The economic assessment of the risks of nuclear power accidents
Bayesian and non-Bayesian approaches

Romain Bizet, François Lévêque

Mines ParisTech - CERNA

June 10th, 2016
Introduction

- Why is it important to estimate the costs of nuclear accidents?
 - to compensate victims
 - to make better ex-ante decisions (location, phase-out, technology choices)

- Main differences between ex ante/ex post assessments
 - Economics/cost accounting and auditing
 - uncertainties on future/past damage or probability \times damage?

- This presentation:
 - How should we revise the probability of nuclear core meltdowns after the Fukushima Dai-Ichi accident? (Rangel and Lévêque, 2014)
 - A method for the calculation of the expected cost of nuclear accidents (Bizet and Lévêque, 2016)
Outline

1. The effect of Fukushima Dai-ichi on the probabilities of nuclear power accidents (Rangel and Lévêque, 2014)
 - Motivation and literature review
 - Combining observations and PSAs
 - The effect of Fukushima on the probabilities of accidents

2. Ambiguity and the expected costs of nuclear power accidents (Bizet and Lévêque, 2016)
 - Motivations and existing assessments
 - Overcoming ambiguity
 - New method and policy implications
1. The effect of Fukushima Dai-ichi on the probabilities of nuclear power accidents (Rangel and Lévêque, 2014)
 - Motivation and literature review
 - Combining observations and PSAs
 - The effect of Fukushima on the probabilities of accidents

2. Ambiguity and the expected costs of nuclear power accidents (Bizet and Lévêque, 2016)
 - Motivations and existing assessments
 - Overcoming ambiguity
 - New method and policy implications
Two streams of literature

- **Existing statistical studies**
 - Poisson models and fat-tailed distributions based on scarce accident data

- **Industry Probabilistic Safety Assessments (PSA)**
 - In the US: WASH 1400 (1975), or in Europe: ExternE (1995)
 - More recent studies Kadak and Matsuo (2007), and EPRI (2008)
No consensus

There is no agreement on the value of the probability:

Figure: Existing studies assessing nuclear accident probabilities

<table>
<thead>
<tr>
<th>Source</th>
<th>Year</th>
<th>Core melts</th>
<th>Large releases</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>ExternE</td>
<td>1995</td>
<td>5.10^{-5}</td>
<td>1.10^{-5}</td>
<td>PSA</td>
</tr>
<tr>
<td>NEA</td>
<td>2003</td>
<td>10^{-5}</td>
<td>10^{-6}</td>
<td>ExternE (PSA)</td>
</tr>
<tr>
<td>Hofert, Wuthricht</td>
<td>2011</td>
<td>1.10^{-5}</td>
<td>NS</td>
<td>Poisson law</td>
</tr>
<tr>
<td>IRSN</td>
<td>2012</td>
<td>NS</td>
<td>10^{-5}-10^{-6}</td>
<td>IAEA standards</td>
</tr>
<tr>
<td>Rabl</td>
<td>2013</td>
<td>NS</td>
<td>10^{-4}</td>
<td>Observed frequencies</td>
</tr>
<tr>
<td>IER</td>
<td>2013</td>
<td>NS</td>
<td>10^{-7}</td>
<td>NS</td>
</tr>
<tr>
<td>D’Haeseleer</td>
<td>2013</td>
<td>1.7.10^{-4}</td>
<td>1.7.10^{-5}</td>
<td>Bayesian update</td>
</tr>
<tr>
<td>Rangel, Lévêque</td>
<td>2014</td>
<td>4.4.10^{-5}</td>
<td>NS</td>
<td>PEWMA model</td>
</tr>
</tbody>
</table>

Interpretation for a 400-reactor fleet

- $p_{\text{PastEvents}} = 10^{-4}$: one major accident every 25 years
- $p_{\text{PSA}} = 10^{-6}$: one major accident every 2500 years
The research question

A methodological question:
- Can we reconcile the observations of nuclear accidents with the theoretical practice of PSAs?

