
WORKSHOP THE ECONOMICS OF GAS

PARIS-DAUPHINE UNIVERSITY
MAY 22, 2023

Is Power-to-Gas always beneficial? The implications of ownership structure

Camille MEGY, Olivier MASSOL

BACKGROUND - POWER-TO-GAS (PTG)

Renewable-based hydrogen could play a significant role in the energy sector's decarbonization:

Indeed, when produced from renewable electricity, hydrogen can:

Provide flexibility to the electricity system

Replace coal, oil, natural gas, and conventional hydrogen

Contribute to the energy security by decreasing dependency on fossil fuels

BACKGROUND – PTG a as core component of the European energy & climate policy

In Europe, hydrogen is a key priority to achieve Europe's clean energy transition.

European Hydrogen Strategy

The kick-start phase

Develop pilot projects and **Hydrogen Valleys**

The ramp-up phase

Create a supporting framework to facilitate the development of the hydrogen economy

The market-growth phase

Obtain a market transparent and liquid

LITERATURE REVIEW - PTG as a sector coupling technology

Power-to-Gas:

- A growing literature in engineering
- In the economics literature, the economics of hydrogen is the subject of an increasing number of articles
- Among them, <u>a few articles focus on PTG as a sector coupling technology</u>
 - (Vandewalle & al, 2015)
 - (Lynch & al., 2019)
 - (Roach & Meus, 2020)
 - (Li & Mulder, 2021)

LITERATURE REVIEW - PTG as a sector coupling technology

Power-to-Gas:

- A growing literature in engineering
- In the economics literature, the economics of hydrogen is the subject of an increasing number of articles
- Among them, <u>a few articles focus on PTG as a sector coupling technology</u>
 - (Vandewalle & al, 2015)
 - (Lynch & al., 2019)
 - (Roach & Meus, 2020)
 - (Li & Mulder, 2021) => These articles consider <u>a perfectly competitive energy system</u>

LITERATURE REVIEW - PTG as a sector coupling technology

Power-to-Gas:

- A growing literature in engineering
- In the economics literature, the economics of hydrogen is the subject of an increasing number of articles
- Among them, <u>a few articles focus on PTG as a sector coupling technology</u>
 - (Vandewalle & al, 2015)
 - (Lynch & al., 2019)
 - (Roach & Meus, 2020)
 - (Li & Mulder, 2021) => These articles consider a perfectly competitive energy system
- However, first movers in PTG are firms with a <u>strong oligopolistic presence</u> in either the power, gas, or H₂ markets (e.g., existing electricity producers, gas midstreamers, H₂ producers, independent private players...).

Can Industrial Organization considerations affect the outcomes of Power-to-Gas?

Is Power-to-Gas always beneficial? The implication of ownership structure

This study aims at comparing the market outcomes obtained under different asset-ownership structures for PTG.

