s questions requires variables to measure innovation activity, 

international technology transfer and the stringency of wind-power support policies. We 

rely on patent data for innovation and diffusion and on wind power generation data for 

the policy stringency. In this section, we justify these choices, describe data sources and 

give a first description of world innovative activity and technology transfer. 

3.1 Innovation and technology transfer 

We use the EPO World Patent Statistical Database (PATSTAT, 2012) to extract 

information on patents granted in wind power technology worldwide between 1991 to 

2008 (as well as citations made to these patents). To mitigate the well-known problem 

that many patent applications are of very low value, our outcome measure focuses on 

patents that, after scrutiny, have been granted by the patent office. We need a truncation 

period to account for the time it takes for an patent application to be granted, so 2008 is 

our end year8. Our dataset includes 16,649 patents granted in 84 patent offices.9 In 

PATSTAT, patent documents are categorised using the international patent classification 

(IPC) system. To select the patent related to wind power technologies, we follow 

Johnstone et al. (2010) and extract all patents included in the "F03D" group, which 

covers "wind motors". A recent study by the UK intellectual property office showed that 

this category includes 96% of all wind-power related patents and therefore accurately 

covers wind technology10 (Buchanan and Keefe, 2010). Since we are primarily interested 

in the influence of public policies (including public R&D expenditures) on private 

innovation activity, we exclude patents filed by public research institutions. We use the 

ECOOM-EUROSTAT-EPO PATSTAT Person Augmented Table (EEE-PPAT, 2012) in order 

to identify public research institutions among patent applicants.  
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Importantly, the same invention may be patented in several countries. This could 

lead to double-counting of some inventions. However, once patent protection has been 

requested in one country, subsequent patents covering the same invention in other 

countries must designate the original patent as their "priority patent". The set of patents 

covering the same invention in several countries is referred to as a patent family. Our 

measure of innovation is thus based on counts of patent families. This allows us to avoid 

issues with double counting. 

Every patent includes information about the inventor, including their country of 

residence. We use this information to determine where each innovation was 

developed.11 If a Canadian researcher working in a US-based lab files a patent, this 

invention is attributed to the US.12 

Patent data have been extensively used as a measure of innovation in the recent 

empirical literature (Popp 2002, 2006; Johnstone et al. 2010; Aghion et al., 2012). The 

advantages and the limitations of this indicator have been discussed at length in the 

literature (see Griliches 1990, and OECD 2009 for an overview). One of the main 

limitations is that the value of individual patents is highly heterogeneous. As explained 

above, to mitigate this problem our outcome measure focuses on granted patents, as 

opposed to the more expansive category of all patent applications.13 Citation data, which 

has been widely used in the literature to control for the quality of patents, is also used to 

address this issue. With this method, patents are weighted by the number of times each 

of them is cited in subsequent patent applications (see Trajtenberg 1990; Lanjouw et al. 

1998; Harhoff et al. 1999; Hall et al. 2005). We implement this method to construct 

quality-weighted knowledge stocks available to inventors (see below)14.  

It should also be emphasised that patents fail to capture informal modes of 

innovation through “learning-by-doing”, which may be particularly important in the 
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wind sector (Hendry and Harborne 2011). This is not without consequence for our 

analysis as demand-pull policies arguably have a higher impact on learning-by-doing 

than public support for R&D.  

Patent data is also used to measure technology flows across countries. Patents 

indicate not only the countries where inventions are developed, but also where the 

patent owner intends to use the patented technology. Because patents are granted by 

national patent offices, inventors must file a patent in each country in which they seek 

protection. An advantage of using an international patent database is thus that for every 

patented innovation in the world, we know where it was invented and the set of 

countries where it was filed. These features make it possible for us to analyse the 

diffusion of inventions because holding a patent in a country gives the holder the 

exclusive right in that country to exploit the technology commercially. The count of 

patents filed in country j by inventors located in country i (and subsequently granted by 

the patent office in country j) is thus a proxy for the size of transfers between the two 

countries. This way of measuring international technology flows has been used for 

example by Eaton and Kortum (1996, 1999) and more recently by Dekker et al. (2012) 

and Dechezleprêtre et al. (2012). Although we restrict our focus on granted patents, 

patents are counted by the year of their application, as the date of grant is mostly 

determined by administrative idiosyncrasies of the various patent offices. 

Using patents as an indicator of technology diffusion is not without drawback. 

For instance, a patent grants the exclusive right to use the technology only in a given 

country; however, this does not mean that the patent owner will actually use the 

technology in that country. This limitation could significantly bias our results. For 

example, if applying for patent protection did not cost anything, then inventors might 

patent widely and indiscriminately. However, in practice this is not the case. 
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Dechezleprêtre et al. (2011) show that the average invention is patented in only two 

countries15. Patenting is costly, in both the preparation of the application and the 

administration associated with the approval procedure (see Helfgott 1993). In addition, 

possessing a patent in a country is not always in the inventor’s interest if that country’s 

enforcement is weak. Additionally, publication of the patent in a local language can 

increase vulnerability to imitation (see Eaton and Kortum 1996, 1999). Therefore, 

inventors are unlikely to apply for patent protection in a country unless they are 

relatively certain of the potential market for the technology covered. Finally, because 

patenting protects an invention only in the country where the patent is filed, inventors 

are less likely to engage in strategic behavior to protect their inventions and prevent the 

use of their technology in the production of goods imported by foreign competitors into 

their domestic markets. 

3.2 Demand-pull policies 

A major practical difficulty in cross-country empirical studies on environmental 

innovation is finding data that are reliable and comparable across countries to act as a 

proxy for the level of demand-pull regulation. Many country-specific studies measure 

the level of regulation with pollution abatement and control expenditures (PACE), which 

are collected through surveys in various countries. The problem is that survey 

methodologies and the precise scope of PACE vary from one country to another. 

