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Abstract

We estimate a latent factor model (LFM) to compute an index that measures the qualities of

an extensive data set of inventions belonging to Low Carbon Energy Technologies (LCETs) and

patented by seven countries during 1980-2010. We use the quality index to compute the stock

of knowledge accumulated in the fifteen analyzed LCETs. We investigate the composition of the

stock of knowledge and find that important substitutions between technologies have taken place:

older technologies (solar thermal and nuclear) have been progressively replaced by new technologies

(mostly wind power and solar photovoltaic). This substitution effect can be decomposed into quan-

tity (the number of inventions) and quality (the quality of inventions). Investigating the latter, the

quality of nuclear-related inventions has decreased whereas it has increased for solar photovoltaic

(PV), wind power and energy storage inventions. Few newer technologies, i.e. hydrogen and sea

energy, also show signs of an increase of their average quality of inventions over the last years of

the data set. We go further and investigate the inventions distribution in terms of quality and

conclude that nuclear-related innovation potential has decreased whereas higher levels of quality

were reached in newer technological areas. A cross-country comparison is conducted to assess the
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innovation performance of the seven countries covered by our study. We conclude that technology

policies are not efficient when demand-pull and supply-push approaches are not coupled.

1 Introduction

In 2010, the energy supply sector was responsible for 46% of energy-related greenhouse gas emissions

(GHG) (Intergovernmental Panel on Climate Change, IPCC, 2014, [32]). In order to meet our GHG

mitigation objectives, a deep transformation of our energy systems is necessary, with additional policies

aiming at reducing our demand for energy. To decarbonise our energy mixes, fossil technologies must

be progressively phased out, as attested by the increase from approximately 30% in 2010 to more than

80% by 2050 of the share of low-carbon electricity supply in stringent mitigation scenarios (IPPC, 2014,

[32]). For that purpose several technological options exist, e.g. nuclear power, renewable energies or

Carbon Capture and Storage (CCS). Except of the first one, these are not yet developed at a large

scale. To remedy this, innovation is expected to improve the competitiveness of these technologies

in comparison with fossil ones. To this end, environmental and technology policies should be jointly

implemented to foster low carbon innovation. As stated by the IPCC, ”Technology support policies

have promoted substantial innovation and diffusion of new technologies, but the cost-effectiveness of

such policies is often difficult to assess” (IPCC, 2014, [33]). A robust measure of innovation in Low

Carbon Energy Technologies (LCETs) is a prerequisite for such an assessment. This is the subject of

the article.

Two approaches are generally considered to measure innovation in particular technology fields:

input-based measure built using R&D expenses data, and output-based measure that relies on patent

data (Jaffe and Palmer, 1997, [35]). The first option accounts for the efforts made to foster innovation

whereas the second one measures their results. As our aim is to quantify the effective knowledge

accumulated in LCETs, patent data is preferred. Patents have been extensively used in the empirical

literature on innovation. The count of patents was initially considered as a satisfactory measure

of innovation (Scherer, 1965, [67]). However, this approach suffers from a major drawback as the

distribution of the value of patented inventions is positively and highly skewed (Dernis et al., 2001,

[18]). To take into account the heterogeneity of patented inventions, researchers have considered several

indicators of the patent quality, such as the number of citations a patent receives after its publication,

the number of citations made to other patents or the number of patent offices in which an invention is
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protected. Numerous articles have shown that these metrics are correlated with the economic value or

the patent quality (Putnam, 1996, [64]; Harhoff et al., 2002, [24]; Criscuolo and Verspagen, 2008, [12];

Trajtenberg, 1990, [71]; Harhoff et al., 1999, [23]; Hall et al., 2005, [22]; Lanjouw and Schankerman,

2001, [46]; Harhoff and Wagner, 2009, [25]; Johnson and Popp, 2003, [39]; Régibeau and Rockett,

2010, [65]; Lerner, 2004, [50]; Lanjouw and Schankerman, 1997, [45]). In these studies, the value

of a patent is either captured by: (1) surveying patent-owners or inventors about their valuation of

the patented inventions, (2) considering the decision of patent-owners to pay a renewal fee to extent

patent duration, or (3) analyzing financial information such as the stock market or the profits of

innovative firms. Although the links between patent metrics and the quality of protected inventions

are well established, the relationship may be noisy when a single metric is used (Harhoff et al., 1999,

[23]). In order to improve the accuracy of the measure of patent quality, Lanjouw and Schankerman

propose a composite index built with several metrics (2004, [47]). The quality index accounts for both

the technological and value dimensions of the inventions and synthesizes information on the different

metrics associated to a single invention. We follow this approach and estimate a quality index for a

data set of 28,951 LCET-related inventions patented in seven countries during 1980-2010. In line with

the results of Lanjouw and Schankerman (2004, [47]), we find that using several metrics reduces the

variance of our measure of the quality by 52.48%. Hence, based on the quality index, a more robust

measure of innovation can be provided. Our quality index is used to compute the accumulated stock

of knowledge in LCETs.

we discuss the relative roles of technologies and countries in the accumulation of knowledge over

1980-2010. Although our approach is mainly descriptive, several insights emerge. First, there are

marked differences in the dynamics of patent quality between technologies. Older technologies such as

nuclear, solar thermal or geothermal, have seen the average invention qualities decrease or stagnate. On

the contrary, the average inventions quality related to more recent technologies (e.g. solar PV power

or wind power) have increased. Second, the potential of nuclear technology in terms of innovation has

decreased over time as chances to reach high quality levels are lower during the last decade of our data

set (2001-2010). R&D investments in nuclear technology are thus on average, of lower values and have

a lower chance to be of higher quality. Therefore, the lower average quality is not compensated by

few inventions of great quality. That the number of patents is strongly correlated with R&D expenses

suggests the existence of diminishing returns. Considering wind power and solar PV technologies we
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conclude that their innovation potential have been higher during 2001-2010. Third, we investigate how

innovation reacts to demand-pull and supply-push forces and compute two index that capture their

intensities. Considering the case of wind power technology we compare the balance between the two

policy approaches. Our results suggest that there is a strong complementarity between them.

The paper is organized as follows: Subsection 2.1 identifies several needs in the modeling literature

that a measure of innovation could fulfill. Subsection 2.2 reviews the empirical literature on innovation

that uses patent data to measure innovation and Subsection 2.3 emphasizes the body pertaining to

environmental economics. Subsection 3.1 presents the LFM used to estimate the quality index. Sub-

section 3.2 presents the data set. Subsection 3.3 examines the results of our estimates. Subsection

4.1 discusses the stock of accumulated knowledge in LCETs over 1980-2010 and the relative weights

of technologies and countries. Subsections 4.2 and 4.3 conduct cross-technologies and cross-countries

comparisons and provide for several insights. Section 5 concludes .

2 Measuring innovation with patent data

2.1 The low-carbon innovation

Consistent with the hopes governments are placing in innovation to be a part of the solution to

climate change (Article 10 of the Paris Agreement), efforts have been undertaken to enhance the

representation of technological change in economic models. A body of the literature proposes an

endogenous formulation of technical change based on the macro models of induced technological change

(Loeschel, 2002, [52]). An early contribution from Goulder and Mathai uses a partial equilibrium

model where the stock of knowledge accumulated by a firm lowers its abatement cost (Goulder and

Mathai, 2000, [20]). They assume that the stock of knowledge increases with the cumulative R&D

expenditures directed toward the abatement technology. In the same vein, Nordhaus modifies the

DICE model, renamed the R&DICE model, in which R&D expenditures improve the energy-efficiency

of the energy sector (Nordhaus, 2002, [56]). The RICE model of integrated assessment, a variant of

the DICE model, is modified to investigate how the knowledge stock affects the emission-output ratio

(Buonanno et al., 2003, [9]). These works follow a top-down approach and provide for a theoretically

consistent representation of the economy as a whole. These models however offer a poor level of

details of the technological structure of the energy sector (Lôschel, 2002, [52]). Bottom-up models
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answer this critic but are generally unable to take into account macroeconomic feedback. Hence, they

may miss important crowding-out effects that result from the redirection of R&D investments toward

environmental technologies. Berglund et al. discuss the introduction of learning in bottom-up energy

models and its benefits (Berglund et al., 2006, [6]). They emphasize recent applications of the concept

of learning that take into account learning-by-searching and its impact on technological change. To

do so, modelers generally use two-factor-learning curves. Learning curves have been extensively used

in bottom-up energy models. Learning occurred through one factor in the first versions of learning

curve: the cumulative quantity of produced output. It is assumed to reduce the production cost by

a constant fraction each time the cumulative output is doubling (learning-by-doing assumption). The

origins of this hypothesis date back to the work of Wright (1936, [77]). He analyzes the production

of airframe and observes that for each doubling of the cumulative production, the number of hours of

direct labor by unity decreases by a constant share. A major step has been taken by including a second

factor explaining cost decrease: learning-by-searching. Kouvaritakis et al. depart from the usual one-

factor-learning curve and include the role of R&D activities (Kouvaritakis et al. 2000, [43]). They

approximate the level of available technical knowledge by the cumulative R&D expenditures. They

are include in a two-factor-learning curve. They implement this specification in the POLES model

and investigate the effects of including learning-by-searching. However, they underline the difficulties

encountered with data availability and regret having only short time series to estimate the learning

rates. Criqui et al. also use the POLES model to investigate the relative roles of learning-by-doing

and learning-by-searching in different scenario of GHG mitigation policies (Criqui et al., 2014, [11]).

In the empirical literature, two-factor-learning curves were estimated for several renewable energy

technologies. Klaassen et al. estimate a two-factor-learning curve that explains the reductions of wind

turbines production cost by the cumulative installed capacity of wind power and a R&D-based measure

of knowledge stock (Klaassen et al., 2005, [41]). Jamasb estimates learning-by-doing and learning-by-

searching rates for four stages of development of energy technologies. He concludes that the former is

generally lower than the latter in the several stages of technological development (Jamasb, 2007, [37]).

In his study, knowledge is approximated by the cumulative private and public R&D expenditures.