METHODOLOGY - Modeling the interactions between three markets

Gas Market

Electricity Market

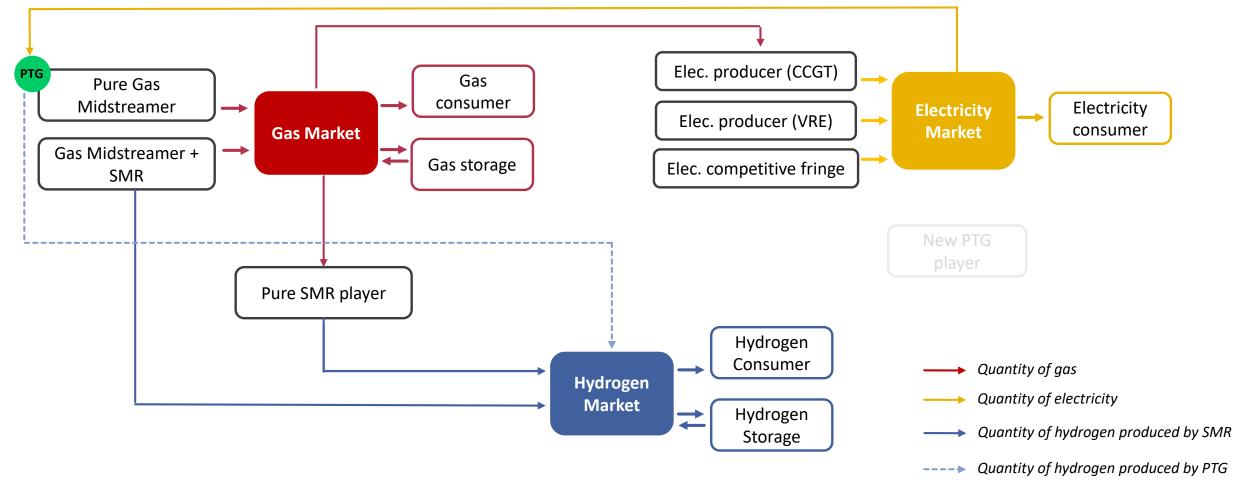
Hydrogen Market

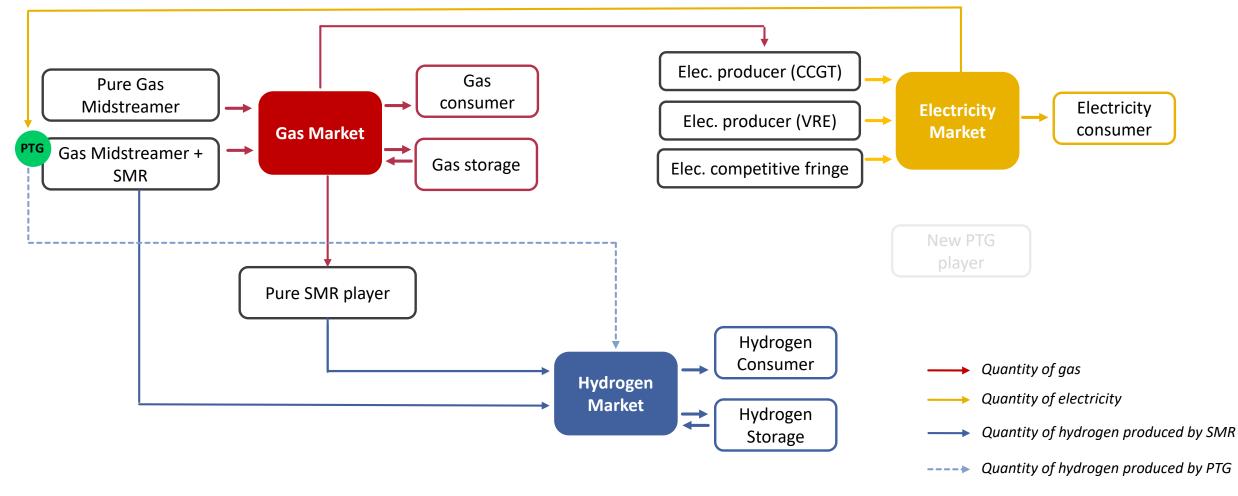
METHODOLOGY - Modeling the interactions between three markets