An attractive proxy for the strictness of policies promoting the demand for wind 

innovation is the annual added wind power capacity in each country. This variable is 

used by Peters et al. (2012) in their analysis of innovation in the photovoltaic industry 

and is available from the International Energy Agency (IEA) Renewables information 

database for OECD countries.16 The main limitation of this variable is that data is not 
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readily available for developing countries. For non-OECD countries, the IEA only 

provides data on energy production from wind power but not on installed capacity. 

However, capacity and generation are strongly correlated (the correlation coefficient is 

0.98 for OECD countries). We thus use annual added wind power production as a proxy 

for the level demand-pull policies.17 

This approach is similar to using PACE. Environmental regulation leads to 

investments in pollution abatement devices, which are measured by PACE. Similarly, 

national energy policies induce new investments in wind energy, which are reflected by 

added power capacity (and thus increased wind power generation). The difference is 

that PACE is expressed in monetary units, whereas wind power generation is expressed 

in megawatt-hour (MWh). The production of wind electricity in any given country is 

mostly attributable to government regulation, as its generation cost has been 

significantly higher than that of conventional electricity during the time-period covered 

by our analysis (see Neuhoff 2005, and IEA 2003). Moreover, most policy instruments 

used to promote wind energy directly target electricity generation: for instance, a feed-

in tariff consists in a subsidy per kWh generated; renewable portfolio standards require 

electricity producers to supply a certain minimum share of their electricity from 

designated renewable resources. 

It remains, however, that wind power generation not only reflects policy strictness, 

but captures also a number of different factors, notably climatic conditions and country 

size. This does not pose any problem if, when interpreting the results, we keep in mind 

that power generation is not a direct indicator of the policy strictness, but captures the 

size of the demand induced by policies. To a large extent, the same remark applies to 

previous studies that rely on PACE to act as a proxy for regulation. Note that to the 

extent that such non-policy factors influencing the demand size are country-specific and 
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do not vary over time, they are controlled for by country fixed effects included in our 

analysis. 

3.3 A first description of global innovation and technology diffusion 

In this subsection, we highlight some features of the data and provide some preliminary 

evidence on the influence of foreign markets on innovators. Figure 1 compares the 

trends in innovation activity with additional wind generation between 1991 and 2008. 

Annual global patenting activity for wind power technology increased ten folds between 

1991 and 2008. Acceleration in innovation activity occurred at the end of the 1990s and 

again in 2005. Meanwhile, additional generation increased dramatically from 332 GWh 

in 1991, to 48,403 GWh in 2008. At the global level, the correlation between added wind 

generation and innovation is striking. Determining whether this evolution indicates 

simple correlations or causations is an objective of our empirical analysis. 

Public R&D expenditure for wind in OECD countries (available from the IEA energy 

information database) increased but to a lesser extent. They increased by 93% between 

1991 and 2008; i.e., from 115 million USD to 223 million USD.  

 
 

Figure 1. Annual number of patented inventions and annual additional generation 
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The data strongly suggest that foreign markets matter for inventors: 49% of the patents 

in the data set are filed by inventors whose country of residence is different from the 

country in which protection is sought.18 "International" inventions (i.e. inventions 

patented in several countries) are on average patented in 4.7 countries (including the 

country of origin). Interestingly, the proportion of international inventions tripled 

during the 1990s. 

 Table 1 shows the share of patents filed abroad for the 10 main OECD inventor 

countries. The rate of export is defined as the share of the country’s inventions that are 

patented in at least one foreign country. The rate varies widely across countries: nearly 

70% for US inventions, around 50% for European countries, and only 10% for Japan and 

South Korea.  

 

 

Table 1. Share of patents also filed abroad for the 10 main OECD inventor 

countries in wind technology 
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Country Export rate 
  

Canada 44.8% 

France 31.8% 

Germany 49.0% 

Japan 11.0% 

Netherlands 61.4% 

S Korea 11.7% 

Spain 57.7% 

Sweden 66.7% 

UK 45.5% 

USA 68.7% 
  

 

 

4 Analytical framework and hypotheses 

In this section, we formulate and justify on theorectical grounds the assumptions that 

will be tested in the rest of the paper. Technology development can be viewed as a 

process where an innovation is made in the first stage and disseminated in the second 

stage. As innovators are forward looking – they anticipate what will happen at the 

second stage–, we need to reason backward by analyzing first diffusion to properly 

understand innovation decisions as usually done when analyzing sequential games. 

At the diffusion stage, increasing the generation of wind electricity in a country 

raises the local demand for wind-powered electric generating sets. As technology is an 

input to the production of wind equipment, it is expected that more inventions are made 

available in countries with stricter demand-pull policies. This leads to a first 

assumption: 

• Assumption D1: The increase of wind power generation in a country raises 

technology inflows. 
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While almost all patented inventions are filed in the inventor’s country, Section 4.2 

shows that foreign patenting only occurs in a limited number of countries. This suggests 

the existence of barriers to international transfer, which reduce the potential size of 

foreign demand for technologies. This has been long recognised by the general literature 

on the economics of technology diffusion (see Keller 2004, for a comprehensive survey). 

This literature identifies three main channels of diffusion. The first channel is 

international trade in goods. The idea is that certain goods embody new technologies 

which a country can access through imports. This applies particularly to capital goods, 

such as machinery and equipment. The second channel of international technology 

diffusion is foreign direct investment (FDI): multinational enterprises transfer firm-

specific technology to their foreign affiliates or to joint-ventures. The third channel of 

technology diffusion—and the most direct—is licensing. That is, a firm may license its 

technology to a company abroad that uses it to upgrade its own production. This 

suggests that the strictness of intellectual property (IP) law and the height of barriers to 

trade and to FDI are important drivers of international technology transfer: 

• Assumption D2: Stricter IP rights in the recipient country increase technology 

inflows. 

