EV Fleet integration solutions

Yannick Perez
Armand Peugeot Chair
(CentraleSupélec & Essec Business School)
Yannick.perez@supelec.fr
Electric vehicle fleets are challenging

- Vehicle to Transmission grid = VtoG
- Vehicle to Distribution grid = VtoG
- Vehicle to buildings = VtoB
- Vehicle to Home = VtoH
- Vehicle to Load = VtoL
Outline

1. The electromobility challenge
2. Solution by markets coordination
3. Solution by contracts
4. Conclusion
Top-selling light-duty plug-in electric vehicle global markets (cumulative sales through September 2016 by country/region)

- Europe: 570,000
- United States: 521,403
- China: 521,649
- California: 244,592
- Japan: 145,000
- Norway: 121,330
- France: 99,918
- The Netherlands: 98,295
- United Kingdom: 90,000
- Germany: 66,674
EVs enjoy a Double dynamic:
Increase in ENERGY DENSITY & decrease of COST

Source: IEA Global EV Outlook 2016
EVs emit less CO$_2$ than conventional cars

- With the 2010 carbon intensity, a typical EV emits about 66g CO$_2$/km
- EVs will be even cleaner in the future as the power sector continues to decarbonise by 2050

EURELECTRIC smart charging paper, 2015
Electromobility: Energy or Capacity issue?

In energy (TWh)

- In France
- 2020: 525 000 VE
 - = 1.3 TWh (source: RTE)
 - 0.2% of the total
 - => no energy problem

In capacity (MW)

- Max peak consumption:
 - 100.5 GW (7 Feb 2012, 19h)
 - 3% per year
 - + 28% in 10 years
- 2020: 525 000 VE-VHR
 - No coordination with 3 kW → 1.5%
 - No coordination with 22 kW → 11.5%
 - Today Fast charger technologies are booming: 120 kW to 350 kW
 - + local issues with distribution grid / RES
The electricity sector needs more flexibility provision

Connected EV Fleets are potentially very flexible resources...
Outline

1. The electromobility challenge
2. Solution by market coordination
3. Solution by contrats
4. Conclusion
And best adapted grid services for EV fleets
Bigdata to create “bundle of valuable flexible resources” for potential markets

<table>
<thead>
<tr>
<th>Times</th>
<th>MW or MWh</th>
<th>Services on market base if exist</th>
</tr>
</thead>
<tbody>
<tr>
<td>Second</td>
<td>MW</td>
<td>- Frequency regulation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Voltage regulation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Quality of delivery</td>
</tr>
<tr>
<td>Hour</td>
<td>MW Or MWh</td>
<td>- Terciary reserve market</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Demand response</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Balancing services</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Congestion management</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Intraday-market</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Coupling With RES</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Day head market</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Time of Use</td>
</tr>
<tr>
<td>Block orders</td>
<td>MWh</td>
<td>- Coupling with RES</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- ...</td>
</tr>
</tbody>
</table>
Frequency remunerations for EV:
PJM real case / France exploration/ Denmark and France under construction

1500 €/ year and per car in PJM Zone for only « frequency regulation market base Provision » Kempton (2016)

<table>
<thead>
<tr>
<th>Charging point capacity (kW)</th>
<th>Primary</th>
<th>Secondary</th>
<th>Revenues /VE/ year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td></td>
<td>179,4 €</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td></td>
<td>310,7 €</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td></td>
<td>505,7 €</td>
</tr>
<tr>
<td>3</td>
<td>22</td>
<td></td>
<td>1346,8 €</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td></td>
<td>474,5 €</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td></td>
<td>543,4 €</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td></td>
<td>780 €</td>
</tr>
<tr>
<td>7</td>
<td>22</td>
<td></td>
<td>1448,2 €</td>
</tr>
</tbody>
</table>

Sources: Codani, Petit & Perez (2016)
Remarks on frequency regulation

Rules of the game are created for previous generation technologies and they can act as barrier to entry for new tech.
We built a framework in order to understand where the barriers are, and to rank them for different countries: France, Germany, UK and Denmark.
2017
Modifications of French market design for FCR procurement