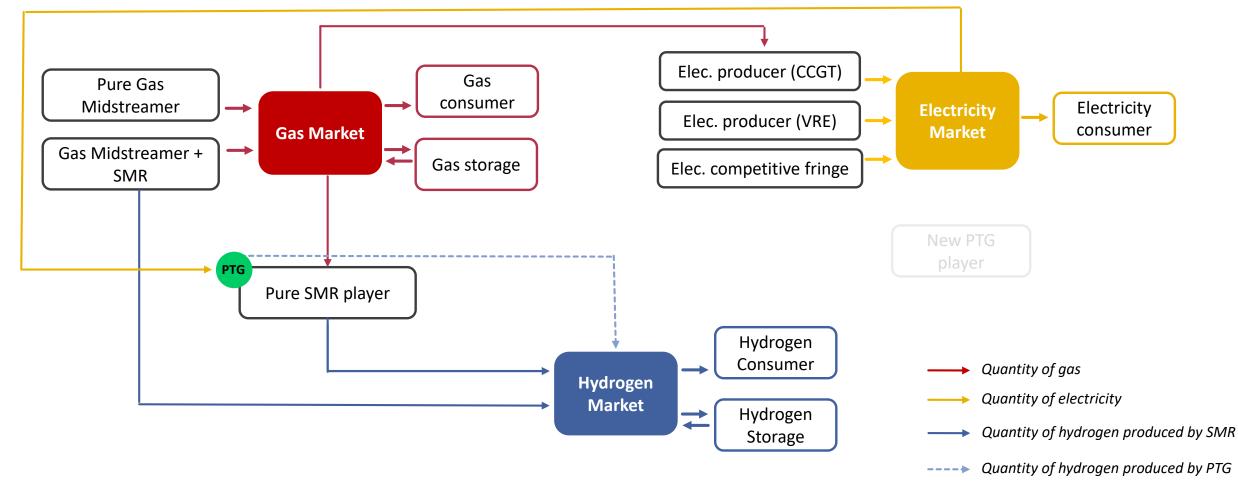
Gas Market

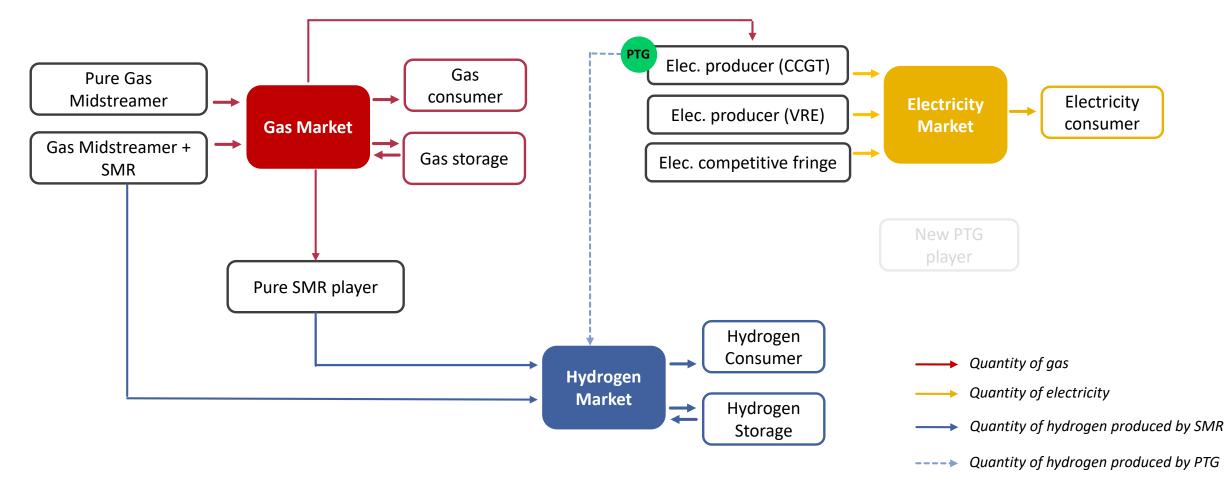
Gas is supplied by gas midstreamers through Long Term Contracts