• Assumption D3: Lower barriers to trade in the recipient country increase 

technology inflows. 

• Assumption D4: Lower barriers to FDI in the recipient country increase 

technology inflows. 

Moving backward to innovation, deriving assumptions is straightforward once we 

recognize that innovation is centrally driven by expectations about diffusion. 

Assumption D1 on demand directly imply the following two hypotheses: 
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• Assumption I1: The addition of wind power generation in the inventor’s country 

induces more innovation by local inventors. 

• Assumption I2: The addition of wind power generation abroad induces more 

innovation by local inventors. 

Assumptions D2-4 emphasize the potential existence of barriers to international 

technology transfer. The empirical literature on trade and internatinal technology 

diffusion stresses other barriers such as distance, language, technology differences 

(for instance, see Verdolini and Galeotti, 2011). Assumptions D2-4 and these 

additional arguments converge to suggest that the demand for technology located 

abroad exerts less influence on inventors. Accordingly, we introduce: 

• Assumption I3: The marginal impact on domestic innovation of foreign wind 

power generation is lower than the marginal impact of domestic wind power 

generation. 

 

5 The analysis of cross-border technology diffusion 

We now develop an empirical strategy to investigate these assumptions. We start with 

the analysis of international technology diffusion (Assumptions D1-4).  

5.1. Empirical specification 

The goal of this section is to assess the importance of barriers to international 

technology diffusion in the wind industry. Our dependent variable is , ,i j tn , the number of 

patents granted in country i that are filed in country j in year t, which we use as a proxy 

of the flow of inventions between the two countries.  We base our choice of explanatory 

variables on Assumptions D1-4. More specifically, we estimate the following count 

model:  
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 (1) 

In this equation, 
 
is the demand for wind power in the recipient country j in 

year t as previously described. 
,

ln
j t

trade  is the trade flow of wind power devices from 

country i to country j. This data was extracted from the COMTRADE database 

(COMTRADE, 2012).19 ,j tfdi  is an index which measures the stringency of international 

capital market control based on data from the International Monetary Fund (IMF, 2012). 

The IMF reports on up to 13 different types of international capital controls. The zero- 

to-10 rating is the share of capital controls levied as a share of the total number of 

capital controls listed multiplied by 10. ,j tipr  is the index developed by Park and 

Lippoldt (2008) that measures the stringency of the intellectual property regime in 

country j at time t.  

In addition, we add several control variables.
 

Ki,t is the discounted stock of 

citation-weighted wind patents previously filed by inventors from country j. More 

specifically, we have: 

  

with P
j ,t−k

, the number of citation-weighted patents granted in year t – k in the recipient 

country j. In the literature, this is a usual proxy for the stock of knowledge available at 

year t (see for instance Popp 2002, 2006 and Peri 2005). This allows controlling for past 

supply and demand factors and local absorptive capacities. We set the value of the 

discount factor δ at 15%, a value commonly used in the literature, and conduct tests to 

show that the results are not sensitive to using other values of δ. To weight patents by 
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citations, we simply use 

 

where Cikt is the number of forward citations 

(excluding self-citations) received by patent k invented in country i in year t within five 

years after its publication.20 When a patent has multiple family members, we count 

citations to every member of the family. 

, 1ln i tN −  is the (log) number of granted patents in the inventor country i. This 

measures the number of inventions available for export.
 

  We decompose the error term into a country-pair fixed effect ( ,ηi j ), a vector of 

time dummies Tt and an error term that is uncorrelated with the right-hand side 

variables (��,�,�). Country-pair fixed effects control for any time-invariant differences in 

country and country-pair characteristics. 

5.2 Sample description 

Our panel runs from 1991 to 2008 and includes 28 inventor countries which export 

inventions to 74 recipient countries. This represents 2,072 country pairs. Note that since 

we use a fixed-effects estimator the final estimation samples include fewer country-pairs 

because the number of patent transfers between some country pairs is always equal to 

zero. The descriptive statistics for the variables used in the analysis are presented in 

Table 2.  

 

Table 2. Descriptive statistics  

Variable Mean Std deviation Min Max 

, ,i j tn  0.18 1.65 0.00 83.67 

 1.50 2.31 0.00 9.96 

 0.38 1.52 0.00 13.74 

 7.17 1.81 1.66 9.76 



 20 

 4.98 3.03 0.00 10.00 

, 1ln j tK −  1.64 1.90 0.00 7.51 

, 1ln i tN −  7.28 16.89 0.00 128.00 

     

 

 

5.3 Results 

Results are presented in Table 3. Column 1 estimates a Poisson model while column 2 

uses a negative binomial estimation. The results appear to confirm our assumptions. To 

begin with, diffusion is positively influenced by additional wind generation in the 

recipient country: a 10% increase in local demand in country j induces a 0.7% increase 

in the number of patents transferred from country i. This result shows that foreign 

demand has an impact on the diffusion of technologies. In section 6, we investigate 

whether this translates into an impact on the development of new technologies. 

We also show that technology transfer is positively influenced by stricter IP rights and 

by larger trade flows from the inventor country to the recipient country. Increasing the 

zero-to-ten rating of IPR strictness in the recipient country by one unit induces between 

11% and 29% more patent imports. The associated elasticity is 0.75 (i.e., a 10% increase 

in IPR strictness induces a 7.5% increase in the number of patents transferred). A 10% 

increase of trade flows entails less than 0.3% additional imported patents. Barriers to 

foreign direct investment in the recipient country lower the incentive to transfer new 

technologies, but the magnitude of the effect is smaller than that of patent rights: 

increasing the zero-to-ten rating of capital market controls in the recipient country by 

one unit reduces patent flows by 5% to 6% and the associated elasticity is 0.07. 