French Market Design until 01/01/2017

- Mandatory provision for every large generation units
- RTE allocates reserve to generation units pro-rata their generation for every half-hour time-step on D-1
- Regulated tariff
- Other prequalified actors can sell reserves through bilateral negotiation
- Amount of reserve which can be provided by aggregators limited to 40 MW

FCR Cooperation

- Common market between Germany, Austria, Switzerland, Belgium and Netherlands
- Each prequalified actor can offer reserve on a market
- Product duration of one entire week, from Monday 0am to Sunday 12pm
- TSOs select offers with lowest price. Pay-as-bid remuneration
- Minimum bid of 1 MW, bid increment of 1 MW

ADMINISTRATIVE MECHANISM

2017
Modifications of French market design for FCR procurement

French Market Design until 01/01/2017

- Mandatory provision for every large generation units
- RTE allocates reserve to generation units pro-rata their generation for every half-hour time-step on D-1
- Regulated tariff
- Other prequalified actors can sell reserves through bilateral negotiation
- Amount of reserve which can be provided by aggregators limited to 40 MW

FCR Cooperation

- Common market between Germany, Austria, Switzerland, Belgium and Netherlands
- Each prequalified actor can offer reserve on a market
- Product duration of one entire week, from Monday 0am to Sunday 12pm
- TSOs select offers with lowest price. Pay-as-bid remuneration
- Minimum bid of 1 MW, bid increment of 1 MW

ADMINISTRATIVE MECHANISM
With the actual settings of rules in the FCR Cooperation, entry of aggregators is virtually impossible.

Changing time granularity (Week => Second), but also volume granularity (MW to kW), could allow entry of these actors.

It would also allow to have a more flexible procurement of reserve, which appears to be important when generation patterns are becoming more volatile.

Or other solutions must be explored for EV fleets...
Outline

1. The electromobility challenge in energy markets
2. Solution by markets coordination
3. Solution by contracts
4. Conclusion
Contractual solutions for VtoB

- Objectives of the site manager
 - Minimizing energy cost over time
 - Maximizing self-consumption of local renewable energies
 - Minimizing the peak demand toward networks
 - Reducing the network connexion fee
- Sharing potential benefits with the consumers and / or DSO
Contractual solution with the Distribution Service Operator (DSO)

If V2G avoids investments, at least the value of V2G has to equals CAPEX and OPEX of the avoided reinforcement.
Contractual solutions for VtoH

- Objectives of the House manager
 - Minimizing energy cost over time
 - Maximizing self-consumption of local renewable energies if incentives are aligned
 - Providing Distribution grid services (optional)
And the off-grid « solution » VtoL

• Tesla proposes implicitly “off grid green” solution
 – Home Storage Solution + Solar Roof + EV with 100kWh batteries...
Conclusions
Flexibility provision with EV fleets

• Not perfectly done yet...
 – VtoG experiment around the world (US / Denmark...)
 – Majors success with regulation power : mainly frequency
 – New projects are starting

• 3 Main problems to overcome
 – Rules and Market regulation are barrier to entry for EV Fleets in most VtoG services or markets
 – Communication standards (15118 / CHAdeMO...) need to be clarified
 – Engaging cooperation between Electricity and automotive industries for optimal charging infrastructure deployment
May 2017: Gridmotion project

- Project partners are looking for volunteers to start the experiment.
- Participants should be based in France and own a Peugeot or Citroën electric vehicle produced from January 2015 onwards.

- The role of each partner is detailed below:
 - Groupe PSA is in charge of recruiting customers and managing the project;
 - Direct Energie will act as an aggregator towards RTE and will make bids in the electricity and reserve markets by taking advantage of EV battery flexibility;
 - Nuvve will be in charge of controlling the charging/discharging patterns of electric vehicles;
 - Enel will provide the bidirectional charging stations and its expertise in smart grids;
 - Proxiserve will install the B2C and B2B charging stations;
 - DTU will provide academic support and testing systems.

Predicting the future of EV is hard

If you were asked in the 1980s about having a camera in your phone...

what would you have imagined?
Selected Literature of the Armand Peugeot Chair

• Olivier Borne, Klaas Korte, Yannick Perez, Marc Petit and Alexandra Purkus 2016 Barriers to entry in Frequency-Regulation Services Markets: Review of the status quo and options for improvements, Forthcoming in Renewable and Sustainable Energy Review.