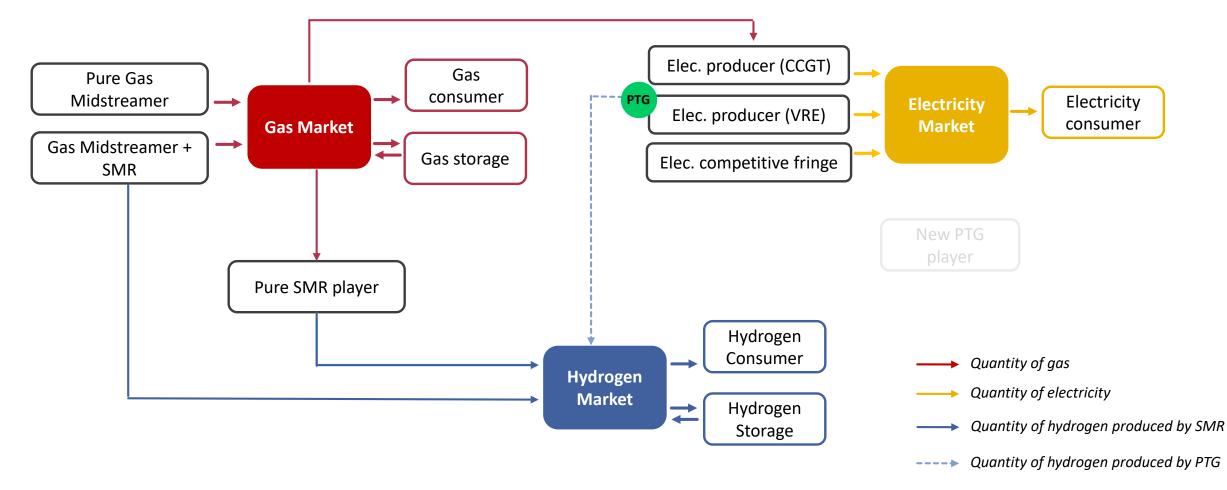

Electricity Market

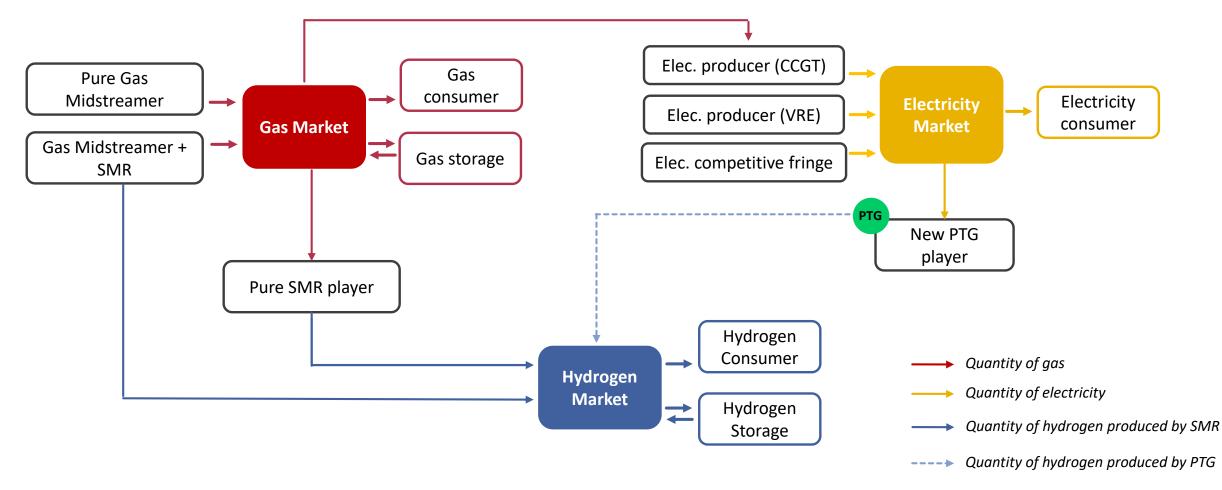

Different generation technologies:


- Combined Cycle Gas Turbine (CCGT)
- Variable Renewable Electricity (VRE: Solar & Wind)


Hydrogen Market Hydrogen can be produced from:


- Electricity (Power-to-Gas PTG)
- Gas (Steam Methane Reforming SMR)





METHODOLOGY - A detailed partial equilibrium model

Deterministic Nash Cournot oligopoly model

- One-year time horizon
- Linear demand functions for Power, Gas & H₂
- Energy producers behave à la Cournot / Storage operators (gas & H₂) are price taking firms
- Short-term model the model focuses on operations
 - => Capacities are exogeneously determined.

Formulated & solved as an instance of a **Mixed Complementarity Model (MCP)**

Agents' maximization problems

Max. Profits

s.t. constraints (capacity, efficiency, ramp-up constraints...)

Market Clearing condition

1 – Power producer (eventually with PTG)

Profit on the electricity market

$$\underset{q_{p,TC,d,h}^{E,up}}{\text{maximize}} \sum_{\substack{q_{p,x,d,h}^{E,up}, q_{p,CCGT,d,h}^{E,up}, \\ q_{p,PTG,d,h}^{H}}} \sum_{\substack{d,h}} w_{d}.w_{h}. \left[\sum_{x \in \mathcal{X}} \left(q_{p,x,d,h}^{E}.\pi_{d,h}^{E} - q_{p,x,d,h}^{E}.C_{p,x,d}^{E} \right) - q_{p,CCGT,d,h}^{E,up}.C_{CCGT,d}^{E,up} \right] (18)$$

$$\left[+ q_{p,PTG,d,h}^{H} \cdot \left(\pi_{d}^{H} - \frac{1}{\gamma_{PTG}} \cdot \pi_{d,h}^{E} \right) \right] \begin{array}{c} \textit{Profit on the hydrogen} \\ \textit{market (if PTG included)} \end{array} \tag{1b}$$