Absorptive capacity reflected by the variable , 1ln j tK −  also raises the inward flows of 
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technology. This effect is large: a 10% increase in (quality-weighted) local knowledge 

stock raises patent flows by 1.7% to 2.1%. 

Having established that there are barriers that hinder the international transfer of wind 

inventions, we assess in the next section the extent to which these barriers dampen the 

effect of foreign demand on innovation relative to domestic demand. 

 

Table 3 — Estimation results of the diffusion equation 

   

 (1) (2) 

Model Poisson Negative binomial 
   

   

 
0.0724*** 0.0715*** 
(0.0175) (0.0124) 

 
0.0232* 0.0161** 
(0.0134) (0.0075) 

 
0.2905*** 0.1157*** 
(0.0987) (0.0396) 

 
-0.0527** -0.0660*** 
(0.0274) (0.0139) 

, 1ln j tK −  
0.2150* 0.1778*** 
(0.1306) (0.0340) 

, 1ln i tN −  
0.0135*** 0.0102*** 
(0.0015) (0.0011) 

Country-pair FE 

  

yes yes 

Year dummies yes yes 

Observations 8434 8434 
Country pairs 469 469 

   

   
Note: *=significant at the 10% level, **=significant at the 5% level, ***=significant at the 1% 

level. The dependent variable is the number of patents transferred from country i to country j in 

year t. Column 1 is estimated by Poisson conditional ML with fixed effects with standard errors 

clustered by country pair in parentheses. Column 2 is estimated by a fixed effects negative 

binomial conditional ML model.  

 

6 The analysis of innovation 

6.1 Econometric framework 
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We measure country i’s innovation output in year t by Ni,t, the number of inventions for 

which private inventors from country i have sought patent protection.21 As Ni,t is a count 

variable, we adopt the following reduced form specification: 

 

 (2) 

In this equation, the two key variables derived from Assumptions I1-3 are  

which is the domestic demand in country i in year t and  which describes 

foreign demand in countries other than i. We return to the description of the variable 

 in the next subsection.  is the value of public R&D expenditures in year 

t-1 in country i.  is the discounted stock of citation-weighted wind patents 

previously granted to inventors from country i. − −, 1i t
K  is the stock of patents granted to 

inventors from all other countries. We include this variable to control for the impact of 

cross-country knowledge spillovers. iη  are country fixed effects which control for any 

time-invariant differences in countries’ characteristics (such as wind availability and 

public attitude towards wind technology) that may influence their innovation 

performance and for cross-country differences in the propensity to use patents as a 

means of protecting new inventions. 
t
T  is a full set of time dummiers and ,i tε  a random 

noise that is uncorrelated with the right hand side variables.  

Note that all explanatory variables are expressed in natural logarithms in the estimation, 

so that coefficients can be easily interpreted as elasticities.  

We now discuss in greater detail how we construct the policy variables and identify 

methodological pitfalls. 
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Domestic and foreign demand for wind power (
 
and )

 
 

These variables deserve three remarks. First, there might be a problem of 

endogeneity. Inventions in the field of wind energy are developed in order to cut wind 

energy production costs, hence stimulate the production of wind electricity. In our case, 

this problem is limited as the variables describes current generation whereas innovation 

may only have an impact on future generation. 

The second remark pertains to the rationality of innovators. If they are rational, they 

base their decisions on expectations about future demand. A practical problem is that we 

do not observe expected demand. The data only describe actual wind power generation. 

To overcome this difficulty, one can assume that innovators form adaptive expectations 

based on past observations, as is done in Popp (2002). The problem is that the adaptive 

expectations model is only able to produce an estimate of generation in year t + 1, 

whereas innovators obviously look beyond that date. In addition to this, this model 

yields a formula where expected demand in year t + 1 is given by a weighted sum of past 

demand. As annual generation is increasing quickly over the period 1991 - 2008, it is 

doubtful that past power generation constitutes a better predictor of expected 

generation than current generation. This reasoning has led us to keep using the 

contemporaneous generation variables 
 
and . 

The last remark specifically concerns the foreign variable . A simple way 

to measure the demand for wind power abroad is to sum the demand in the n – 1 foreign 

countries: 

≠
∑ ,ijt j t
j i

w demand  

We consider two variants of this demand indicator. The first, in which  ����=1, gives 

the same weight to each country pair so that the coefficient α
2

 reflects the impact on 
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innovation of the demand in the average foreign country. In the second variant, the 

weights reflect the importance of the various foreign markets for the inventor country. 

We construct weights based on the results of the diffusion model. More specifically we 

define: 

 

where  is the value of the patent transfer between a country pair predicted by the 

diffusion model for an average observation (that is, holding all explanatory variables at 

their means).   is similar except that we take the observation-specific value for the 

three variables describing potential barriers: 
, , , ,
, , and

i j t j t j t
trade fdi ipr . The weights 

approximate the height of barriers to technology transfer related to the IP regime, 

restrictions on trade and on foreign direct investments. Thus, a country with high 

barriers will be given a low weight, while a country with low barriers (whose market is 

thus more easily accessible by foreign inventors) will be given a high weight. 

A side benefit of introducing different weights is to mitigate a possible identification 

problem. By construction, the unweighted version of the variable 
 
does not 

vary much in a cross-section of countries: It is the sum of all countries' demand 

worldwide, which is common to all countries, minus demand in country i, which is 

country-specific but usually much smaller than world demand. This potentially creates 

multicollinearity with year dummies used to control for unobserved time-varying 

factors. Compared to the unweighted sum, the weighted variable has the advantage that 

it varies much more across the cross-section dimension. 

The drawback is that the coefficient obtained for the weighted version of 
- ,i t

demand
 

is much harder to interpret. It does not directly reflect the impact of the foreign market, 
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but rather, the impact of the fraction of the foreign market that we assume by 

construction to have an influence on inventors. The results section below will discuss 

the sign and significance of the coefficients on the weighted variable. However, when it 

comes to determining the magnitude of the effects, it is the size of the coefficient on the 

unweighted variable that will be of primary interest. 