An applied question:
- How should we revise the probabilities of nuclear core meltdown after the Fukushima Dai-Ichi accident?
1. The effect of Fukushima Dai-ichi on the probabilities of nuclear power accidents (Rangel and Lévêque, 2014)
 - Motivation and literature review
 - Combining observations and PSAs
 - The effect of Fukushima on the probabilities of accidents

2. Ambiguity and the expected costs of nuclear power accidents (Bizet and Lévêque, 2016)
 - Motivations and existing assessments
 - Overcoming ambiguity
 - New method and policy implications
The observations of nuclear power accidents

<table>
<thead>
<tr>
<th>Year</th>
<th>Location</th>
<th>Unit</th>
<th>Reactor type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1959</td>
<td>California, USA</td>
<td>Sodium reactor experiment</td>
<td>Sodium-cooled power reactor</td>
</tr>
<tr>
<td>1961</td>
<td>Idaho, USA</td>
<td>Stationary Low Reactor</td>
<td>Experimental gas-cooled, water moderated</td>
</tr>
<tr>
<td>1966</td>
<td>Michigan, USA</td>
<td>Enrico Fermi Unit 1</td>
<td>Liquid metal fast breeder reactor</td>
</tr>
<tr>
<td>1967</td>
<td>Dumfeshire, Scotland</td>
<td>Chapelcross Unit 2</td>
<td>Gas-cooled, graphite moderated</td>
</tr>
<tr>
<td>1969</td>
<td>Loir-et-Chaîre, France</td>
<td>Saint-Laurent A-1</td>
<td>Gas-cooled, graphite moderated</td>
</tr>
<tr>
<td>1979</td>
<td>Pennsylvania, USA</td>
<td>Three Mile Island</td>
<td>Pressurized Water Reactor (PWR)</td>
</tr>
<tr>
<td>1980</td>
<td>Loir-et-Chaîre, France</td>
<td>Saint-Laurent A-1</td>
<td>Gas-cooled, graphite moderated</td>
</tr>
<tr>
<td>1986</td>
<td>Prypiat, Ukraine</td>
<td>Chernobyl Unit 4</td>
<td>RBKM-1000</td>
</tr>
<tr>
<td>1989</td>
<td>Lubmin, Germany</td>
<td>Greifswald Unit 5</td>
<td>Pressurized Water Reactor (PWR)</td>
</tr>
<tr>
<td>2011</td>
<td>Fukushima, Japan</td>
<td>Fukushima Dai-ichi Unit 1.2.3</td>
<td>Boiling Water Reactor (BWR)</td>
</tr>
</tbody>
</table>
The number of repetitions does not allow identification:

- 14,500 observed Reactor.Year
- Few observed events
 - Cochran (2011): 12 CMD since 1955
 - Extension to INES > 2: 41 events since 1991
Accident frequencies are not objective probabilities

The number of repetitions does not allow identification:

- 14,500 observed Reactor.Year
- Few observed events
 - Cochran (2011): 12 CMD since 1955
 - Extension to INES > 2: 41 events since 1991

The i.i.d. hypothesis is not respected:

- Not identically distributed - Diversity of accident types, of reactor technology or location, of safety regulators...
- Not independent - Accidents affect safety standards
What about PSAs?

Estimating probabilities with PSA

- Several PSA codes exist: COSYMA, E3X...
- Calculations based on event-trees
- Designed to pinpoint local safety weaknesses and remedies, not to calculate a single number and its confidence interval

What information do they carry?

- 40 years of nuclear engineering knowledge
- Assuming safety standards are well enforced
- Assuming no unknown unknowns
What are the odds of drawing a red ball from an urn, when the n previous draws yielded k red balls?

According to Laplace (french mathematician, 1825) : \(\frac{k+1}{n+2} \)
- as if two virtual draws yielded one red and one not-red.

More generally : \(\frac{k+st}{n+s} \)
- t: prior regarding the probability of obtaining a red ball, and
- s: strength of the prior

For a given problem, s and t can be based on scientific knowledge, or on beliefs
Priors and posteriors

Strong prior

Weak prior
1. The effect of Fukushima Dai-ichi on the probabilities of nuclear power accidents (Rangel and Lévêque, 2014)
 - Motivation and literature review
 - Combining observations and PSAs
 - The effect of Fukushima on the probabilities of accidents

2. Ambiguity and the expected costs of nuclear power accidents (Bizet and Lévêque, 2016)
 - Motivations and existing assessments
 - Overcoming ambiguity
 - New method and policy implications
What about nuclear accidents?

Two contradicting forces

- Increasing safety levels and long periods of time without accidents suggest a decreasing trend in the probabilities of core meltdowns.
- Observation of nuclear accidents trigger an upward revision of probabilities to take into account the new pieces of information.