Capacity constraints
$$\begin{cases} q_{p,VRE,d,h}^E = K_{p,VRE}^E.AVA_{p,d,h}^E & \forall d,h, \quad (\lambda_{p,d,h}^{E,1}), \\ q_{p,CCGT,d,h}^E \leq K_{p,CCGT}^E & \forall d,h, \quad (\lambda_{p,d,h}^{E,2}), \\ q_{p,PTG,d,h}^E \leq K_{p,PTG}^H & \forall d,h, \quad (\lambda_{p,d,h}^{E,3}), \end{cases}$$
 (1c)

Ramp up constraint
$$= \begin{cases} w_h.q_{p,CCGT,d,h}^E \le w_{h-1}.q_{p,CCGT,d,h-1}^E + w_h.q_{p,CCGT,d,h}^{E,up} \, \forall d,h, \quad (\lambda_{p,d,h}^{E,4}), \\ 0 \le q_{p,x,d,h}^E, \quad 0 \le q_{p,CCGT,d,h}^{E,up}, \quad 0 \le q_{p,PTG,d,h}^H \quad \forall d,h,x \end{cases}$$
 (1f)

2 – Gas midstreamer (eventually with PTG)

Profit on the gas market

$$\underset{R,d}{\text{ze}} \sum_{d} w_{d} \cdot \left[q_{p,d}^{G} \cdot \pi_{d}^{G} - q_{p,d}^{G} \cdot \left(C_{inter}^{G} + C_{slope}^{G} \cdot q_{p,d}^{G} \right) \right]$$

$$(4a)$$

Profit on the hydrogen market

$$+ \sum_{d} w_{d} \cdot \left[q_{p,SMR,d}^{H} \cdot \left(\pi_{d}^{H} - \frac{1}{\gamma_{SMR}} \cdot (\pi_{d}^{G} + C_{CCS}) \right) \right]$$

$$+ \sum_{d,h} w_{d} \cdot w_{h} \cdot \left[q_{p,PTG,d,h}^{H} \cdot \left(\pi_{d}^{H} - \frac{1}{\gamma_{PTG}} \cdot \pi_{d,h}^{E} \right) \right]$$

$$(4b)$$

(4c)

$$+ \sum_{d,h} w_d.w_h. \left[q_{p,PTG,d,h}^H. \left(\pi_d^H - \frac{1}{\gamma_{PTG}}.\pi_{d,h}^{E^*} \right) \right]$$

Capacity
$$\begin{cases} q_{p,SMR,d}^{H} \leq K_{p,SMR}^{H} & \forall d \quad (\lambda_{p,d}^{G,1}), \qquad (4\mathrm{d}) \\ q_{p,PTG,d,h}^{H} \leq K_{p,PTG}^{H} & \forall d,h \quad (\lambda_{p,d,h}^{G,2}), \qquad (4\mathrm{e}) \\ 0 \leq q_{p,d}^{G}, \quad 0 \leq q_{p,SMR,d}^{H}, \quad 0 \leq q_{p,PTG,d,h}^{H} & \forall d,h \qquad (4\mathrm{f}) \end{cases}$$

^{*} Signals an exogeneous price variable

3 – H2 producer (eventually with PTG)

Profit on the hydrogen market

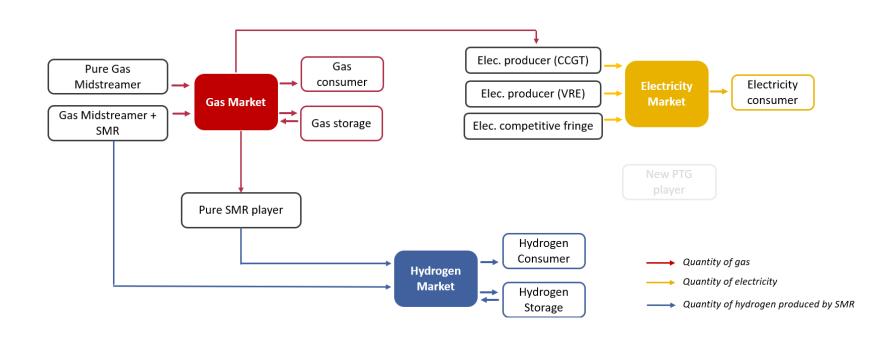
$$\max_{\substack{q_{p,SMR,d}^{H}, \\ q_{p,PTG,d,h}^{H}}} \sum_{d \in \mathcal{D}} w_{d} \cdot \left[q_{p,SMR,d}^{H} \cdot \left(\pi_{d}^{H} - \frac{1}{\gamma_{SMR}} \cdot (\pi_{d}^{G}^{*} + C_{CCS}) \right) \right] \\
+ \sum_{d \in \mathcal{D}, h \in \mathcal{H}} w_{d} \cdot w_{h} \cdot \left[q_{p,PTG,d,h}^{H} \cdot \left(\pi_{d}^{H} - \frac{1}{\gamma_{PTG}} \cdot \pi_{d,h}^{E}^{*} \right) \right] \tag{8b}$$