R&D public support ( )
 
 

In line with previous studies, we use public R&D expenditures at year t - 1 to explain 

innovation in year t (see Popp 2002; Johnstone et al. 2010; Verdolini and Galeotti 2011). 

Data on public R&D expenditures is available from the IEA energy information database. 

 could pose a simultaneity problem as domestic R&D expenditures are inputs of 

the innovation process, which leads to new patents at home, in particular in 

organisations that receive public R&D money. This endogeneity concern has led us to 

exclude patents filed by public organisations from the dependent variable. But this 

might not be sufficient as public R&D expenditures, as reported by the IEA, also consist 

of tax credits on private R&D expenditures. We address this issue by using an 

instrumental variables approach in alternative specifications (see Appendix). We use 

annual R&D public expenditures in solar and hydro power in the same country and year 

as instruments. R&D expenditures in these domains present the necessary properties. 

First, they do not directly influence the number of wind patents as they differ from wind 

energy from a technological point of view. Second, they are positively correlated with 

,i t
rd  as there is arguably a degree of jointness in the policy decisions to support R&D in 

specific renewable technology fields. Since our estimation uses a Poisson model we 

adopt the control-function approach suggested by Wooldridge (2002). In the first stage 

we regress  on the instrumental variables and the exogenous variables in Eq. (2) 
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using a log-linear estimation, and in the second stage we include the residual of the first 

stage estimation as an additional regressor in Eq. (2). Schlenker and Walker (2011) 

provide a recent application. 

 We do not include public R&D support in foreign countries in the equation. The 

reason is that foreign public R&D cannot have a direct effect on innovation as subsidies 

are obviously not granted to foreign-based inventors. It might indirectly influence 

innovation through internation knowledge spillovers. But this effect is controlled for by 

the foreign knowledge stock − −, 1i t
K . 

6.2 Sample description 

 The panel is balanced and extends over 18 years, from 1991 to 2008. It covers 28 

OECD countries. Descriptive statistics for the variables used in the analysis are shown in 

Table 4. 

 

Table 4—Descriptive statistics 

Variable Definition Mean Std dev. Min Max 
      

,i tN  Number of patents developed in 

country i in year t and granted 

7.81 17.40 0.00 128.00 

 Domestic demand 2.87 2.64 0.00 9.96 

−, 1i t
rd  Public R&D expenditures in country 

i in year t-1 (million USD) 

8.52 1.48 5.24 10.79 

, 1i tK −  Discounted stock of previously 

granted patents (citation-weighted) 

9.93 1.74 5.93 13.58 

 Unweighted foreign demand 0.13 1.85 -2.30 4.15 

 Weighted foreign demand 3.02 2.02 0.00 7.51 

, 1i tK− −  Discounted stock of previously 

granted patents (citation-weighted) 

in foreign countries 

8.20 0.43 7.33 8.84 
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6.3 Results 

Estimation results are shown in Table 5. As can be seen from Table 4, the dependent 

variable is overdispersed, hence a negative binomial model is used in our main 

estimations. We estimate by unconditional maximum likelihood.22 Because 

unconditional maximum likelihood estimation may be subject to the incidental 

parameter problem (Greene 2004 a, b), we re-estimate all our equations as a robustness 

test using a simpler Poisson model with the conditional maximum likelihood approach 

introduced by Hausman et al. (1984) (see Appendix). 

Table 5 displays the results of the two models. The models vary in the way foreign 

variables are included (weighted or unweighted). In column (1), the foreign demand is 

left unweighted. All three domestic variables enter with a positive and significant 

coefficient, which is consistent with our hypotheses: (i) stricter domestic demand (a 

proxy for demand-pull policies) fosters innovation in wind power technology; (ii) higher 

public R&D expenditures increase private innovation; and (iii) a larger stock of 

knowledge available to inventors stimulates faster innovation in wind power 

technologies. In addition, we find that foreign demand has a positive impact on 

innovation. The effect is strongly significant (p-value=0.018). This suggests that foreign 

demand also matters for innovators.  

In column (2), foreign demand enters in its weighted specification. We again find 

evidence that foreign demand positively influences innovation. The effect is still strongly 

significant.  

A key conclusion emerges from Table 5: the demand for wind power both at home and 

abroad fosters innovation in wind power technology. Importantly, as shown in Table A1 

(Appendix), this result is robust across various specifications. The point estimates 
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obtained for domestic and foreign demand variables (both weighted and unweighted) 

are remarkably stable and always statistically significant. 

 

Table 5 — Estimation results 

   

 (1) (2) 

Model 

Unweighted 

foreign 

demand 

Weighted 

foreign 

demand 
   

   

 
0.0575** 0.0491*** 
(0.0248) (0.0163) 

(unweighted) 
0.6495**  
(0.2756)  

− ,ln
i t

demand  (weighted) 
 0.5491*** 

 (0.1678) 

 
0.1619** 0.1441** 
(0.0801) (0.0799) 

, 1ln i tK −  
0.3843*** 0.3264*** 
(0.1084) (0.1154) 

, 1ln i tK− −  
-1.6170 -1.2893 
(1.2400) (0.8774) 

   

Country FE yes yes 

Year dummies yes yes 

Observations 502 502 

Countries 28 28 
   

 

Note: *=significant at the 10% level, **=significant at the 5% level, ***=significant at the 1% 

level. The dependent variable is the number of inventions in all columns. All columns are 

estimated by negative binomial unconditional ML with country dummies. Standard errors 

clustered by country in parentheses. 

 

We now turn our attention to the magnitudes of the effects. Since all our right-hand 

side variables are expressed in natural logs, the coefficients can be easily interpreted as 

elasticities. We find that a 10% increase in domestic demand induces a 0.5% increase in 

innovation while a 10% increase in foreign demand increases innovation by 5.5 to 6.5%. 