Bayes’ rule allows the combination of PSA and observations

1. PSAs are the prior probability of nuclear accidents

2. Each year, the prior is updated, using Bayes rules:
 - if no accident: posterior probability ≤ prior probability
 - if accident: posterior probability ≥ prior probability
Combining observations and PSAs

Bayesian Poisson Gamma Model, Rangel and Lévêque (Safety Science, 2014).
The post-Fukushima probabilistic update

- Four Poisson models
 - Poisson models usually assume independence
 - PEWMA Model allows to introduce a degree of dependence

- Main results: changes in the expected frequency of nuclear accidents

<table>
<thead>
<tr>
<th>Model</th>
<th>$\hat{\lambda}_{2010}$</th>
<th>$\hat{\lambda}_{2011}$</th>
<th>Δ</th>
</tr>
</thead>
<tbody>
<tr>
<td>MLE Poisson</td>
<td>6.175e-04</td>
<td>6.66e-04</td>
<td>0.0790</td>
</tr>
<tr>
<td>Bayesian Poisson–Gamma</td>
<td>4.069e-04</td>
<td>4.39e-04</td>
<td>0.0809</td>
</tr>
<tr>
<td>Poisson with time trend</td>
<td>9.691e-06</td>
<td>3.20e-05</td>
<td>2.303</td>
</tr>
<tr>
<td>PEWMA model</td>
<td>4.420e-05</td>
<td>1.95e-03</td>
<td>43.216</td>
</tr>
</tbody>
</table>
Combining observations and PSAs

Poisson Exponentially Weighted with Moving Average model, Rangel and Lévêque (Safety Science, 2014).
Interpretations

- The risk of nuclear accident has to be significantly revised upward after the Fukushima disaster.
- This revision embodies the learnings from the accidents:
 - PSAs assume perfect compliance, which is untrue.
 - Competent safety regulators have to be independent, transparent and powerful.
- More generally, this revision embodies the idea that upgrading nuclear safety regulators around the world could be a significant source of safety improvements.
The effect of Fukushima Dai-ichi on the probabilities of nuclear power accidents (Rangel and Lévêque, 2014)

- Motivation and literature review
- Combining observations and PSAs
- The effect of Fukushima on the probabilities of accidents

Ambiguity and the expected costs of nuclear power accidents (Bizet and Lévêque, 2016)

- Motivations and existing assessments
- Overcoming ambiguity
- New method and policy implications
The cost of nuclear accidents

The initial question

How should rare but catastrophic accidents be taken into account in nuclear policy decisions?
What is the expected cost of a nuclear accident in the case of a new-build nuclear reactor?

The main steps of the study

Review of the existing sources of information regarding the risks of nuclear accidents
Analysis of the ambiguity that characterizes these accidents
Proposition of a new methodology for the assessment of the expected cost of rare disasters
1. The effect of Fukushima Dai-ichi on the probabilities of nuclear power accidents (Rangel and Lévêque, 2014)
 - Motivation and literature review
 - Combining observations and PSAs
 - The effect of Fukushima on the probabilities of accidents

2. Ambiguity and the expected costs of nuclear power accidents (Bizet and Lévêque, 2016)
 - Motivations and existing assessments
 - Overcoming ambiguity
 - New method and policy implications
Assessments of the expected costs

Figure: Existing assessments of the expected cost of nuclear accidents
Focus on probabilities

Figure: Existing studies assessing nuclear accidents probabilities

<table>
<thead>
<tr>
<th>Source</th>
<th>Year</th>
<th>Core melts</th>
<th>Large releases</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>ExternE</td>
<td>1995</td>
<td>5.10^{-5}</td>
<td>1.10^{-5}</td>
<td>PSA</td>
</tr>
<tr>
<td>NEA</td>
<td>2003</td>
<td>10^{-5}</td>
<td>10^{-6}</td>
<td>ExternE (PSA)</td>
</tr>
<tr>
<td>Hofert, Wuthrich</td>
<td>2011</td>
<td>1.10^{-5}</td>
<td>NS</td>
<td>Poisson law</td>
</tr>
<tr>
<td>IRSN</td>
<td>2012</td>
<td>NS</td>
<td>10^{-5}-10^{-6}</td>
<td>IAEA standards</td>
</tr>
<tr>
<td>Rabl</td>
<td>2013</td>
<td>NS</td>
<td>10^{-4}</td>
<td>Observed frequencies</td>
</tr>
<tr>
<td>IER</td>
<td>2013</td>
<td>NS</td>
<td>10^{-7}</td>
<td>NS</td>
</tr>
<tr>
<td>D’Haeseleer</td>
<td>2013</td>
<td>$1.7.10^{-4}$</td>
<td>$1.7.10^{-5}$</td>
<td>Bayesian update</td>
</tr>
<tr>
<td>Rangel, Lévêque</td>
<td>2014</td>
<td>$4.4.10^{-5}$</td>
<td>NS</td>
<td>PEWMA model</td>
</tr>
</tbody>
</table>

- PSAs assume perfect compliance
- Past frequencies are not probabilities
What about public perceptions?