Capacity
$$\begin{cases} q_{p,SMR,d}^H \leq K_{p,SMR}^H & \forall d \quad (\lambda_{p,d}^{H,1}), \qquad (8c) \\ q_{p,PTG,d,h}^H \leq K_{p,PTG}^H & \forall d,h \quad (\lambda_{p,d,h}^{H,2}), \qquad (8d) \end{cases}$$
 $0 \leq q_{p,SMR,d}^H, \quad 0 \leq q_{p,PTG,d,h}^H \qquad \forall d,h \qquad (8e)$

^{*} Signals an exogeneous price variable

4- Gas or H2 storage operator

Storage injection cost


$$\underset{\substack{u_{stor,d}^G, r_{in,d}^G, \\ r_{out,d}^G}}{\text{maximize}} \sum_{d \in \mathcal{D}} w_d \cdot \left[r_{out,d}^G \cdot \pi_d^{G^*} - r_{in,d}^G \cdot \left(\pi_d^{G^*} + C_{in}^G \right) \right]$$
(5a)

$$\begin{array}{c} Capacity \\ Constraints \end{array} \begin{cases} r_{in,d}^G \leq T_{in}^G.K_{stor}^G & \forall d \ \ \, (\lambda_{stor,d}^{G,1}), & (5b) \\ r_{out,d}^G \leq T_{out}^G.K_{stor}^G & \forall d \ \ \, (\lambda_{stor,d}^{G,2}), & (5c) \\ u_{stor,d}^G \leq K_{stor}^G & \forall d \ \ \, (\lambda_{stor,d}^{G,3}), & (5d) \\ \end{array} \\ Storage state equation \ \, \left\{ \begin{array}{c} u_{stor,d}^G = u_{stor,d-1}^G + w_d. \left(r_{in,d}^G - r_{out,d}^G \right) & \forall d \ \ \, (\lambda_{stor,d}^{G,4}), & (5e) \\ 0 \leq r_{in,d}^G, & 0 \leq r_{out,d}^G, & 0 \leq u_{stor,d}^G & \forall d \\ \end{array} \end{cases} \ \, (5f)$$

^{*} Signals an exogeneous price variable

METHODOLOGY

We solve a linear complementarity problem to obtain a Nash equilibrium of the three markets.

CASE STUDY - DATA

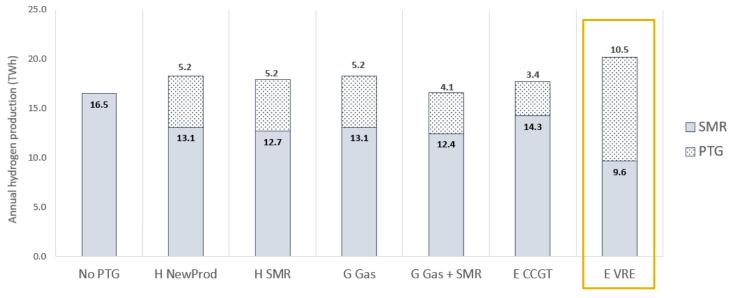
- We calibrate the model to represent the **Dutch energy system**
- Capacities are based on EU projections for the year 2030
- Power & gas demand parameters and RES generation variability are based on historical patterns
- The calibration of H₂ demand is based on GIE projections

CASE STUDY – 7 *Ceteris Paribus* scenarios

Baseline scenario: No PTG is developed.

Six scenarios with various asset ownership structures for PTG.