This does not come as a surprise as the size of the overall foreign market is on average 

30 times larger than the domestic market. 
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It is interesting to note that, in their study of the solar PV sector, Peters et al. (2012) 

find that the coefficient on foreign demand is – except in one model – not statistically 

higher than the coefficient obtained for domestic demand, whereas it is ten times larger 

(and always statistically significantly so) in this paper. This suggests that barriers to 

technology diffusion might be higher in the solar PV industry, or that companies place a 

higher priority on meeting domestic demand in this relatively less mature technology23. 

If we now calculate the marginal effect of domestic and foreign demand at the 

sample mean, we find that an additional typical 20 MW wind farm24 installed at home 

induces 0.210 additional domestic private inventions, whereas the same wind farm 

installed abroad only increases that number by around 0.016.25 Hence whilst a spillover 

effect exists, we estimate that the marginal effect of demand for wind power on 

innovation is 12 times larger within national borders, than across borders. Our results 

clearly show that – whathever the exact magnitude of this difference – the marginal 

effect of domestic demand is much stronger than that of foreign demand. This suggests 

that the barriers to technology diffusion identified in the previous section discourage 

inventors from considering foreign markets as a potential outlet for their technology.26 

The difference in marginal effects suggests that barriers to diffusion are high. 

Importantly, however, each wind farm installed abroad induces around 0.016 

invention, but this effect occurs in 27 countries (all the 28 countries of the dataset 

except the one where the wind farm is installed). Hence, one should multiply these 

figures by 27 to obtain the overall impact of foreign installations in OECD countries.27 

This leads to 0.452 invention induced abroad, which is twice as higher as the number of 

inventions generated at home (0.210). Again, the exact numbers do not matter much 

here, but they suggest that demand-pull policies have a higher aggregate impact on 

foreign innovation than on domestic innovation. 
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Turning next to the impact of public R&D, Table 5 shows that a 10% increase in 

domestic public expenditures increases local innovation by around 1.5%. The marginal 

effect of 1 million USD lies in between 0.28 invention in column 2 and 0.36 in column 1. 

However, although the results are consistent across specifications (see table A1 in 

Appendix), the size of the coefficient varies much more than those obtained for the 

demand variables, in particular when we implement an instrumentation strategy to deal 

with the potential endogeneity of public R&D. Therefore we caution against inferring too 

much of the marginal effect of public R&D expenditures. 

With respect to the local stock of knowledge, the coefficient is positive and 

significant as expected. The models estimate elasticities between 0.32 to 0.38. From a 

policy point of view, this means that demand-pull policies and public R&D also increase 

innovation in the long-term through the increase in the stock of knowledge, which feeds 

into future innovation.28 In contrast, the stock of foreign knowledge , 1ln i tK− −  
is not 

statistically significant, confirming that knowledge spillovers have a strong local 

component (Peri 2005). 29 

 

7 Summary of the results and policy implications 

In this paper, we use patent data from OECD countries to analyse the relative 

influence of domestic and foreign policy incentives for innovation activity in wind power 

generation technologies between 1991 and 2008.  

We envision innovation as a two-stage process, whereby inventors generate new 

technologies in the first stage and transfer the technologies to the countries where they 

plan to exploit them in the second stage. As innovators are forward looking, we analyse 

these two steps recursively. 
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We first analyse the international diffusion of wind power patents. We find that 

local demand for wind power exerts a positive influence on technology inflows, 

providing evidence that foreign markets matter for inventors. However, barriers to 

trade, lax IP rights and strong controls over capital market significantly hinder the 

transfer of patented inventions. This indicates that foreign markets are likely to have 

less influence on innovation than domestic markets. 

We then estimate the relative impact of domestic and foreign demand for wind 

power on innovation with a panel covering 28 OECD countries over the period 1991-

2008. We find that efforts to produce new innovations increase in response to higher 

domestic and foreign demand. This means that policies that drive demand for wind 

energy, such as feed-in tariffs, induce innovation both at home and abroad. However, the 

marginal effect of domestic demand on the rate of innovation is 12 times larger than the 

marginal effect of foreign demand. We attribute this difference to the barriers to 

technology diffusion. 

But the aggregate effect of foreign markets on innovation is larger: we find that a 

10% increase in domestic demand induces a 0.5% increase in innovation while a 10% 

increase in foreign demand increases innovation by 5.5 to 6.5%. This does not come as a 

surprise as the size of the overall foreign market is on average 30 times larger than the 

domestic market. 

Our paper has policy implications. In a hypothetical world where technologies could 

be transferred from one country to another without frictions, innovators would be 

equally influenced by domestic and foreign demand. Therefore, a consequence of our 

findings is that barriers to technology diffusion also discourage innovation, implying 

that lowering these barriers to diffusion constitutes a powerful policy leverage for 

boosting environmental innovation. 
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Our paper also bears a finding with respect to the literature on directed 

technological change. The finding that domestic (policy-induced) demand for wind 

energy has a larger aggregate effect on foreign innovation than on domestic innovation 

suggests that previous empirical studies, which only look at the effect of environmental 

policies on domestic innovation, may have significantly underestimated the overall 

impact of demand-pull policies on innovation. From a global green growth perspective, 

the significant cross-country spillovers of innovation uncovered in this study may 

reinforce the case for stronger environmental policies.  
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Notes 

 
                                                 
1 See, for example, President Obama's speech at the Massachussets Institute of Technology, October 23rd, 2010: 

“The world is now engaged in a peaceful competition to determine the technologies that will power 
the 21st century. (…). The nation that wins this competition will be the nation that leads the global 
economy. And I want America to be that nation.” Similar statements were made by political leaders in 
many countries. 

