Global gas markets, carbon pricing and the future of natural gas

Robert A. Ritz
Energy Policy Research Group (EPRG)
Judge Business School, University of Cambridge
r.ritz@jbs.cam.ac.uk

2nd International Conference on the Economics of Natural Gas Markets

Université Paris-Dauphine, 21 June 2019
Plan for this talk

① Gas demand, prices and competition

② Coal-to-gas switching in power generation

③ Political economy & carbon pricing

④ Strategic positioning
Gas demand is expected to grow steadily

- Growth driven by non-OECD Asia/China
- LNG trade to grow twice as fast

Projections and growth CAGRs

- EIA Intl Energy Outlook 2016 (2.2%)
- Shell LNG Outlook 2017 (2.0%)
- BP Statistical Reivew 2016 (1.8%)
- IEA Golden Age of Gas scenario – 2011 (1.8%)¹
- IEA - NPS 2016 (1.6%)²

Source: SNAM 2017 Global Gas Report
Forecasts too bullish given climate challenge?

- Gas demand likely **more robust** than coal or oil

<table>
<thead>
<tr>
<th>Energy (petajoules)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1980</td>
</tr>
<tr>
<td>Coal 6 degrees</td>
</tr>
<tr>
<td>Coal 4 degrees</td>
</tr>
<tr>
<td>Coal 2 degrees</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Energy (petajoules)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1980</td>
</tr>
<tr>
<td>Oil 6 degrees</td>
</tr>
<tr>
<td>Oil 4 degrees</td>
</tr>
<tr>
<td>Oil 2 degrees</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Energy (petajoules)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1980</td>
</tr>
<tr>
<td>Gas 6 degrees</td>
</tr>
<tr>
<td>Gas 4 degrees</td>
</tr>
<tr>
<td>Gas 2 degrees</td>
</tr>
</tbody>
</table>

- How to secure **demand**? At which **prices**?

⇒ How much **new investment** in gas/LNG?

Source: Schroders (2018)
Regional price divergence is the historical norm

“Asian premium”:
- Most of last 20 years
- Imperfect competition + limits to arbitrage

Prices:
- **LNG Asia**: +36%
- **Henry Hub**: −20%

→ US LNG exports
→ Security of supply (LNG vs pipeline gas)

⇒ Global convergence to Henry Hub-based pricing?

Source: Calculations based on IMF data from January 2000 to April 2019
Competition in global LNG: A changing market

Balance of power: Shift to gas buyers post-2014
- Global price decline (comparable to crude oil)

LNG market structure:

<table>
<thead>
<tr>
<th></th>
<th>2007</th>
<th>2012</th>
<th>2017</th>
<th>2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seller HHI</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(# players)</td>
<td>.102</td>
<td>.140</td>
<td>.136</td>
<td>↑? Further US & AUS</td>
</tr>
<tr>
<td></td>
<td>(14)</td>
<td>(18)</td>
<td>(18)</td>
<td></td>
</tr>
<tr>
<td>Buyer HHI</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(# players)</td>
<td>.218</td>
<td>.180</td>
<td>.132</td>
<td>↓? Smaller Asian</td>
</tr>
<tr>
<td></td>
<td>(18)</td>
<td>(27)</td>
<td>(39)</td>
<td></td>
</tr>
</tbody>
</table>

⇒ LNG sell-side now *more* concentrated than buy-side

Note: Herfindahl index (HHI) is a measure of market concentration, ranging from 1 (monopoly) to 0 (many small players)

Source: Calculations based on 2018 GIIGNL data
Plan for this talk

① Gas demand, prices and competition

② Coal-to-gas switching in power generation

③ Political economy & carbon pricing

④ Strategic positioning
Coal-to-gas switching from a climate perspective

How much delay in adoption of near-zero carbon technologies (NZCT) is achieved by switching to gas?

Parity ratio: Allowable years of gas per year of coal generation avoided
- **Literature**: ≈ 2.4 years
- Coal plant replaced 15 years before otherwise replaced by NZCT
- Gas can operate for ≤ 36 years, helping climate

⇒ **“Bridge fuel”** buys 1.4 years per year of coal displaced

Source: Adapted from Hausfather (2015)
Thought experiment: Global coal-to-gas switch

Q: How much existing coal-fired power generation can be replaced with existing *unused* gas generation?