Public perceptions: they should be accounted for additional costs due to the resentment of policies or technologies

Experimental psychology: distorted perceptions

Rare events are perceived as more likely than they are (Lichtenstein, 1978; Slovic, 1982).
Dreadful events are perceived as more likely than they are (Kahneman, 2011)

Nuclear accidents are both rare and dreadful
Stakes for the decision maker

The sources are conflictual

PSA for a large accident in an EPR: 10^{-7}
Observed frequency of large accidents: 10^{-4}
Perceptions: $> 10^{-4}$

Which information should be relied on?
All sources are biased
Using a biased probability could entail:
- wrong level of investments in safety
- wrong timing of phase-outs
- suboptimal technology mixes

How can policy-makers make good decisions in these situations?

Romain Bizet, François Lévêque
June 10th, 2016 26 / 38
Stakes for the decision maker

The sources are conflictual

PSA for a large accident in an EPR: 10^{-7}
Observed frequency of large accidents: 10^{-4}
Perceptions: $> 10^{-4}$

Which information should be relied on?

All sources are biased

Using a biased probability could entail:
- wrong level of investments in safety
- wrong timing of phase-outs
- suboptimal technology mixes

How can policy-makers make good decisions in these situations?
The effect of Fukushima Dai-ichi on the probabilities of nuclear power accidents (Rangel and Lévêque, 2014)
- Motivation and literature review
- Combining observations and PSAs
- The effect of Fukushima on the probabilities of accidents

Ambiguity and the expected costs of nuclear power accidents (Bizet and Lévêque, 2016)
- Motivations and existing assessments
- Overcoming ambiguity
- New method and policy implications
Risks and uncertainty (Knight, 1920)

Risk: Various outcomes measured by a probability. The repetition of the activity confirms the representation.
Risks and uncertainty (Knight, 1920)

Risk: Various outcomes measured by a probability. The repetition of the activity confirms the representation.

Uncertainty: Various outcomes without attached probabilities.

Examples

Risk: roll of dice, roulette wheel...

Uncertainty: Horse races, elections, long-term weather forecasts...
Nuclear accidents are uncertain events

Multiple, conflicting information on probabilities

- Observed frequencies are not probabilities
- People’s perceptions are biased
- Experts’ calculations are imperfect

How can we overcome this uncertainty?
Ambiguity - Ellsberg’s paradoxes

Figure: The one-urn Ellsberg paradox

- People prefer to bet with known probabilities
- Ambiguity-aversion is not accounted for in classical cost-benefit analysis
1. The effect of Fukushima Dai-ichi on the probabilities of nuclear power accidents (Rangel and Lévêque, 2014)
 - Motivation and literature review
 - Combining observations and PSAs
 - The effect of Fukushima on the probabilities of accidents

2. Ambiguity and the expected costs of nuclear power accidents (Bizet and Lévêque, 2016)
 - Motivations and existing assessments
 - Overcoming ambiguity
 - New method and policy implications
A new assessment method

- We apply a decision criterion (Ghirardato et al, 2004)
- Uncertainty is represented by several probabilities describing the rare disaster
A new assessment method

- We apply a decision criterion (Ghirardato et al, 2004)
- Uncertainty is represented by several probabilities describing the rare disaster
- Decisions are based on expected costs, which are calculated with respect to the worst case and best case scenarios

\[
E_\alpha C = \alpha E_{\text{worst case}}[C] + (1-\alpha)E_{\text{best case}}[C]
\]
A new assessment method

- We apply a decision criterion (Ghirardato et al, 2004)
- Uncertainty is represented by several probabilities describing the rare disaster
- Decisions are based on expected costs, which are calculated with respect to the worst case and best case scenarios
- Attitude towards ambiguity is modeled by a parameter α varying between 0 and 1

\[E_{\alpha}(C) = \alpha E_{\text{worst case}}(C) + (1 - \alpha) E_{\text{best case}}(C) \]
A new assessment method

- We apply a decision criterion (Ghirardato et al, 2004)
- Uncertainty is represented by several probabilities describing the rare disaster
- Decisions are based on expected costs, which are calculated with respect to the worst case and best case scenarios
- Attitude towards ambiguity is modeled by a parameter α varying between 0 and 1
 - $\alpha = 1$: decisions are based on the worst case
 - $\alpha = 0$: decisions are based on the best case
A new assessment method