2 The restriction to OECD countries stems from the unavailability of data on public R&D expenditures for non-
OECD countries. For consistency we estimate the diffusion equation on the same sample. 

3 These are Sinovel, Goldwind, Dongfang, United Power (China) and Suzlon (India). The other companies in the 
top 10 in 2011 were Vestas (Denmark), GE (USA), Enercon and Siemens (Germany) and Gamesa 
(Spain). 

4 Peters et al. (2012) look at 15 OECD countries across 1978-2005, while we consider 28 OECD countries 
between 1991 and 2008. Furthermore, they distinguish between continental and intercontinental 
demand, while we aggregate both into foreign demand. 

5 An overview of the measures adopted by every country, including the timing of their adoption, is available 
from the IEA/IRENA Global Renewable Energy Policies and Measures database, available at 
http://www.iea.org/policiesandmeasures/renewableenergy/  (last accessed 1 July 2013). 

6 Most recently in July 2012, Japan introduced a feed-in tariffs scheme, obliging incumbent power companies to 
buy the output from solar, wind, geothermal, small hydro and some biogas and biomass-fueled plants 
at premium prices. 

7  Johnstone et al. (2010) is a notable exception. However, except for feed-in tariffs, they only measure the 
strictness of the different policy instruments by a binary variable, with one indicating that the 
particular instrument is in place. 

8 We use the October 2012 version of the PATSTAT database, and it takes on average 3 years for a patent to be 
granted. Note that our results are robust to changing the end year to 2007 or 2009. 

9 Note that Least Developed Countries are not present in our dataset, for two related reasons: their patenting 
activity is extremely limited, and available statistics are not reliable. 

10 In addition, we randomly sampled 100 patents from the F03D category and checked their relevancy based on 
title and abstract. We found only three irrelevant patents, which lead us to believe the patent 
classification is accurate for wind power technologies. 

11 For 1.4% of the patent applications included in our dataset, the inventor’s country of residence is not available. 
When this information is missing, we simply assume that the inventor’s country corresponds to the 
first patent office in which protection was taken (i.e. the priority office). 

12 Patents with multiple inventors are counted fractionally. For example, if two inventor countries are involved in 
an invention, then each country is counted as one half. 

13 Our results are robust to using all filed patent applications, however. 

14 Family size (the number of countries in which a patent is filed) is another way of assessing the value of a 
patent. But we think it is better to use patent citations in this particular paper, given the questions 
addressed. The problem is that family size is not only a value indicator; it also captures the degree of 
internationalization of the invention, which is, roughly speaking, the central topic of the paper. This 
suggests using family size as a dependent variable, not as a weight when constructing an independent 
variable. To a certain extent, this is what we do in section 5 where the dependent variable is the 
bilateral flow of patent between countries. 
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15 In fact, about 75% of inventions are patented in only one country. 

16 Available at http://data.iea.org/. 

17 An alternative option is to estimate installed capacity in non-OECD countries by running a regression of 
energy capacities on energy production using the data from OECD countries and then use this model 
to make out-of-the-sample predictions for capacities in non-OECD countries based on their 
production. We implemented this method, which gives qualitatively similar results. It however has 
two weaknesses: first, the relationship between capacity and production might differ between OECD 
and non-OECD countries; second, using predicted values would lead us to underestimate standard 
errors in the subsequent regression analysis. 

18 Excluding patents filed at the European Patent Office, the figure is 42%. 

19 We downloaded data on wind-power generating sets (product code HS 850231). 

20 More precisely we count all citations made by patents applied for up to five years after the publication of each 
patent. Note that PATSTAT includes citation information from 98 patent offices. 

21 As mentioned above, inventions patented in several countries are only counted once in order to avoid double-
counting. We restrict patent data to private inventions only to avoid potential endogeneity problems. 

22 In other words, we include a full set of country dummies in the estimation. Another way to deal with fixed 
effects would be to use the conditional maximum likelihood estimator introduced by Hausman et al. 
(1984) and available in STATA as the xtnbreg command. However this model is known to 
imperfectly control for fixed effects (Allison and Waterman 2002; Greene 2007; Guimaraes 2008). 
Another issue is that xtnbreg does not report any robust or clustered standard errors and the small size 
of our sample has not allowed us to compute bootstrapped standard errors. 

23 Recall however that differences in sample size and in the way explanatory variables are constructed make it 
difficult to accurately compare the results between the two papers (see note 4 above). 

24 See http://www.thewindpower.net/ (last accessed 24 May 2013). This corresponds to an annual production of 
37.4GWh. 

25 Recall that the value of patents is heterogeneous. Therefore, these figures describe the effect of policies on the 
average invention.  

26 Cognitive limitations of innovators could provide an alternative explanation: they simply ignore the 
installations of new wind farms in certain foreign countries, which lead them to infer that the demand 
is actually zero. Note this interpretation rests on a bounded rationality assumption: A rational decision 
maker under uncertainty will consider the expected size of the market derived from a prior subjective 
probability distribution. 

27 Note that multiplying the effect by 27 only yields the aggregate effect in OECD countries. We cannot calculate 
the effect of innovation in non-OECD countries as they are not included in the estimation sample. 

28 The size of this effect centrally depends on the value of the discount rate δ. With δ=0.15, the additional long 
term impact of both demand-pull policies and public R&D through increased knowledge stock is 
about one half of the short-term impact. 

29 Peri (2005) shows that only 12% of the knowledge created in a country spills over to foreign countries. 
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Appendix: Robustness checks 

A number of robustness tests were conducted and the main ones are reported below. 

Poisson estimator 

As an alternative to the negative binomial specification, we reestimate equations 

presented in Table 5 using conditional maximum likelihood Poisson with fixed effects 

(Hausman et al. 1984). Results are closely similar (see Table A1, columns 1 and 2). Most 

importantly, the foreign installations variable remains positive and highly statistically 

significant in both specifications. 