<table>
<thead>
<tr>
<th>Top 5</th>
<th>“Gas potential”</th>
</tr>
</thead>
<tbody>
<tr>
<td>China</td>
<td>6%</td>
</tr>
<tr>
<td>US</td>
<td>47%</td>
</tr>
<tr>
<td>India</td>
<td>12%</td>
</tr>
<tr>
<td>Russia</td>
<td>37%</td>
</tr>
<tr>
<td>South Korea</td>
<td>35%</td>
</tr>
</tbody>
</table>

- **European countries:** mostly >100% potential
- **Zero potential:** Japan, Mexico, Poland, Kazakhstan

A: Global switching potential ~20% with *existing* assets

⇒ Annual global carbon emissions fall by ~1 GtCO₂

- **Social value:** ~$50+ billion per year

Source: Grant Wilson & Staffell (2018), 2015 data
Potential for coal-to-gas switching in power

Current gas capacity could completely displace coal

Insufficient gas capacity available to switch coal to gas

Source: Grant Wilson & Staffell (2018)
Potential for coal-to-gas switching in power

Source: Grant Wilson & Staffell (2018)

www.eprg.group.cam.ac.uk
Potential for coal-to-gas switching in power

Source: Grant Wilson & Staffell (2018)

Current gas capacity could completely displace coal

Insufficient gas capacity available to switch coal to gas

Potential additional gas generation (TWh)

Annual generation from coal (TWh)
Potential for coal-to-gas switching in power

Source: Grant Wilson & Staffell (2018)

www.eprg.group.cam.ac.uk
Plan for this talk

① Gas demand, prices and competition

② Coal-to-gas switching in power generation

③ Political economy & carbon pricing

④ Strategic positioning
UK: Decline of coal-fired generation

- Coal share from 41% (2013) to 6% (2018)

⇒ Policy: Coal phase-out by 2025

Source: Chyong, Guo & Newbery (2019)
UK: Carbon price floor supports gas switch

Carbon Price Support (CPS)
- EU ETS price + £18/tCO₂
- Tax revenue = ~€1bn per year

Direct policy impacts
- Efficient CCGTs run baseload
- 15% point shift from coal to gas
- Emissions reduction: 26.1m tCO₂ over 2013-2016 (-6.2%)
- Abatement cost: ~€18-30/tCO₂

Cross-border effects
- More imports into GB
- Higher power prices in FR & NL
- Impact on global emissions?

Source: Abrell, Kosch & Rausch (2019)

www.eprg.group.cam.ac.uk
India: Gas catch-up & optimistic forecasts

- Gas has had **take-off in China**, so is India next?

- **LNG import** forecasts have been bullish…

Source: SNAM 2018 Global Gas Report

Source: IEA 2015 India Energy Outlook
India: Gas squeezed by coal & solar

No clear role for gas/LNG

- Not cost-competitive vs domestic coal
- Limited policy support
 - No carbon pricing
 - Infrastructure constraints

Skipping gas? Coal to RE

- Ambitious 175 GW target for 2022 (esp. solar)
- Large cost reductions & low auction prices

Source: International Institute for Strategic Studies (IISS) & Vivid Economics
Plan for this talk

① Gas demand, prices and competition
② Coal-to-gas switching in power generation
③ Political economy & carbon pricing
④ Strategic positioning
Gas industry *itself* is in the midst of a transition

Strategic repositioning around natural gas:

① **Energy majors**: oil → gas/LNG & power/RE
② **Electricity companies**: coal/gas → RE
③ **Commodity traders**: oil → LNG
④ **Private equity**: → “legacy” coal/gas assets
⑤ **New players**: → LNG export, gas E&P

⇒ Trend to *large integrated* or *niche specialist*?
Conclusions

① Significant downside risk in gas demand forecasts due to climate-related uncertainties

② Global gas prices: regional price convergence unlikely to be permanent

③ Still huge global potential for coal-to-gas switching in power generation

④ Local political economy for gas/LNG in non-OECD (Asia) very different from OECD (Europe)

⑤ Ongoing strategic repositioning reflects companies’ different visions of the future
Abrell, Jan, Mirjam Kosch & Sebastian Rausch (2019). How effective was the UK carbon tax? A machine learning approach to policy evaluation. Working paper at ETH Zurich, April 2019