Similarly, Kobos el al. estimate two-factor-learning curves for wind and solar PV technologies in the

USA (Kobos et al., 2006, [42]). The knowledge stock is again constructed using cumulative R&D

expenditures.
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Constructing knowledge stocks with R&D expenses has been the most preferred option. However,

the uncertain feature of research activities is left out when R&D expenses are used as a measure of

the available knowledge. In this extent, patent data can be used to measure the effective creation of

knowledge because patents are more closely related to the output of innovation activity whereas R&D

activity is an input-based measure (Griliches, 1990, [21]) and that there are very few examples of major

inventions that have not been patented (Dernis et al., 2001, [18]). Popp et al. underline that there are

strong levels of uncertainty about the returns to R&D and that they vary among technologies (Popp et

al., 2013, [63]). The quality index developed in this article allows to take into account these features.

Finally, there are other issues to deal with when using R&D expenditures: data for the private sector is

not very often available and for most countries it is aggregated and does not allow to focus on narrow

technological fields such as low carbon technologies (Dechezleprêtre et al., 2011, [13]).

2.2 Patent metrics as indicators of the quality of inventions

A patent confers to the applicant(s) the sole right, during a limited period of time, to exclude others

from making, using or selling the patented invention. The protection is guaranteed only within the

geographical area of the patent authority that delivers the patent. A patent family is defined as the

set of patents granted by different patent authorities that protect the same invention. Since 1883,

the Paris convention gives one year to patent owners from the priority date, i.e. the date at which

the first application is filed in any office, to apply for patents in other Convention countries. The

earliest patent of the family is called the priority filing and to avoid counting multiple patents for a

single invention researchers usually consider only priority filings when they study patents from multiple

patent authorities. Initially, the patent count was considered as an appropriate proxy of technological

innovation (Scherer, 1965, [67]). This approach has proven to be limited as it gives to every patented

inventions equal importance. This is a serious pitfall because empirical studies observe a highly skewed

distribution of the value of protected inventions with a high share of low-value patents (Dernis et al.,

2001, [18]). This heterogeneity calls to take into account the quality of inventions. Hence, researchers

investigated several ways to provide for more realistic measures of innovation based on patent data; for

an early survey of these studies, see Griliches (1990, [21]). In this way, patent metrics were called to

play an increasingly important role as they provide additional information on patented inventions. For

a given invention, there are several metrics. We discuss the links between the quality of an invention
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and the most commonly used metrics.

As said above, an invention may be protected by a family of patents. Because protecting an inven-

tion with multiple patents is costly for the applicant who bears the additional cost of each applications,

the size of the family partly reflects the invention expected value. This metric has been widely used in

the literature. An early contribution by Putnam exploits data on patent families to estimate the dis-

tribution of patent quality across countries (Putnam, 1996). In the same vein, Harhoff et al. estimate

the values of a set of patents by surveying patent holders and compare their results with several patent

metrics among which family size (Harhoff et al., 2002, [24]). They conclude that it represents a good

approximation of patent value. Nonetheless, family size is also influenced by other factors such as the

strategy of the patentee with respect to its competitors or the peculiarities of the markets where the

invention is protected.

Valuable information about patent quality is provided by citations. For a given patent, there are two

types of citations. Citations made by a patent document to previous patents, as well as to non-patent

literature when a broader definition is retained, are known as its backward citations. When innovators

apply for a patent, they have to disclose prior knowledge on which they have relied by citing older patent

documents and scientific publications (OECD, 2009, [57]). These references are listed by applicant(s)

and checked by examiners who can decide to remove or to add citations. Backward citations have

been used to study knowledge spillovers (Jaffe et al., 1993, [36]; Criscuolo and Verspagen, 2008, [12])

and have been found to be positively correlated to the patent value (Harhoff et al., 2002, [24]). The

second type of citations are forward citations. These are the citations received by a patent after its

publication. Counting the number of forward citations is an useful measure of quality as it indicates

to what extent an invention contributes to future knowledge creation. Literature has emphasized a

positive correlation between the number of forward citations received by a patent and its social value

(Trajtenberg, 1990, [71]), or its private value when the analysis is coupled with renewal data (Harhoff

et al. 1999, [23]), survey of patent-holders (Harhoff et al., 2002, [24]) or market stock valuation of the

firms (Hall et al., 2005, [22]).

There are other metrics that contribute to our understanding of patent quality. For instance, the

claims establish the scope of the protection granted by a patent. They represent the breadth of the

temporary monopoly rights. This indicator is considered as a good proxy of an invention value as the

patent fee generally depends on the number of claims. Thus, it reflects the applicant’s willingness-to-
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pay for a protection and her expectations about the invention value. Several papers have considered

the relation between patent claims and its value. Lanjouw and Schankerman show that patents with

more claims are more likely to be involved in litigation which indicates that these are of higher value

(Lanjouw and Schankerman, 2001, [46]). Another metric is the time lag between the application for a

patent and, when successfully, its grant. It is considered as an indicator of patent quality as applicants

try to accelerate the granting of a patent for their best inventions. Thus, they will bear an additional

cost for providing a well-documented application and push forward the granting of the protection. This

additional cost is expected to be justified by an invention of higher value. It is confirmed by Harhoff

and Wagner who find evidence that application processing of most valuable patents are accelerated by

applicants (Harhoff and Wagner, 2009, [25]). However, the positive correlation between this metric and

the value of a patent is controversial. Indeed, Johnson and Popp (2003, [39]) find that the application

process is longer for patents that are more cited. An explanation for these opposite results is given by

Régibeau and Rockett (2010, [65]) who take into account the position of the patent in the innovation

cycle when studying the relation between the application process length and the patent quality. They

confirm the result of Harhoff and Wagner (2009, [25]) by finding a positive relation between these two

features. Their paper enlightens the importance of having a detailed technological classification when

investigating the length of granting applications. The technological scope of a patent has also been

used as a measure of its quality. When a patent is granted it is classified following the International

Patent Classification (IPC) depending on the function(s) of the invention or its field(s) of application

(OECD, 2009, [57]). Hence, the number of technological classes has been considered as a good proxy

of the patent scope and suspected to be representative of its quality. A first study by Lerner finds a

positive correlation between the technological scope and the market value of a patent in the sector of

biotechnology (Lerner, 2004, [50]). However, the link between this metric and the value of a patent

remains questionable as it is refuted by several studies (Lanjouw and Schankerman, 1997, [45]; Harhoff

et al., 2002, [24]).

Over time, literature has emphasized that if the quality of a patent is unobservable by its essence,

metrics provide for different viewing angles from which researchers can partly capture it. Starting

from this idea, a significant step in the measure of innovation using patent data has been made by

Lanjouw and Schankerman (2004, [47]). They build a composite index of the quality of a patent. It

is called ’composite’ because it takes into account the information on the quality embodied in the
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different metrics of a patent document. The quality index represents both the technological and value

dimensions of the innovation. In their study, the quality of a patent corresponds to an unobservable

factor that commonly influences the four metrics they consider (forward citations, backward citations,

number of claims and family size). We use the same method to estimate the quality of inventions in

LCETs for seven countries patented during 1980-2010. To our best knowledge, the only other study

that implements a LFM to estimate patents quality is Squicciarini et al (2013, [70]). However, the

authors underline that their results may be subject to further refinement.

2.3 Patent data and environmental technologies

In the field of environmental economics patent data has attracted an increasing attention over these

last years. In this subsection we present a short review of the literature that uses patent data to

study environmental technologies. An early study on environmental technologies has been realized by

Lanjouw and Mody who estimate the international diffusion of environmental technologies using patent

data (Lanjouw and Mody, 1996, [44]). They attempt to analyze how environmental innovation reacts

to regulation and to do so they use pollution abatement expenditures as indicators of the effective

demand for pollution control. They conclude that regulation and innovation are positively correlated.

In order to measure environmental innovation they compute the share of environmental-related patents

in the total amount of patents for 17 countries. Another early attempt to understand environmental

innovation has been performed by Jaffe and Palmer who estimate the impact of abatement cost on two

measures of innovation: R&D expenditures and patent counts (Jaffe and Palmer, 1997, [35]). Their

results indicate that these two measures do not identically react to higher lagged abatement cost; the

impact is strong and positive for R&D expenditures but little evidence is found about the link with

the number of patents. However, they focus on the impact of environmental regulation on the overall

innovation as they use the total number of granted patents and the total amount of R&D expenditures.

Brunnermeier and Cohen reduce the scope to strictly environment-related innovation and investigate

how US manufacturing firms’ abatement expenditures influence the amount of successful environmental

patents (2003, [8]). They find a significant positive relationship between the two variables although

they recognize the limits of a simple count of patents due to the asymmetric distribution of their

quality.

The count of environmental patents generally remains the privileged way to measure environmental
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innovation. Haščič et al. use patent counts to question the theoretical assertion according to which a

greater flexibility of policy instruments leads to more innovation and find that it is empirically sup-

ported (Haščič et al., 2009, [26]). Similar approaches, based on patent counts, are adopted to measure

innovation by Bointner (2014, [7]), Noailly and Smeets (2015, [55]) and Lindman and Söherholm (2015,

[51]). In order to avoid the pitfalls of counting patents, low value patents can be excluded to reduce the

heterogeneity of inventions quality. In this vein, Johnstone et al. examine the effects on innovation of

several policy instruments based on a panel of patents filed in 25 countries over the period 1978-2003

(Johnstone et al., 2010, [38]). They consider the patents filed at the European Patent Office (EPO) to

ensure that the protected inventions meet a minimum level of quality that justify the higher patent fee

paid at the European level. The bias of the count is reduced but the heterogeneity of the inventions

in terms of quality remains above the minimum threshold of quality. A similar approach is chosen by

Aghion et al. ([1]). In order to overcome the problem of low-value patents, only triadic inventions

are included in their data set. Triadic inventions are inventions protected at the three main patent of-

fices: the Japanese Patent Office (JPO), the EPO and the United States Patent and Trademark Office

(USPTO). Due to the higher cost of filing a patent in these three offices, counting only triadic patents

excludes less valuable inventions. The authors consider several alternatives to test for the robustness of

their results by counting only biadic patents (filed at the EPO and the USPTO) and counting patents

weighted by the number of forward citations they have received. Their results are robust to the types

of count. An assessment of the impact of the European Union Emission Trading Scheme (EU ETS) on

technological change is conducted by Calel and Dechezleprêtre (2016, [10]). The causal impact of the

EU ETS on innovation is estimated by considering a sample of 5,500 EU ETS firms in 18 countries.