Accounting for the potential endogeneity of public R&D expenditures 

The variable  may pose a simultaneity problem as domestic R&D expenditures 

are inputs of the innovation process. Although we exclude public patents from the 

dependent variable, public R&D expenditures as reported by the IEA include tax credits 

on private R&D expenditures, which may give rise to endogeneity bias. We address this 

issue by using an instrumental variables approach. R&D public expenditures in solar and 

hydro power in the same country and year are used as instruments. R&D expenditures 

in these domains present the necessary properties. First, they do not directly influence 

the number of wind patents as they differ from wind energy from a technological point 

of view.1 Second, they are positively correlated with  as there is arguably a degree of 

jointness in the policy decisions to support R&D in specific renewable technology fields. 

Since our estimation uses a Poisson model we adopt the control-function approach 

suggested by Wooldridge (2002). In the first stage we regress  on the 

                                                 
1 This is the reason why we did not use R&D expenditures in marine energy as an instrument. 

The technologies used for marine and wind energy production have some similarities. We 

considered adding public R&D expenditures in biomass and geothermal energy as additional 

instruments but none of them turned up significant. However, the results are completely robust 

to including them. 
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instrumental variables and the exogenous variables in Eq. (2) using a log-linear 

estimation, and in the second stage we include the residual of the first stage estimation 

as an additional regressor in Eq. (2) (see Schlenker and Walker 2011, for a recent 

application).  

The first stage estimation together with the usual statistics are presented in Table A2. 

Column 1 shows the results from the unweighted specification and column 2 shows the 

results from the weighted specification. The coefficient of the excluded instruments is 

statistically significant and positive. The cluster-robust F-statistics of joint significance of 

the two instruments are 5.18 and 5.28 (p-value of 0.01 in both cases) respectively. This 

suggests the instruments do a resonably good job. Results from the second stage 

equation are shown in columns 3 and 4 of Table A1. The results remain similar to our 

baseline estimates but the point estimates for  increase in both specifications. 

However, the coefficient on the residuals from the first stage equation are not 

significantly different from 0, suggesting that the hypothesis that  is exogenous 

cannot be rejected. Overall, results from these tests suggest that our baseline estimates 

should be viewed as a lower bound estimate of the impact of public R&D expenditures. 

Importantly, results concerning domestic and foreign demand are robust to 

instrumenting public R&D. 

 

Other tests 

As is commonly the case with patent data, the distribution of patents across countries is 

highly heterogeneous, with a few countries accounting for a large share of innovations. 

For this reason, it is necessary to check that our results are not driven by outliers. 

Columns 5 and 6 of Table A1 reports the results obtained when we drop Japan, by far the 
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top inventor in our sample with 35% of the total patented inventions. Our findings are 

robust, although the point estimate obtained on domestic installations decreases. 

Finally, applying alternative discount rate values which are used to calculate the 

knowledge stocks – specifically, 10 and 20 per cent – made no difference to the results 

(robustness test results not shown). 

 

Table A1 — Robustness tests 

       

 (1) (2) (3) (4) (5) (6) 
       

       

 
0.0800*** 0.0624*** 0.0523** 0.0484*** 0.0427* 0.0471*** 

(0.0231) (0.0137) (0.0228) (0.0173) (0.0251) (0.0180) 

 
0.6467***  0.4759**  0.5388*  

(0.1869)  (0.2220)  (0.2903)  

 
 0.5116***  0.5514***  0.5819** 

 (0.1149)  (0.1749)  (0.2345) 

 
0.1473** 0.1387* 0.2641* 0.2445** 0.1653** 0.1546* 

(0.0719) (0.0765) (0.1548) (0.1182) (0.0831) (0.0793) 

, 1ln i tK −  
0.5176*** 0.4434*** 0.3388*** 0.2733** 0.3742*** 0.3131*** 

(0.1157) (0.1082) (0.1131) (0.1203) (0.1070) (0.1145) 

, 1ln i tK− −  
-1.1597 -0.7941 -2.3714 -2.0960* -1.5820 -1.8353** 

(1.0306) (0.9700) (1.6144) (1.0726) (1.4979) (0.8237) 

, 1i tresid− −  
  -0.1091 -0.1060   

  (0.1467) (0.1022)   
       

Country FE yes yes yes yes yes yes 

Year dummies yes yes yes yes yes yes 

Observations 502 502 472 472 484 484 

Countries 28 28 28 28 28 28 
       

 
Note: *=significant at the 10% level, **=significant at the 5% level, ***=significant at the 1% 

level. The dependent variable is the number of inventions in all columns. Columns 1 and 2 are 

estimated by Poisson conditional ML with fixed effects. Columns 3 to 6 are estimated by negative 

binomial unconditional ML with country dummies. Standard errors clustered by country in 

parentheses.  
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Table A2 — First stage equations 

   

 (1) (2) 
   

   

 
0.3446** 0.3503** 

(0.1280) (0.1291) 

 
0.2037* 0.2092* 

(0.1078) (0.1096) 

 
-0.0054 0.0079 

(0.0349) (0.0347) 

 
-0.5993  

(0.5261)  

 
 0.4926 

 (0.4385) 

 
0.2595 0.2130 

(0.2902) (0.2769) 

  
ln K i ,t−1

 
5.3232* 6.1218*** 

(2.7923) (2.0914) 

  
ln K− i ,t−1

 
0.3446** 0.3503** 

(0.1280) (0.1291) 

Country FE yes yes 

Year dummies yes yes 

Observations 498 498 

Countries 28 28 

R2 0.823 0.825 
   

 

Note: *=significant at the 10% level, **=significant at the 5% level, ***=significant at the 1% 

level. The dependent variable is the log of public R&D expenditures in wind power. All columns 

are estimated by OLS with standard errors in parentheses (clustered by country). The external 

instruments are public R&D expenditures in solar and hydro power. 