- We apply a decision criterion (Ghirardato et al, 2004)
- Uncertainty is represented by several probabilities describing the rare disaster
- Decisions are based on expected costs, which are calculated with respect to the worst case and best case scenarios
- Attitude towards ambiguity is modeled by a parameter α varying between 0 and 1
 - $\alpha = 1$: decisions are based on the worst case
 - $\alpha = 0$: decisions are based on the best case

Adaptation to the calculation of the expected cost

$$\mathbb{E}_\alpha C = \alpha \mathbb{E}_{\text{worst case}}[C] + (1 - \alpha) \mathbb{E}_{\text{best case}}[C]$$
Underlying structure

Two categories of accidents

- Core Damage Accident without releases (CDA)
- Large-Release Accident (LRA)

Figure: A simplified event-tree structure for nuclear accidents
Hypotheses concerning nuclear damage

Table: Nuclear damage, for an EPR in the UK, in billions of euros

<table>
<thead>
<tr>
<th>Estimated damage</th>
<th>D_{CDA}</th>
<th>2, 6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>D_{LRA}</td>
<td>180</td>
</tr>
</tbody>
</table>

Sources:
- Cost of TMI by Sovacool (2008)
- Cost of a LRA estimated by IRSN (2013)
Hypotheses concerning nuclear damage

Table: Nuclear damage, for an EPR in the UK, in billions of euros

<table>
<thead>
<tr>
<th>Estimated damage</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(D_{CDA})</td>
<td>2, 6</td>
</tr>
<tr>
<td>(D_{LRA})</td>
<td>180</td>
</tr>
</tbody>
</table>

Sources

Cost of TMI by Sovacool (2008)
Cost of a LRA estimated by IRSN (2013)
Hypotheses concerning the probabilities

Table: The probabilities, expressed per reactor years

<table>
<thead>
<tr>
<th></th>
<th>Best prior</th>
<th>Worst prior</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p(CDA)$</td>
<td>10^{-6}</td>
<td>10^{-3}</td>
</tr>
<tr>
<td>$p(LRA)$</td>
<td>10^{-7}</td>
<td>10^{-4}</td>
</tr>
</tbody>
</table>

Two priors to describe uncertainties

The best-case prior

- AREVA’s achieved target for the EPR safety
Hypotheses concerning the probabilities

Table: The probabilities, expressed per reactor.years

<table>
<thead>
<tr>
<th>Probability</th>
<th>Best prior</th>
<th>Worst prior</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p(CDA)$</td>
<td>10^{-6}</td>
<td>10^{-3}</td>
</tr>
<tr>
<td>$p(LRA)$</td>
<td>10^{-7}</td>
<td>10^{-4}</td>
</tr>
</tbody>
</table>

Two priors to describe uncertainties

The best-case prior

- AREVA’s achieved target for the EPR safety

The worst-case prior

- Probabilities based on the observed frequency of past accidents (1 LRA every 25 years)
The expected cost of nuclear accidents

Figure: Expected cost in €/MWh as a function of α

$\mathcal{I}(\alpha) = 1.65\text{€/MWh}$
The expected cost of nuclear accidents

Figure: Expected cost in €/MWh as a function of α

- worst case scenario - 1.7€/MWh
- worst scenario with macro consequences 7€/MWh
Policy implications

Nuclear policies : The cost found in this study is small when compared to the LCOE of nuclear power new builds

The expected cost of nuclear accidents ought to reflect public perceptions as well as technical investigations

The method can be used to assess the expected cost of other rare disasters subject to ambiguous probabilities, or other policies

Rare disasters: oil spills, dam failures...

Policy analysis: nuclear safety regulation analysis or accident mitigation plans
Conclusion

- Two methodological contributions for the combination of technical knowledge, experience and perceptions
 - A Bayesian revision framework to account for new events in the assessment of nuclear accident probabilities
 - A non-Bayesian method to combine technical knowledge and uncertainty-averse individual preferences

- Nuclear power policy implications
 - An important and untechnical upgrade of nuclear safety consists in the improvement of the quality of safety regulators around the world
 - The expected costs of nuclear accidents are small compared to the construction costs of new builds
Thank you for your attention!

More information and references:

- www.cerna.mines-paristech.fr/fr/leveque/
- www.cerna.mines-paristech.fr/fr/bizet/
- www.cerna.mines-paristech.fr/fr/recherche/economics-nuclear
The economic estimation of nuclear damage

Figure: Assessments of the cost of a nuclear accident, in billion euros