Technological change is measured with EPO patents in order to avoid counting low value inventions.

Two options are considered by the authors to test the robustness of their results: 1/ a count of patents

weighted by the number of forward citations; 2/ a count of patents weighted by the size of their fami-

lies. They conclude that approximately 1% of the increase of the innovative activity in environmental

technologies in the European Union can be attributed to the EU ETS. Popp summarizes several lessons

about environmental technologies drawn from his empirical work with patent data (Popp 2005, [61]).

Among other results, he finds that technology fields experience diminishing returns over time when

innovation is measured by a count of patents weighted by the number of citations they receive after

their publication (i.e. forward citations).
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In this paper, we follow the approach proposed by Lanjouw and Schankerman (2004, [47]) to esti-

mate inventions quality. We build knowledge stocks for each country/technology field and investigate

how the quality index may be used by researchers. To our best knowledge, this the first time this

method is applied to environmental technologies.

3 A quality index for Low Carbon Energy Technologies

3.1 The latent factor model

An index of patents quality is reified on the basis of the observed metrics. The metrics included in the

model are defined in 3.2.5. We estimate a LFM where the values of the observed metrics of a patent,

called the manifest variables in LFM terminology, are explained by some control variables and by an

unobserved common factor. As stated by Lanjouw and Schankerman, the common factor represents

quality as no other characteristic is suspected to jointly influence the values of all the patent metrics

(Lanjouw and Schankerman, 2004, [47]). As the latent factor is unobserved it is generally assumed

that its prior distribution is normal and centered. There is no loss of generality from assuming a

zero mean and an unit variance, the key part of the assumption being about the type of distribution

(Bartholomew et al. 2011, [4]). Our approach slightly differs from Lanjouw and Schankerman (2004,

[47]) as we assume that the quality index follows a log-normal distribution law. This is a good candidate

that reflects the distribution asymmetry of patents quality. Scherer et al. test several sets of data and

find that a log-normal distribution provides for the best fit of the distribution of the rewards realized

on technological innovations (Scherer et al. 2000, [68]). Hence, it is reasonable to assume that an

invention quality and its reward are similarly distributed. The quality index is log-transformed so that

it is normally distributed. Once the model is estimated, the values of the log-transformed quality index

are transformed back using the reciprocal transformation.

The LFM is

xi = µ+ αzi + Λyi + ei (1)

where xi is a vector containing the values of the p metrics 1 of the ith patent, zi a vector of control

variables, Λ the vector of factor loadings, yi the common latent factor of the ith patent and ei a

1All patent metrics are log-transformed. 1 is added to the citations metrics as they can take null values.
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normally distributed error term with zero mean and variance matrix Ψ. When estimating the LFM it

is relevant to investigate the case for multiple latent factors. When considering more than one latent

factor Λ becomes a matrix and yi a vector. In subsection 3.3 we detail how the set of metrics is chosen

to correspond to only one latent factor. The variance of each manifest variable is composed of two

terms:

var(xi) = ΛΛ′ + ψi. (2)

The first one represents communality, i.e. the parts of the variances of manifest variables ac-

counted for by the common factor. The second term is the variance specific to each manifest variable.

A distributional property of the model is that the loading factors Λ can be interpreted as the covariance

between the manifest variables and the common factor.

On the basis of observed metrics we can deduce the common factor by using Bayes’ theorem to

invert the relation (1) and write the posterior distribution of the ys

y|x ∼ N
(
Λ(ΛΛ′ + Ψ)−1(x− µ− αz); (Λ′Ψ−1Λ + 1)−1

)
. (3)

The mean term generates the most probable value of y on the basis of the observed metrics and the

variance term indicates how precise is the inference. We estimate the model by maximum likelihood

using the E-M algorithm. The E-M is a powerful tool for estimating a model by maximum likelihood

with missing data and it has been generalized by Dempster et al. (1977, [16]). We present here the

several steps of the algorithm and give a complete formalization of it in the Appendix A. The first

application of this method to latent factor modeling has been proposed by Rubin and Thayer (1982,

[66]). We start by writing the joint log-likelihood function of the model and derive its score functions.

Then, as its name indicates, the E-M proceeds in two steps:

(i) The conditional expected values of the score functions are computed. Their expressions depend

on the values of the unobserved sufficient statistics (those that contain the latent factor). The condi-

tional expectations of the sufficient statistics are functions of the parameters of the model so that they

are computed for the parameters values from the previous iteration.

(ii) Replacing in the score functions the unobserved sufficient statistics by their conditional expected

values, these are set to zero in order to maximize the expected log-likelihood. By doing so we can deduce
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a new set of values of the parameters. These are replaced in the expression of the log-likelihood and

the operation is reiterated.

The convergence toward a global maximum is not insured but Dempster et al. (1977, [16]) demon-

strate that the log-likelihood function is non-decreasing on each iteration. In order to control for the

robustness of our results we initialize the parameters with several sets of values and check whether the

obtained estimates vary or not with the initial conditions. For a sufficiently large number of iterations,

i.e. 100,000, the parameters estimates are not sensitive to the initial conditions.

3.2 Data presentation

3.2.1 The PATSTAT database

We use the data from the Worldwide Patent Statistical Database (PATSTAT) created and maintained

by the European Patent Office (EPO). PATSTAT contains almost 75 millions of patent documents.

Our dataset is extracted from the online 2015 Autumn version of PATSTAT. To avoid counting multiple

patents that protect the same invention we extract patent families and their corresponding metrics.

These are defined later in this subsection. The PATSTAT database proposes two definitions of a patent

family: DOCDB family and INPADOC family. We use the former definition of family as the latter

represents an extended definition of the family concept. In fact, an INPADOC family might covers

several DOCDB families linked by prior applications, and also by technical links enlighten by patents

examiners. The definition family we use, also called the DOCDB simple family, considers patents

as belonging to the same family when they claim exactly the same prior application. Nonetheless,

there are some exceptions to this general rule as the EPO reserves the right to classify an application

that is not a priority filing into a simple family (REF, CATALOG, p127). Hence, it is possible that

several patent families have the same prior applications. In our initial dataset, we find that 12.7%

of the families share the same priority filing with another family (or more). This is a problem as

the protected inventions will be counted several times2. To address this issue, when multiple families

claim the same priority filing we retain the largest one and exclude the other from the data set. Our

final data set comprises 28,951 patents families, or inventions, of seven nationalities belonging to 15

different technological fields and granted between 1980 and 2010. Only families with a granted priority

2For instance, the application identified in Patstat as 315604701 is the prior application of 16 different DOCDB
families. This (extreme) example illustrates the importance of a data treatment aiming at suppressing patent families
claiming the same prior filings.
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Bio-fuels CCS Sea energy Energy storage
1019 1065 655 3955

Fuel from waste Geothermal energy Hydro energy Hydrogen
1186 394 1243 1416

Nuclear PV energy Smart grids Solar thermal
3656 3748 1567 4050

Wind energy Combustion efficiency Combustion mitigation Total
3162 630 1205 28951

Table 1: Number of inventions per technology (all countries, 1980-2010).

filing are extracted as we let apart the applications that did not succeed in obtaining a patent right.

We detail further how nationality, technological classification and year of count are determined before

giving precise definitions of the patent metrics included in the model. The distribution of the inventions

between technologies is given in Table 1.

3.2.2 Classification of inventions per technology

The technological classification of inventions is of critical importance when one works with patent data.

This is particularly true when the focus is on narrow technological fields such as LCETs. Indeed, there

are risks to: (i) extract inventions that do not pertain to the targeted technological class or to (ii)

exclude relevant inventions by narrowing too much the technological scope. In PATSTAT, each patent

document is referenced following two classifications: the International Patent Classification (IPC) and

the Cooperative Patent Classification (CPC). From now, the IPC has been preferred by researchers

working on environmental technologies and several papers provide for the classification codes that

should be used and explain how to combine them to extract the relevant patents depending on the

targeted technological fields (see Johnstone et al., 2010, [38]; Lanzi et al. 2011, [49]; Popp et al.,

2011, [62] and Dechezleprêtre et al., 2011, [13]). Patents related to LCETs can be found a many areas

of technology and it increases the risks evoked above. According to Veefkind et al., using the IPC

classification generally creates too much ’noise’ and the extracted data sets are frequently incomplete

(Veefkind et al., 2012, [73]). The EPO has completed in December 2015 the CPC system that now

covers environmental technologies to address this issue. This new scheme improves the classification

quality by including technologies that were difficult to extract in the IPC. Hence, it strongly enhances

the quality of our data. For a presentation of the CPC scheme of classification of environmental

technologies and its advantages, see Veefkind et al. (2012, [73]). The technologies we analyze and the

corresponding CPC codes are detailed in Table 2. To our best knowledge, only few papers have already
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Technology Description CPC codes

Biofuels Combined Heat and Power turbines for biofeed, gas turbines for biofeed,
bio-diesel, bio-pyrolysis, torrefaction of biomass, bio-ethanol. Y02E 50/1

Carbon Capture Capture by biological separation, chemical separation, by absorption,
and Storage by adsorption. Subterranean or submarine CO2 storage. Y02C 10/
Sea Energy Oscillating water column, ocean thermal energy conversion,

salinity gradient, wave energy. Y02E 10/3
Energy Storage Battery technologies, ultracapacitors, supercapacitors,

pressurized fluid storage, mechanical energy storage,
pumped storage. Y02E 60/1

Fuel From Waste Synthesis of alcohol or diesel from waste, production
of methane (fermentation, landfill gas). Y02E 50/3

Geothermal Earth coil heat exchangers, systems injecting medium into
Energy ground or into a closed well. Systems exchanging fluids in pipes. Y02E 10/1
Hydro Conventional (dams, turbines or waterwheels),
Energy tidal stream or damless hydropower. Y02E 10/2
Hydrogen (incl. Hydrogen storage, distribution, production
hydrogen storage) from non-carbon sources. Y02E 60/3
Nuclear Fusion reactors (Magnetic Plasma Confinement (MPC),

inertial plasma confinement), nuclear fission reactors
(reactors, fuel, control of nuclear reactions). Y02E 30/

PV Energy PV systems with concentrators, materials technologies,
power conversion electric or electronic aspects. Y02E 10/5

Smart Grids Systems integrating technologies related to power
network operation, communication or information
technologies for improving the electrical power generation,
transmission, distribution, management or usage. Y04S

Solar Thermal Tower concentrators, dish collectors, fresnel lenses,
heat exchange systems, through concentrators, conversion
into mechanical power. Y02E 10/4

Wind Power Wind turbines (rotation axis in wind direction
and perpendicular to the wind direction), power conversion
electric or electronic aspects. Y02E 10/7

Combustion Heat utilization in combustion or incineration of
Efficiency waste, Combined Heat and Power generation, Combined Cycle

Power Plant, Combined Cycle Gas Turbine. Y02E 20/1
Combustion Direct (use of synair or reactants before or
Mitigation during combustion, segregation from fumes) and

indirect(cold flame, oxyfuel and unmixed combustion)
CO2 mitigation, heat recovery other than air pre-heating. Y02E 20/3

Table 2: Description of the technologies and their classification codes (CPC).

use this classification in the literature (Calel and Dechezleprêtre, 2016, [10]; Haščič and Migotto, 2015,

[27]).