Scenario	Business model posited for the PtG operator							
No PtG	Baseline Scenario	Without PtG						
H-New Prod	Independent firm	PtG as a pure player						
H- SMR		SMR-based producer with PtG conversion						
G- Gas		Gas midstreamer with PtG conversion						
G- Gas+SMR	Multi-market firm	Gas midstreamer with both SMR and PtG conversion						
E- CCGT		Thermal generator with PtG conversion						
E- VRE		VRE generator with PtG conversion						


CASE STUDY - Objectives

Objectives

- 1. See whether PTG operation depends on market structure,
- 2. Analyze the observed market outcomes and the allocation of net social welfare in power, gas, and H2 markets,
- 3. Study the contribution of PTG in reducing CO₂ emissions.

1. The ownership structure retained for PtG has a significant impact of its operations.

PTG OPERATION

Annual hydrogen production per scenario when $P_{CO2} = 30 \text{ (TWh)}$

	NoPtG	H-NewProd	H-SMR	G-Gas	G- Gas + SMR	E-CCGT	E-VRE
Hydrogen	84.08	78.60	79.76	78.60	83.90	80.49	72.80
Gas	35.21	35.07	35.02	35.07	35.18	35.12	35.15
Electricity	55.77	62.00	61.97	62.00	60.38	59.47	67.37

Comparison of the average power, gas and hydrogen prices (€/MWh)

- 1. The ownership structure retained for PtG has a significant impact of its operations.
- 2. The change in short-term welfare associated with the addition of PTG is positive.

However, its distribution is <u>unequal</u>.

SOCIAL IMPACTS

		NoPtG	H-NewProd	H-SMR	G-Gas	G-Gas+SMR	E-CCGT	E-VRE
	E-VRE	1.92	+ 0.55	+ 0.56	$+ \ 0.55$	+ 0.44	+ 0.36	+ 0.84
Electricity	E-CCGT	0.00	0.00	0.00	0.00	0.00	+ 0.17	0.00
	E-Fringe	1.95	+ 0.45	+ 0.45	+ 0.45	+ 0.34	+ 0.27	+ 0.73
Gas	G-Gas+SMR	3.21	- 0.17	- 0.15	- 0.17	+ 0.03	- 0.11	- 0.26
Gas	G-Gas	2.70	- 0.04	- 0.05	+ 0.13	- 0.01	- 0.02	- 0.01
Uridnomon	H-SMR	0.03	- 0.02	+ 0.14	- 0.02	0.00	- 0.02	- 0.03
Hydrogen	H-NewProd	-	+ 0.17	-	-	-	-	-
Total producer surplus		9.82	+ 0.95	+ 0.95	+ 0.95	+ 0.79	+ 0.65	+ 1.27
		•						
Gas	storage surplus	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hydrog	en storage surplus	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total	storage surplus	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Electricit	y consumer surplus	6.33	- 0.81	- 0.81	- 0.81	- 0.61	- 0.50	- 1.39
Gas c	onsumer surplus	4.57	+ 0.03	+ 0.05	+ 0.03	+ 0.01	+ 0.02	+ 0.01
Hydroge	n consumer surplus	0.42	+ 0.10	+ 0.08	+ 0.10	0.00	+ 0.06	+ 0.21
Total consumer surplus		11.31	- 0.68	- 0.68	- 0.68	- 0.60	- 0.42	- 1.17
Revenue yie	lded by carbon pricing	1.65	+ 0.003	+ 0.005	+ 0.003	- 0.004	+ 0.002	+ 0.024
Net social welfare including carbon pricing		22.78	+ 0.270	+ 0.267	+ 0.270	+ 0.192	+ 0.231	+ 0.117

- 1. The ownership structure retained for PtG has a significant impact of its operations.
- 2. The change in short-term welfare associated with the addition of PTG is positive.

However, its distribution is <u>unequal</u>.