3.2.3 The cohort of an invention

As we aim to estimate the time path of innovation we must determine a year at which the newly

created knowledge embodied in a patented invention adds to the existing stock. For each invention

(i.e. patent family), several options are possible: to choose the year at which the priority filing is

filed, or the year at which it is published. The first possibility is considered as being the closest to the

invention date and the second one as being the date at which the knowledge embodied in the patent
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becomes publicly available (OECD, 2009, [57]). The second option is retained to measure the evolution

of common knowledge in particular technology fields. Thus, a cohort of inventions brings together all

the inventions that received their first patent the same year.

3.2.4 Nationality of inventions

Finally, we have to sort inventions depending on their nationality. There are two types of agents in-

volved in patenting process: applicants and inventors. The nationality(ies) of applicant(s) represent(s)

the ownership of the protected knowledge, independently of the location of research laboratories. Hence,

the best option when one wants to measure the new knowledge discovered within a country is to sort

inventions by inventors’ country of residence (OECD, 2009, [57]).

If there are multiple inventors residing in different countries, a fractional count is applied (De

Rassenfosse et al., 2014, [17]). For instance, when two Danish inventors and one French inventor have

taken part in an invention we consider that two-thirds of the invention belong to Denmark and one-

third to France. In some cases, the inventor’s country of residence is not referenced in PATSTAT. By

default we consider the priority office nationality as the inventors’ nationality. There is only a minor

risk of doing so for two reasons:

• when information on inventor’s nationality is available, 96.3% of the inventions of our dataset are

first protected in the office of the same nationality (share computed after excluding inventions

first filed at the EPO).

• In the case the invention is first filed at the EPO (1.547 % of the inventions), the country of

residence of inventors is available in almost every cases. For the few for which it is not, an online

research on Espacenet.com provides for the nationality of inventors.

Our choice of the countries that are included in the study is motivated by the availability of

information on metrics. In PATSTAT, a default value of variables when information is not available

is zero3. Consequently there is a risk to include countries with low data coverages and to bias the

analysis. Hence, we compute the shares of zeros for several metrics and examine what countries to

include in the analysis. On the basis of these computations we choose to include France, the United

States of America (USA), Spain, Germany, the United Kingdom (UK), Denmark and the Netherlands.

3For instance a vast majority of the patents filed at the SIPO, the Chinese patent authority, show zero backward
citations. Obviously, it does not mean that Chinese inventions do not rely on past knowledge but rather that PATSTAT
does not contain the information.
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3.2.5 Invention Metrics

We come now to patent metrics. As discussed above, literature has emphasized the links between the

quality of a patent and its metrics. In this study we run several estimates of the LFM on the basis of:

• The size of the patent family (family size). As new patents may be added to the priority filing’s

family after its publication, this metric might increase over time. Hence, we consider as belonging

to an unique family the patents published during the five years that follow the priority filing’s

publication.

• The number of citations received by a priority filing before five years have elapsed after its

publication (forward citations). In order to suppress the bias of the family size, we only count

the citations made by patents from other families.

• The number of citations made to other patent families (backward citations).

• The number of IPC classes of the priority filing (technological scope).

• the normalized difference between the granting date and the application date of the priority filing

(grant lag). The metric is normalized because the conditions of examination vary depending on

granting authorities and years of examination. It is divided by the average examination time

took for patents delivered by the same office to the same cohort and technological class .

These are the metrics containing information about the quality of an invention. In the next sub-

section we detail how the optimal set of metrics is chosen.

3.3 Metrics choice and estimation results

The choice of the metrics included in the model is of major importance. Depending on the manifest

variables considered the correlation structure could reveal the existence of more than one latent factor.

In our case, it would be problematic to conclude that the optimal number of latent factors is larger

than one as our aim is to capture an unique measure of quality. In this extent, we start by using the

largest set of available patent metrics: forward citations, backward citations, family size, normalized

grant lag and technological scope. A first question is whether or not these five metrics are all linked by

one latent factor, or more. To answer this, we estimate two versions of the LFM with respectively one
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and two latent factors 4. The more latent factors are included, the more the model fits the observed

covariance matrix of the manifest variables. Hence, a solution is to choose the number of latent factors

that minimizes the Akaike’s Information Criterion (AIC). In this context, its value reflects the trade-off

between the accuracy of the parameters estimates and the bias of introducing the wrong number of

factors. As suggested by Bartholomew et al. we strengthen our metrics choice by using, in addition to

the AIC, a derived form of the criterion: the Bayesian Information Criterion (BIC). When computing

these criteria for the five manifest variables listed above, i.e. the largest set, we conclude that the

optimal number of latent factors is two. To address this problem we run ten versions of the model by

removing each metric and retaining the other four. The cases for 1 and 2 latent factors are investigated.

It appears that the normalized grant lag is the metric that causes the higher difference between the

criteria of the one LFM and the two LFM. More, when retaining the number of forward and backward

citations, the breadth of the technological scope and the family size the criteria AIC and BIC both

indicate that the optimal number of latent factor is one. However, our estimates of the 2 LFM are

not consistent when considering only four manifest variables and it casts doubt on the relevancy of

our choice. Thus, we use an additional criterion: the Kaiser-Guttman criterion. The principle is to

choose the number of latent factors as the number of eigenvalues of the correlation matrix greater than

one. As already suggested by the AIC and the BIC, the criterion indicates two latent factors when

considering the five metrics set. We exclude each metric and investigate the five combinations: in every

case the optimal number of latent factors is two, except when excluding the normalized grant where

the optimal number of latent factor is one.

Harhoff and Wagner (2009, [25]) show evidence that applicants accelerate examination processing

when patents are valuable and excluding the normalized grant lag from our set of manifest variables

could be suspected to invalidate this result. This is not the case. Indeed, their study examines patents

filed at the EPO whether or not these are priority filings. When computing the share of priority filings

in the total amount of patents filed at the EPO we obtain that it is equal to 4.8%. Hence, the study

of Harhoff et al. refers almost exclusively to patents protecting inventions that were already filed in

another office(s) before being granted by the EPO. Due to the 1883 Paris Convention, applicants have

up to 12 months from the first filing to apply for subsequent applications in other offices. This limited

time period has a positive effect on the incentive to accelerate the granting procedure. This incentive

4In order to have a consistent estimation of the parameters, the number of latent factors (q) must respect the following
condition: q ≤ (1/2)(2p + 1 − (8p + 1)(1/2)) with p the number of manifest variables; see Bartholomew et al., 2011, [4],
pp 65.
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Family Forward Technological Backward
size citations scope citations

Share of communality
in the variance (%) 26.65 4.82 12.3 35.48

Table 3: Share of metrics’ variances attributable to the common factor.

is further strengthened if the invention is of high value. In our case, the normalized grant lag may

not respond to the same economic fundamentals as it measures the delay of examination of the first

patent that protects the invention. Hence, the incentive to accelerate the process may be weaker and

it explains why we exclude this metric from our set of manifest variables. Another study that finds

a relationship between the grant lag and the value of a patent is Régibeau and Rockett (2010, [65]).

The authors also use a data set of patents containing not only priority filings.

To conclude, we estimate a one LFM to build an index measuring the quality of 28,951 patents

granted between 1980 and 2010 to seven countries in fifteen LCETs. The log-transformed metrics

levels are controlled from technology fields, cohorts and patent offices effects. In multivariate analysis,

a popular way of testing parameters significance is to use likelihood ratio tests. However, there is more

latitude in the choice of the tests of significance compared to the univariate case (Anderson, 2003, [3],

p. 291). The principle of likelihood ratio testing is to compare two competing models where the null

hypothesis model is a specialization of the other model (Bentler and Bonett, 1980, [5]). The statistic

of the test is asymptotically distributed as a chi-square variable with degrees of freedom equal to the

difference of parameters between the two models. A sequence of tests is executed to test the significance

of the control variables, we conclude that they are all significant at the 1% level. Following Mardia et

al. (1979, [53]), we also test the existence of a common factor and consider the case where manifest

variables are mutually independent. The hypothesis is also rejected at the 1% level of significance.

As explained in 3.1, the two terms of equation (2) are the communality and the specific variance of

each metric. The weights of the communality in the total variance of the metrics are given in the Table

3. They represent how much the variance of each metric is affected by the common factor. Hence the

lower it is, the more noisy is a metric with respect to the common factor.

The communality represents only 4.8% of forward citations’ variance whereas the size of the family

and the count of backward citations have the highest shares with respectively 26.63% and 35.48% of

their variances attributable to communality. When using only one metric to measure patent quality,

one should consider the high variance of forward citations that is not linked to communality. This
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feature of forward citations metric has already been emphasized5 by Harhoff et al. (1999, [23]). This

contrasts with Lanjouw and Schankerman (2004, [47]) who find that forward citations are the less noisy

indicator. In their study they log-transform the metrics they use and set to zero the observations that

received no forward citations. They explain that their results are the same when excluding patents

with no forward citations from their data set. Hence, their data treatment is equivalent to ignore non-

cited inventions and may hide the relations their other metrics could have with quality. Nonetheless,

it should be kept in mind that this result does not point out forward citations as a useless indicator as

our measure is truncated to the first five years that follow the priority filing publication.

We measure the gain of information from using simultaneously several patent metrics to capture

quality. To do so, the percentage difference between the normalized latent factor variance and the

conditional variance is computed. We find that it decreases by 52.48% when using our set of manifest

variables. This result is in line with Lanjouw and Schankerman (2004, [47]) who find variance reductions

of 47.6% and 53.5% in electronics and mechanical; the two technological classes they investigate that are

the closer to LCETs. As explained above, the estimated values of the latent factor are exp-transformed

in order to find back a log-normal distribution. Hence, inventions with a latent factor on the negative

side of the normal distribution will have, after being transformed back, a weight lower than one and

at the contrary inventions with a positive latent factor will have a quality index higher than one. This

is a major advantage as we want to emphasize the contrast between a simple count of inventions and

a quality-weighted one.

4 A quality-adjusted measure of innovation in Low Carbon

Energy Technologies

4.1 Knowledge Stocks

On the basis of the observed metrics, a quality index is estimated for each invention of our data set. The

annual inventions flows weighted by their quality indexes are represented on Figure 1, all technologies

and countries taken together. As explained above a fractional count is applied so that we do not

overestimate the ’share’ of an invention belonging to one of our country. On Figure 1, the dashed line

5It can be illustrated by an example taken from their study. Based on a survey realized among patent owners, the
authors estimate a model predicting that patents valued at $ 100 million will receive 13.7 citations with a two standard
error range from 1.2 to 156.
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represents the annual average Brent crude oil spot prices, in $/bbl, from the BP statistical review of

world energy 2015. The similar shape of the two curves illustrates the response of LCET innovation

to oil price and supports the assumption of price-induced innovation6.
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Figure 1: Quality-weighted count of inventions, all countries and technologies taken together.

Figure 1 shows also the rise of innovative activities in LCETs after environmental concerns became

a widely accepted issue in the countries of our data set. It is interesting to observe the late consequences

of the 1973 oil shock on innovation. It suggests that the effect on innovation induced by energy prices

tends to last over time. In order to capture the cumulative feature of innovation we compute the

stocks of knowledge accumulated in LCETs. The expression of the stock of knowledge KSτt at time t

in technology τ is

KSτt = (1− δ)KSτt−1 +Qτt (4)

with Qτt denoting the annual flows of quality-weighted inventions. Parameter δ is a depreciation

rate that takes into account the depreciation of knowledge. Following Popp, a value of 10% is retained

(Popp et al., 2013, [63]). For a discussion on the depreciation rate of knowledge in energy technologies,

6The ’induced innovation’ hypothesis has been first proposed by Sir John Hicks (Hicks, 1932, [28], pp 124-125). It
states that technical change is directed by the relative prices of production factors. Innovators will find new production
processes and products to substitute more expensive factors by cheaper ones. As energy price rises, innovation in energy
efficient technologies should increase.
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see Bointner (2014, [7]). The knowledge stocks are represented on Figure 2 all countries taken together

and the country-specific knowledge stocks are given in Appendix B. On each figure, a dashed line

represents an alternative measure of knowledge stock (all technologies taken together) built using only

a fractional count of inventions, i.e. unweighted by their quality. The same depreciation rate is retained.

The comparison between the upper frontier of the quality-weighted knowledge stock and the dashed

line offers an illustration of the role of quality in innovation dynamics.
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Figure 2: Quality-weighted stocks of knowledge, all countries taken together.

At the end of 2010, the three leading technologies are solar PV energy, wind power and energy

storage. They represent 15.75%, 14.8% and 13.8% of the total stock of knowledge, respectively. They

are followed by solar thermal power (10.40%), smart grid technology (6.3%),nuclear power (5.95%) and

hydrogen (5.91%).

The USA have the larger weight in the knowledge stock: at the end of 2010, 50.67% of it belong to

this country. It is followed by Germany and France that possess 18.42% and 13.67% of the patented

stock of knowledge, respectively. Smaller countries, despite lower innovative activities, present some

peculiarities. Spain and the Netherlands represent 6.84% and 3.63% of the total knowledge stock in

2010. However, they have undertaken considerable efforts during the 2000s to foster LCET innovation

as show the strong increases of their knowledge stocks during the last decade (see Figures 12 and 13

in Appendix B).
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We compute the ratio between the quality-weighted knowledge stock and the unweighted one and

find that it is rather stable over time as it varies between 1.22 and 1.48. Hence, the value-added of

the quality index is quite small compared to a measure based on a simple count when countries and

technologies are all considered together. Nonetheless, a deeper analysis is carried out to compare the

innovation dynamics between technologies (subsection 4.2) and countries (subsection 4.3). Our results

put forward the advantages of the quality index.

4.2 Cross-technology comparison

4.2.1 Relative weights of technologies in the annual flows of innovation

Over 1980-2010 the weights of technologies in the yearly flow of quality-weighted inventions have

changed considerably. Their annual values are represented on Figure 3. To make the graph more

readable, fuel from waste, geothermal energy, smart grids, CCS, bio-fuels, sea energy, hydro energy,

combustion mitigation and combustion efficiency are isolated in the group called ’other technologies’.

When necessary, additional information is given in the text.
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Figure 3: Technologies weights in the annual quality-weighted flows of inventions, 1980-2010.

Three groups of technologies distinguish themselves depending on how their shares in the overall

quality-weighted count have evolved.

• The first group contains the technologies on which there has been much less emphasis over time:

nuclear power and solar thermal power. Taken together, these two technologies represented 48%
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of the quality-weighted count of LCETs inventions in 1980. The share of solar thermal declined

rapidly after 1980. However it has stabilized after 1990 and maintained an important role in the

dynamics of newly created knowledge. Nuclear power share in the overall knowledge flow knew

its maximum in 1987 and then has steadily decreased. Nuclear innovation is almost exclusively

driven by the USA, France and Germany that possess 55.22%, 23.34% and 18.48% of nuclear-

related inventions. After the Chernobyl disaster in April 1986, there has been an important

one-off increase in the US patenting activity in nuclear technology. This is much less marked for

France and Germany. After 1987, the innovative activities of these three countries have decreased.

The decrease of innovation activity is the strongest in Germany as the country has decided to

phase out from nuclear after Chernobyl disaster. Indeed, between 1980 and 1987 the share of the

German inventions in the total amount of quality-weighted nuclear inventions was 26.76% and

decreased to 14.53% in 2010.

• A second group puts together technologies that took a growing weight in the dynamics of LCET

innovation. Unsurprisingly, this is the case of solar PV power and wind power - two LCETs that

are expected to take the lion share in our future energy mixes. A complementary technology,

energy storage, has also maintained an important place in the creation of new knowledge and

has experienced a substantial increase of the innovation activity. It represented 8.45% of the

knowledge stock in 1980 and has reached 25.62% in 1999. Nonetheless, during the 2000-2010

decade the weight of energy storage in the knowledge stock slowly has decreased to 8.05% in

2010. More recently, new technological opportunities came up. Hydrogen took a growing weight

in the knowledge stock after 2000 despite the small number of commercial applications as an

energy vector. In a less extent, this is also true for sea energy, hydro energy and bio-fuels.

• For the remaining technologies there have not been any major changes over time. Indeed, their

shares in the total knowledge stock remain almost stable over the three decades. This is not

surprising for older and/or niche technologies such as geothermic energy, fuel from waste and

hydro energy (this class does not contains sea energy inventions). However, this is more sur-

prising for smart grids and carbon capture and storage (CCS). Despite the major roles these

two technologies have in the scenario of GHG mitigation they do not seem to be a priority for

innovative firms compared to the technologies of the second group.
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Over the period 1980-2010, innovation in LCET has been driven mostly by nuclear power, solar

thermal, energy storage, solar PV and wind power. The two former have been progressively aban-

doned although the two latter have gained increased importance. To explain the substitutions between

technologies we investigate further the dynamics of their quality.

4.2.2 Quality versus quantity of Low Carbon Energy Technologies inventions

Two factors drive the importance of technologies in the overall knowledge: the quantity of inven-

tions and their quality. What we are concerned with here is the additional information provided by

quality. We have observed in subsection 4.1 that the ratio between the quality-weighted stock and

the unweighted one has remained fairly stable. Although the average quality of inventions remained

almost stable when all technologies are taken together, there have been major substitutions between

technologies. The question arises whether technologies exhibit similar average level of quality or not.

To this end, we compute the annual average level of quality in each technological field and represent

the evolutions of the simple count of inventions versus the quality-weighted one. It is represented on

Figure 4 for nuclear power. The evolutions of the two types of counts for the 14 other technologies are

given in Appendix C. We focus on nuclear technology as it is illustrative of a decoupling between the

quality and the quantity of inventions.
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Figure 4: Evolutions of quality-weighted flow versus unweighted flow of nuclear-related inventions, all
countries taken together.

Between 1980 and 1987, before the number of inventions in nuclear technology has dropped, the

quality-weighted count has stayed above the simple count indicating that inventions were on average

of relatively high quality. During 1980-1986, there have been on average 162.28 nuclear inventions per

year. In 1987, 291.25 nuclear inventions were patented. The average quality of the inventions patented

in 1987 was 1.21 while it was equal to 1.51 over 1980-1986. After 1987, a slow convergence between the

two counts began before their overlap started around 1999. It illustrates the decrease of the quality

of nuclear-related inventions and indicates that innovation in this technology is overestimated when

approximated by a simple count of inventions. It should be noted that it is the only technology among

the fifteen studied in this article for which a decreasing average quality is such observable.

Considering solar thermal power and geothermal power we observe no clear signs of a decrease (or

an increase) of the annual average quality. For geothermal energy there have been some jumps in the

quality-weighted count and this is explained by few inventions of high quality that are weighting heavily

in the low amount of inventions. Still, geothermal energy is used and commercially viable for more

than a century using mature techniques, the main obstacle to its development being the scarcity of

exploitable sites (IPCC, 2012, [31]). This barrier could explain the low amount of inventions patented

in this technological field. The technological paradigm of solar thermal energy has remained fairly
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unchanged over the analyzed period. For instance, most of the installed capacities at the end of the

2000s have a similar design compared to the first operating commercial plants installed in California

in the 1980s (IEA, Technological report on solar thermal). In the mid-late 2000s, concentrated solar

power has opened a new area for innovation and it has contributed to a growing number of patented

inventions. Nonetheless, there is no clear sign that these new inventions were, on average, of better

quality.

Contrary to solar thermal and geothermal energies, a clear decoupling between the quality and the

quantity occurred for more recent technologies since there has been an increase of the average quality

of patented inventions. The most vivid examples are wind power, solar PV power and energy storage.

In the energy storage technological area, patented inventions have seen their annual average quality

substantially increased at the beginning of the 1990s. It came later for solar PV power and wind power

for which patented inventions have gained in quality since the beginning of the 2000s. Consequently,

the knowledge related to these three technological fields is underestimated if the role of quality is let

apart.

The technologies’ relative weights in the annual flows of quality-weighted inventions have changed

considerably over 1980-2010. One can expect the dynamics of substitution between older and newer

technologies to be led by the evolutions of the returns to R&D. As they decrease in a particular

technological field the investment will be redirected towards technologies with higher returns7. This

assertion is supported by the decreasing number of nuclear patents that goes hand in hand with

a decreasing average quality. At the contrary solar PV power and wind power technologies have

experienced a growing average quality per cohort and have seen their weights in the annual flows of

quality-weighted inventions considerably increasing over time.

4.2.3 Distribution of inventions quality

The previous part investigates how the average qualities of technologies have evolved. Reasoning on

average levels hides however an important feature of innovation: the uncertainty of research outcomes.

According to Popp et al., models may suffer from two major limits: 1/ to consider a composite low

carbon technology neglects the differences between technologies in terms of outcomes ; 2/ to reason

on the basis of average returns omits the uncertainty associated to R&D and may underestimate the

7As Popp et al. (2013, [63]) underline, as the returns to research in a particular technology decrease over time and
make the technology obsolete, research efforts will move to more productive technologies. Hence, increasing returns to
research may be observed at the macroeconomic level despite there are decreasing returns in particular research areas.

27



Biofuels CCS Sea Energy Fuel Geothermy Hydro Hydrogen
Energy Storage from waste

Mean 1.38 1.31 1.38 1.375 1.39 1.27 1.34 1.38
Median 0.95 0.98 0.91 0.94 0.93 0.97 0.9 0.945

Max 12.64 8.725 14.37 29.98 40.3 13.7 18.2 11.24
Min 0.12 0.1 0.185 0.1 0.16 0.2 0.15 0.12

Standard 1.36 1.06 1.56 1.4 1.78 1.18 1.45 1.36
error

Count 1019 1065 655 3955 1186 394 1243 1416

Nuclear Solar Smart Solar Wind Combustion Combustion Total
PV Grids Thermal Efficiency Mitigation

Mean 1.28 1.36 1.33 1.27 1.33 1.3 1.31 1.33
Median 0.99 0.93 0.96 0.96 0.94 1 0.94 0.95

Max 11.45 20.24 18.43 25.24 22.56 9.11 11.47 40.3
Min 0.1 0.1 0.15 0.12 0.13 0.12 0.14 0.1

Standard 1 1.28 1.31 1.16 1.34 1.07 1.12 1.29
error

Count 3656 3748 1567 4050 3162 630 1205 28951

Table 4: Descriptive statistics of the quality index per technology.

potential innovation of high value (Popp et al., 2013, [63]). In order to obtain a patent protection an

invention must meet a minimum level of quality and adds new knowledge to the existing stock. Above

this minimum level the quality distribution reflects the breadth of the new technological opportunities

that open up through innovation. Drawing on this, we investigate the distributions of the quality

index and their differences between technologies. Descriptive statistics are presented in the Table 4

and indicate that the mean values of the quality index are rather stable among technologies. The

higher value being 1.39 (fuel from waste) and the lower 1.27 (solar thermal and geothermal energy).

However, differences are more marked when considering standard deviations. Fuel from waste, sea

energy and hydro energy have the higher standard deviations with 1.78, 1.56 and 1.45, respectively.

Nuclear, CCS and combustion efficiency technologies have the lowest standard deviations with 1, 1.06

and 1.07, respectively.

The distributions of the quality index for a given technology have evolved over time and it sup-

ports the idea that the uncertainty on the R&D outcomes depends on the current technological state.

Computing the distributions of the quality index for three time periods: 1980-1990, 1991-2000 and

2001-2010, we find contrasted results between technologies. They are computed for the seven technolo-

gies that have the larger stocks of knowledge at the end of 2010: namely solar PV, wind power, energy

storage, hydrogen, solar thermal, smart grids and nuclear technologies. They are shown on Figure 5
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for wind and nuclear technologies; the other can be found in Appendix D 8.
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Figure 5: Distributions of the quality of inventions for three decades (Nuclear technology and Wind
technology).

Wind power, solar PV and hydrogen constitute a group of technologies that presents a common

feature: the variance of the quality has changed over the three decades but it has only impacted the

distribution of high quality inventions. Indeed, the left side of the distributions stayed rather similar

whereas the right-side tail has became longer and thicker. Hence, the growing uncertainty on the

outcomes has positively impacted the inventions quality.

The shape of the distributions of wind-related inventions is getting flatter over the three decades

suggesting a growing innovation potential : chances to reach higher quality levels have increased with

the cumulative number of inventions. This is illustrated on the graph at the bottom of the Figure 5.

This result is in line with the fact that wind power innovation is cumulative as technical change in

this field occurs through a series of successful innovations rather than some breakthrough inventions

(Popp et al., 2013, [63]). This is not what we observe for solar PV and hydrogen technologies. For

the latter, the decade experiencing the larger share of high value inventions is 1991-2000. It has

decreased during the last decade but stayed above the levels of 1980-1990. In the case of solar PV

technology, the concentration around low quality was the larger during 1991-2000. Then, the right-tail

of the distribution has grown longer during 2000-2010. This is the decade during which the innovation

potential in solar PV has been the higher.

8All the distributions are truncated to the right for a value of the quality index of 5. The shares of inventions that
exceed this value are given between brackets on the figures, under the names of the technologies.
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Consistent with the decreasing average quality of the inventions, the distribution of the quality of

nuclear technology inventions has been progressively shifted to the left as shows the Figure 5. More,

the variance of the outcomes was higher during 1980-1990 and, compared to the last two decades, it

has positively influenced the quality of inventions as the left side of the distribution was below the two

other ones. During the last two decades, in addition to the shift of the distributions toward the left,

nuclear technology has experienced an higher concentration of the inventions around low values of the

quality index. Considering smart grid and solar thermal technologies, the distribution of the quality

during the last decade exhibits an higher concentration around low values as well as an higher variance

of the quality compared to 1980-2000. Hence, despite the fact that the bulk of inventions are of lower

values a subset of inventions is able to reach high quality.

Analyzing the distributions of quality provides for several insights. Comparing nuclear power with

other technologies states that the former has seen its innovation potential decreasing. First, the average

quality of nuclear-related inventions has decreased (see 4.2.2 ). Second, the distribution of research

outcomes narrows around low values of the quality so that the chances to reach high value levels

is reduced. At the contrary, new technologies such as wind power and solar PV experience higher

innovation potentials during 2000-2010 as indicate the higher proportions of high-values inventions.

4.3 Cross-country comparison

4.3.1 Overview of the average quality among countries

An accurate measure of countries’ innovation activities takes into account their sizes. On Figure 6, the

relation between the cumulative Gross Domestic Product (GDP) and the number of inventions over

the period 2001-2010 is represented on a logarithmic scale. Additional information are provided by the

size of the bubbles that represents the average quality of countries’ inventions. Only the inventions of

cohorts 2001-2010 are considered9.

9For each country, we compute the share of LCETs in the total amount of priority filings and observe that it has
stayed rather stable between 1985 and 2000. Then, the growth of LCETs shares in the overall patenting activity has
started around 2000 in all the analyzed countries, except in Denmark and Spain where one-off increases were observed
previously. Here, we focus on the growth phase rather than the business-as-usual patenting activity.
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Figure 6: GDP, quantity and average quality of inventions over 2001-2010.

The relation between the cumulative GDP and the fractional count of inventions is almost linear.

What is of interest for us is whether the average quality is linked to one of the two or both variables,

or not. This is not the case. Nonetheless, this figure calls for two remarks. First, the lower amount

of the UKs patents in comparison with countries with similar levels of cumulative GDP indicates that

its propensity-to-patent is lower. Counting patents would lead to underestimate the UK’s innovative

activity but its lower propensity-to-patent is compensated by an higher average quality of patented

inventions as shown on the Figure. Second, Denmark exhibits a similar propensity-to-patent in LCETs

compared to other countries, with the exception of the UK, and also an higher average quality of its

inventions.

4.3.2 High quality inventions

In order to suppress the bias of the propensity-to-patent we examine in more detail how high-quality

inventions are distributed between countries and technologies. As the propensity-to-patent is influenced

by the application cost we can consider this to not play a role in the decision to patent most valuable

inventions due to their higher economic value. An advantage of the quality index is to identify these

most valuable inventions. To do so, we consider the 10% patented inventions over 1980-2010 with the

higher index values, called hereafter High Quality Inventions (HQIs). 66.94% of the HQIs belong to

the USA (46.84%) and Germany (20.1%). The leading roles of these countries are partly explained

by their high patenting activities. German HQIs account for 10.3% of the total amount of German
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inventions and the corresponding ratio of the US HQIs falls to 8.8%. As a comparison, 1.6% of the

HQIs belong to Denmark but it represents 17.4% of the total Danish portfolio of inventions. Despite

its small size, Denmark has a leading role in LCET innovation. The leading technologies are energy

storage (15.4% of the HQIs subset), solar PV energy (14.7%), nuclear power (11.8%), wind energy

(10.7%) and solar thermal (10.6%).

Now, considering the best inventions within a country helps to identify how the innovative efforts

are spread among technologies. To do so, we select the ten percents domestic inventions with the

higher quality index values, called hereafter Domestic High Quality Inventions (DHQIs). The results

are presented in Table 5. It also contains measures of the technological concentration of a country’s

inventions portfolio10.

As indicated by Table 5 no single technology is favored by the seven countries. Nonetheless,

solar technologies (PV and thermal energies), energy storage and wind power are the most recurrent

technologies among countries’ DHQIs. In this extent, the low competence of France in wind power

energy constitutes an exception (3% of French DHQIs). This is also true for the USA, albeit to a lesser

extent, as wind power weights 5.53% of the DHQIs. As expected, the Danish portfolio exhibits an high

technological concentration: its specialization in wind power is fairly reflected by the fact that 44.44%

of its DHQIs belong to this technology.

From a policy perspective, the comparison between Spain and Germany suggests the insufficiency

of strong demand-pull policies when not coupled with supply-push policies. These two countries have

implemented generous demand-pull policies to stimulate the deployment of solar PV power (del Rio

and Mir-Artigues, 2012, [14]; Frondel et al. 2008, [19]; Jacobsson and Lauber, 2006, [34]). Obviously,

the results in terms of knowledge creation are contrasted. Germany possesses 19.7% of the ten percents

higher quality solar PV inventions whereas 1.06% belong to Spain. This imbalance can be attributed to

the fact that the German cumulative RD&D expenses dedicated to solar PV technology over the period

1980-2009 were 9 times higher than the Spanish ones11. It is costly for Spain as the deployment of solar

PV power plants did not succeed in creating a leadership in solar PV technology. The question of the

policy mix between demand-pull and supply-push approaches is investigated in greater details in the

next part, taking as a case study the wind power technology during 1990-2010. The complementarity

10The technological concentration index is inspired by the Hirschman-Herfindalh index and computed as the sum of
the shares’ squares of each technology. Consequently, the higher the concentration index is the more the inventions
portfolio is concentrated. We compute its values for the subset of DHQIs and the whole domestic inventions.

11Shares computed using the data from the Energy Technologies RD&D database of the International Energy Agency
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Denmark Germany France United Spain USA Netherlands
Kingdom

Bio-fuels 18.52 2.13 4.4 3.22 4.25 4.15 13.23
CCS 0 1.41 3.48 5.64 2.83 4.48 0
Sea 14.81 1.06 1.16 8.06 7.09 1.81 0

energy
Energy 0 10.44 13.92 10.48 5.67 21.23 5.88
storage

Fuel from 14.81 4.78 4.41 1.61 3.55 3.76 8.82
waste

Geothermal 0 0.53 0.69 3.22 0 1.10 1.47
Energy
Hydro 0 4.6 5.10 9.68 2.84 2.72 7.35
Energy

Hydrogen 3.7 5.66 5.57 5.64 1.42 6.36 0
Nuclear 0 14.86 33.41 3.22 0.7 6.04 0

PV 0 15.04 8.12 16.13 6.38 18.38 20.58
energy
Smart 0 1.95 2.78 5.64 2.84 7.79 0
grids
Solar 3.7 11.68 9.74 8.87 29.79 8.38 22.06

thermal
Wind 44.44 19.11 3.02 14.52 29.79 5.52 16.18

Combustion 0 1.95 1.62 0 0 3.18 0
efficiency

Combustion 0 4.78 2.55 4.03 2.84 5.06 4.41
mitigation

Concentration 2784.63 1172.7 1606.85 963.84 1963.18 1126.16 1535.45
Index (top 10 %)

Concentration
Index 3818.15 995.12 1050.29 902.63 1463.32 1030.28 1441.13

(all national inventions)

Table 5: Distribution of Domestic High Quality Inventions (1980-2010).
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of these two approaches is emphasized.

4.3.3 Supply-Push, Demand-Pull and Innovation

We analyze the links between innovation in wind power technology and two forces that drive it: demand-

pull and supply-push incentives. Demand-pull policies are implemented with the aim of increasing the

payoff from investing in renewable energy technologies. In general, it takes the form of feed-in tariffs,

feed-in premiums (price-based instruments) or tradeable green certificates (quantity-based instrument).

For a comparison of these instruments see Verbruggen and Lauber (2012, [74]). The consequence of

demand-pull policies is twofold: 1/ the generated electricity is carbon-free and substitutes for the elec-

tricity from conventional technologies; 2/ the learning-by-doing effect lowers the cost of production of

the renewable equipments. The second effect influences the rate of innovation. The supply-push poli-

cies foster innovation by strengthening the scientific understanding of supported technologies (Nemet,

2009, [54]). The question of the balancing between these two approaches is of major importance and

subject to intense debates (Nemet, 2009, [54]; Albrecht et al., 2015, [2]; Laleman and Albrecht, 2014,

[48]; Horbach et al., 2012, [29]; Peters et al., 2012, [59]; Kemp and Pontoglio, 2011, [40]; del Rio and

Bleda, 2012, [15]; Taylor, 2008, [72]; see Zachmann et al., [78] for a cost comparison of these two types

of policies in Europe). Wind power technology has been one of the first renewable energy technology,

with solar PV, to be supported by public authorities and to this extent constitutes a relevant case

study. To explore the relations between demand-pull, supply-push and innovation we define three

measures:

• A demand-pull intensity index computed as the share of wind power in the total electricity

generation capacity. It is computed for each country from 1990 to 2010 and reflects the results

of demand-pull policies rather than their efficiencies.

• A supply-push intensity index measures the efforts of RD&D directed toward wind power

technology. We compute for each year the stock of RD&D expenses dedicated to renewable

energies and nuclear power, using a depreciation rate of 10%. The supply-push intensity is

measured by the share of this stock that has been dedicated to wind power technology.

• An innovation intensity index represents the relative weight of wind power technology in the

knowledge stock. In order to compare innovation intensity with supply-push intensity we compute
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the stocks of knowledge of each country taking into account only renewable energy and nuclear

technologies. The innovation intensity is measured by the share of wind power technology in the

stock of knowledge.

The first two measures are constructed using several data sources. The RD&D expenses are from

the Energy Technologies RD&D database of the International Energy Agency. We use the annual

RD&D expenses of groups 3 (renewable energies) and 4 (nuclear power) from the detailed country

RD&D budgets. The expenses directed toward wind power are available for almost every year from

1990 to 2010. When there are missing values they are replaced by a linear interpolation 12. Total

installed capacities per country are from the US Energy Information Administration. Data on the

installed capacity of wind power are from the IEA Wind annual reports, except for Denmark for which

the installed capacities are computed based on the Master Data Register of Wind Turbines.

The wind power-related innovation intensity index is represented with respect to the supply-push

intensity index on Figure 7 and to the demand-pull intensity index on Figure 8. We take into account

a time lag of two years between supply-push and innovation. The speed at which RD&D expenses are

converted into new knowledge varies among technologies and time depending on the development stage

of the technology and the success of R&D projects. Researchers generally consider time lags between

RD&D expenses and cost reductions varying from 2 to 5 years (Wiesenthal el al., 2012, [76]; Watanabe

et al., 2000, [75]; Kobos et al., 2006, [42]; Söderholm and Klaassen, 2007, [69]). Klaassen et al. (2005,

[41]) survey several studies and suggest to use a time lag of two years between R&D expenditures and

their addition to the knowledge stock.

12This is the case for the Netherlands in 2004 and the UK in 2008.
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Figure 7: Supply Push intensity versus Innovation intensity for wind power over 1990-2010

The evolutions of supply-push intensity indexes over time are represented on Figure 21 in the

Appendix E. The intensities of supply-push policies have been rather stable over time in France and

in the Netherlands. A substantial growth has occurred in the USA after 1993 and in a less extent, in

Germany. Later, in 1997, Spain has also strengthened its supply-push policies. After 2004, we observe

an increase of the supply-push intensity toward wind power in the UK. The higher weight granted to

wind power by Denmark results is captured by intensity levels well above the other countries: between

1990 and 2010 the average level of the Danish supply-push intensity index was 36.12% whereas the

average level over the six other countries was 6.37%. Comparing the demand-pull intensity levels,

Denmark is again in leading position: it has experienced an early and strong diffusion of wind power

that has reached 28.3% of its installed capacity at the end of 2010. It is followed by Spain and Germany

where wind technology represented 22.5% and 16.7% of the installed capacities in 2010. The intensity

of the implemented policies are expected to impact the innovation in wind power technology. Indeed,

Denmark exhibits the highest rate of innovation intensity over the whole period. At the end of 2010,

the share of wind power technology in the knowledge stock related to nuclear and renewable energy

technologies was 87.8%. It should be noted that the Danish supply-push intensity, in addition to

be very high, remained almost stable over time. The rhythm of the increase of innovation intensity

is dictated by the growing share of wind power installed capacities as indicates the positive relation

reported on Figure 8. Nonetheless, this increase has been made possible by a strong supply-push

support. As discussed later a strategy based only on a demand-pull approach is not successful in
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fostering innovation.

Due to its significant efforts made to support wind power technology, Denmark is hardly comparable

with other countries. We focus on those presenting rather similar levels of policy supports and/or

innovation. To assess the effects of demand-pull policies on wind power innovation we isolate a group

of countries with supply-push intensity levels that are close to each other. This is the case for the UK,

Spain and Germany between 1998 and 2004. In 1998 their supply-push intensity indexes were equal to

7.58% in Germany, 5.57% in Spain and 7.26% in the UK. They have remained relatively stable until

2004 reaching 7.34% in Germany, 7.99% in Spain and 6.88% in the UK. Due to their similar supply-push

intensities it is interesting to compare the innovation activities of these three countries during 2000-

2006, taking into account a lag of two years. In each country, the innovation intensity has increased

between 2000 and 2006. Although the supply-push intensity has been slightly lower in Spain compared

with the UK, its innovation intensity has been higher. Between 2000 and 2006, it has risen from 22.6%

to 34.97% in Spain and from 17.9% to 27.2% in the UK. In the same extent, we compare the average

annual growth rate of the innovation intensity indexes in Germany and in the UK and find strong

differences. Despite stable supply-push efforts in both countries over the period 1998-2004, Germany

has experienced an average annual growth rate of its innovation intensity of 19.3% while it was equal

to 8.1% in the UK. The UK’s innovation intensity has been weaker than the two other countries. A

factor explaining theses differences is the contrasted roles given to demand-pull policies in these three

countries. Strong demand-pull policies have been implemented both in Spain and Germany as shown

by the evolutions of the demand-pull intensity levels: in 1998 the demand-pull index was equal to

2.54% for Germany and 1.66% for Spain. They have reached 15.56% and 14.24% in 2006, respectively.

At the contrary the diffusion of wind power technology in the UK has been much more lower: the

demand-pull index increases from 0.44% in 1998 to 2.34% in 2006. These observations advocate for

a complementarity of the supply-push and the demand-pull approaches to stimulate innovation. The

small share of wind power in the UK could explain why this technology did not reach an important

weight in the knowledge stock despite a strong supply-push effort. It should be noted that demand-

pull policies seem to experience diminishing returns as suggests the Figure 8. Considering Spain and

Germany we observe that innovation intensity has reacted positively to demand-pull efforts for low

levels of diffusion. Then when the demand-pull intensity has exceeded a certain level, around 10% in

both countries, the innovation intensity has been no more affected. The case of Denmark indicates that
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increasing the innovation implies higher level of deployment to be coupled with stronger supply-push

policies.

The complementarity of the two policy approaches is further supported by the additional supply

push efforts made by the UK after 2004: the supply-push intensity has been multiplied by 2.25 between

2004 and 2008. Nonetheless, the share of wind-related knowledge decreased by 4.66 points from 2006

to 2010. At the contrary innovation intensity in wind power technology has remained rather stable in

Germany and Spain between 2006 and 2010 while a stable level of supply-push intensity in Germany

and a small increase in Spain are observed. Hence, the strong deployment of wind power in these two

countries has participated to maintain an high level of innovation intensity in wind power technology

while in the UK additional supply-push efforts were not able to avoid the decrease of the innovation

intensity.
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Figure 8: Demand-Pull intensity versus Innovation intensity for wind power over 1990-2010.

In the same idea, we compare two countries that exhibit similar levels of demand-pull intensities: the

USA and France. During the 2000-2010 decade, the share of wind power in the electricity mix increased

from 0.04% to 4.83% in France and from 0.29% to 3.82% in the USA; the shapes of the diffusion being

almost identical. Nonetheless, innovation intensities have been very different. In France it remained

almost constant, increasing from 8% in 2000 to 9.5% in 2010, while it has experienced a significant

growth in the USA from 6.74% to 17.5%. As Figure 7 suggests, this could be explained by the stimulus

given by the USA in terms of supply-push policies as the index varies between 3.8% and 5.3% between

2000 and 2010. At the contrary, the supply-push intensity has been almost null in France during
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this decade, reaching a maximum of 0.32%. The positive effect of the demand-pull approach on the

innovation intensity is conditional to sufficient efforts made to support the supply-side of innovation.

5 Conclusion

We estimate a one LFM that explains the four patent metrics by some fixed effects and by a common

and unobservable factor. Previous empirical studies on patent metrics assure that a factor affecting

simultaneously the four metrics is an accurate measure of the quality of a patent. Based on the

parameters estimates we can reify an index of the quality of 28,951 inventions pertaining to seven

countries and patented in fifteen Low Carbon Energy Technologies between 1980 and 2010. The

variance of each patent metric can be subdivided into its specific variance and a part that is imputable

to a commonality term representing the role of quality. We find that the number of backward citations

and the size of the family are the metrics with the higher shares of their variances imputable to quality.

At the contrary, only 4.8% of the variance of the count of forward citations received by a patent

within the five years after its publication are imputable to patent quality. In line with the results of

Lanjouw and Schankerman (2004, [47]), we find that using several metrics reduces the variance of the

quality index by 52.48%. We compute the stock of knowledge over the period 1980-2010 in the fifteen

energy technologies included in our data set. In 2010, the leading technologies were solar PV power,

wind power and energy storage technologies. Comparing the weights of the seven countries included

in the analysis we find that 50.68% the knowledge stock pertain to the USA, followed by Germany

(18.42%) and France (13.68%). The evolutions of the weights of technologies in the knowledge stock

indicate major substitution effects. Nuclear technology and solar thermal have the higher weights in

the knowledge stock during 1980-1990. Between 1990 and 2010, the amounts of inventions in these two

technological fields have decreased over time and new technologies, mainly solar PV and wind power,

took up the baton.

This transition is analyzed through the quality index and several insights emerge. First, the average

levels of inventions’ quality have evolved very differently from technology to technology. In particular,

nuclear technology is the only one to exhibit a decreasing average quality over time. At the contrary,

the average quality of inventions increased for solar PV, wind power and energy storage technologies.

This is also the case for hydrogen and sea energy technologies but the smaller amounts of inventions

patented in these two technological fields call for some prudence. However, research is an highly
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uncertain activity and one could think that a lower quality, on average, may be compensated by a small

subset of inventions of very high quality. To investigate this issue we compare how the distributions

of the inventions in terms of quality have evolved within a particular technology. The length of the

distribution toward high values of the quality index captures the innovation potential of technologies.

A second insight is that the innovation potential of solar PV and wind power technologies have been

higher during the last decade we study (2001-2010). At the contrary, the decreasing average quality

of nuclear over time is not compensated by some inventions of great value: from a decade to the next

inventions tend to be more and more concentrated around small value of the quality index and that

high-valued opportunities are depleted.

The quality index also provides a wealth of information on countries’ positions in relation to each

other. It appears that Denmark has a rather similar propensity-to-patent and exhibits an higher average

quality per invention. Considering the top 10% inventions of each country, wind power technology

represents a significant share of the best inventions of Denmark, Spain, Germany, the Netherlands and

Great-Britain. The place this technology has in the best inventions is lower in the USA (5.52% of the

top 10% patents) and France (3%). Generally, in addition to wind power the other technologies that

have a strong share in the best inventions of each countries are solar technologies (thermal or PV). Our

results are indicative of the national policies implemented to support innovation in LCETs. Wind power

constitutes an interesting case study to investigate the relative role of demand-pull and supply-push

policies. Our cross-country comparison suggests that the two approaches are highly complementarity.

A Appendix A: The E-M algorithm

This appendix presents a detailed formalization of the E-M algorithm. Although it is close to formal-

ization available in Bartholomew et al. (2011, [4]), we include in the model a set of dummy variables

and it requires a modification of the algorithm. Using the trace trick, the joint log-likelihood of the

manifest variables and the common factor is
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If the ys were observed we would set to zero these score functions and deduce the estimators. In

our case the common factor is unobserved. The first step of the E-M method is to write the conditional

expected values of the score functions to obtain an estimation of the missing data. For that purpose,

we need only to write the conditional expected values of the sufficient statistics those depend from the

latent factor, the other sufficient statistics being known:

E[ȳ|xi] = Λ′Σ−1(x̄− µ− αz̄), (9)

E[
1

n

n∑
i=1

xiy
′
i|xi] = [

1

n

n∑
i=1

xix
′
i − x̄µ′ − (

1

n

n∑
i=1

xiz
′
i)α
′]Σ−1Λ, (10)
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E[
1

n

n∑
i=1

yiy
′
i|xi] = (1 + Λ′Ψ−1Λ)−1 + Λ′Σ−1[

1

n

n∑
i=1

(xi − µ− αzi)(xi − µ− αzi)′]Σ−1Λ, (11)

E[
1

n

n∑
i=1

yiz
′
i|xi] = Λ′Σ−1[

1

n

n∑
i=1

xiz
′
i − µz̄′ − α

1

n

n∑
i=1

ziz
′
i], (12)

where Σ = ΛΛ′ + Ψ. In the second step of the E-M, the sufficient statistics are replaced by their

expected values in the score functions. Then, they are set to zero. Solving the system of score functions

we can deduce new values of the parameters:

Λ̂ =

(
1

n

n∑
i=1

xiy
′
i − x̄ȳ′ − (

1

n

n∑
i=1

xiz
′
i − x̄z̄′)(

1

n

n∑
i=1

ziz
′
i − z̄z̄′)−1(

1

n

n∑
i=1

ziy
′
i − z̄ȳ′)

)

×

(
(

1

n

n∑
i=1

yiy
′
i − ȳȳ′)− (

1

n

n∑
i=1

yiz
′
i − ȳz̄′)(

1

n

n∑
i=1

ziz
′
i − z̄z̄′)−1(

1

n

n∑
i=1

ziy
′
i − z̄ȳ′)

)−1
,

(13)

α̂ =

(
1

n

n∑
i=1

xiz
′
i − x̄z̄′ + Λ̂(ȳz̄′ − 1

n

n∑
i=1

yiz
′
i)

)
(

1

n

n∑
i=1

ziz
′
i − z̄z̄′)−1, (14)

µ̂ = x̄− α̂z̄ − Λ̂ȳ (15)

and

Ψ̂ = diag(
1

n

n∑
i=1

(xi − µ̂− α̂zi − Λ̂yi)(xi − µ̂− α̂zi − Λ̂yi)
′). (16)

They are used in (9),(10) ,(11) and (12) and the whole operation is reiterated. At each iteration

the likelihood of the manifest variables is non-decreasing. The final output are the parameters of the

model and they are coupled with the observed values of the xs to generate an estimate of the latent

factor values.
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B Appendix B: Knowledge stocks estimates per country
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Figure 9: Quality-weighted stocks of knowledge, Denmark.
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Figure 10: Quality-weighted stocks of knowledge, France.
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Figure 11: Quality-weighted stocks of knowledge, Germany.
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Figure 12: Quality-weighted stocks of knowledge, Netherlands.
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Figure 13: Quality-weighted stocks of knowledge, Spain.
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Figure 14: Quality-weighted stocks of knowledge, United Kingdom.

45



USA 

0

1000

2000

3000

4000

5000

6000

7000

8000 Combustion

Mitigation
Combustion

Efficiency
Wind

Solar Thermal

Smart Grids

PV energy

Nuclear

Hydrogen

Hydro

Geothermal

Energy
Fuel From Waste

Energy Storage

Sea Energy

CCS

Biofuels

Knowledge Stock

(simple count)

Figure 15: Quality-weighted stocks of knowledge, United States of America.
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C Appendix C
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Figure 16: Evolutions of quality-weighted flow versus unweighted flow of inventions, all countries taken
together (part 1).
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Figure 17: Evolutions of quality-weighted flow versus unweighted flow of inventions, all countries taken
together (part 2).
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Figure 18: Distributions of the quality of inventions for three decades (Energy Storage and Smart
Grids).
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Figure 19: Distributions of the quality of inventions for three decades (Solar Thermal and Solar PV).
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Figure 20: Distributions of the quality of inventions for three decades (Hydrogen).
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