SOCIAL IMPACTS

		NoPtG	H-NewProd	H-SMR	G-Gas	G-Gas+SMR	E-CCGT	E-VRE
	E- VRE	1.92	+ 0.55	+ 0.56	+ 0.55	+ 0.44	+ 0.36	+ 0.84
Electricity	E-CCGT	0.00	0.00	0.00	0.00	0.00	+ 0.17	0.00
	E-Fringe	1.95	+ 0.45	+ 0.45	+ 0.45	+ 0.34	+ 0.27	+ 0.73
Gas	G-Gas+SMR	3.21	- 0.17	- 0.15	- 0.17	+ 0.03	- 0.11	- 0.26
Gas	G- G as	2.70	- 0.04	- 0.05	+ 0.13	- 0.01	- 0.02	- 0.01
Hydrogen	H-SMR	0.03	- 0.02	+ 0.14	- 0.02	0.00	- 0.02	- 0.03
Hydrogen	H-NewProd	-	+ 0.17	-	-	-	-	-
Total producer surplus		9.82	+ 0.95	+ 0.95	+ 0.95	+ 0.79	+ 0.65	+ 1.27
Gas	storage surplus	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hydrog	en storage surplus	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total	storage surplus	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Electricit	y consumer surplus	6.33	- 0.81	- 0.81	- 0.81	- 0.61	- 0.50	- 1.39
Gas c	onsumer surplus	4.57	+ 0.03	+ 0.05	+ 0.03	+ 0.01	+ 0.02	+ 0.01
Hydroger	n consumer surplus	0.42	+ 0.10	+ 0.08	+ 0.10	0.00	+ 0.06	+ 0.21
Total c	onsumer surplus	11.31	- 0.68	- 0.68	- 0.68	- 0.60	- 0.42	- 1.17
Revenue yie	lded by carbon pricing	1.65	+ 0.003	+ 0.005	+ 0.003	- 0.004	+ 0.002	+ 0.024
	d welfare including bon pricing	22.78	+ 0.270	+ 0.267	+ 0.270	+ 0.192	+ 0.231	+ 0.117

- 1. The ownership structure retained for PtG has a significant impact of its operations.
- 2. The change in short-term welfare associated with the addition of PTG is positive.

However, its distribution is <u>unequal</u>.

SOCIAL IMPACTS

		NoPtG	H-NewProd	H-SMR	G-Gas	G- Gas + SMR	E-CCGT	E-VRE
	E-VRE	1.92	+ 0.55	+ 0.56	+ 0.55	+ 0.44	+ 0.36	+ 0.84
Electricity	E-CCGT	0.00	0.00	0.00	0.00	0.00	+ 0.17	0.00
	E-Fringe	1.95	+ 0.45	+ 0.45	+ 0.45	+ 0.34	+ 0.27	+ 0.73
Gas	G- Gas + SMR	3.21	- 0.17	- 0.15	- 0.17	+ 0.03	- 0.11	- 0.26
Gas	G- Gas	2.70	- 0.04	- 0.05	+ 0.13	- 0.01	- 0.02	- 0.01
Handmanan	H-SMR	0.03	- 0.02	+ 0.14	- 0.02	0.00	- 0.02	- 0.03
Hydrogen	H-New P rod	-	+ 0.17	-	-	-	-	-
Total producer surplus		9.82	+ 0.95	+ 0.95	+ 0.95	+ 0.79	+ 0.65	+ 1.27
Gas	Gas storage surplus		0.00	0.00	0.00	0.00	0.00	0.00
Hydroge	en storage surplus	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total	storage surplus	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Electricit	y consumer surplus	6.33	- 0.81	- 0.81	- 0.81	- 0.61	- 0.50	- 1.39
Gas c	onsumer surplus	4.57	+ 0.03	+ 0.05	+ 0.03	+ 0.01	+ 0.02	+ 0.01
Hydroger	n consumer surplus	0.42	+ 0.10	+ 0.08	+ 0.10	0.00	+ 0.06	+ 0.21
Total c	consumer surplus	11.31	- 0.68	- 0.68	- 0.68	- 0.60	- 0.42	- 1.17
Revenue yie	lded by carbon pricing	1.65	+ 0.003	+ 0.005	+ 0.003	- 0.004	+ 0.002	+ 0.024
Net social welfare including carbon pricing		22.78	+ 0.270	+ 0.267	+ 0.270	+ 0.192	+ 0.231	+ 0.117

- 1. The ownership structure retained for PtG has a significant impact of its operations.
- 2. The change in short-term welfare associated with the addition of PTG is positive.

However, its distribution is <u>unequal</u>.

SOCIAL IMPACTS

		NoPtG	H-NewProd	H-SMR	G-Gas	G-Gas+SMR	E-CCGT	E-VRE
	E-VRE	1.92	+ 0.55	+ 0.56	$+ \ 0.55$	+ 0.44	+ 0.36	+ 0.84
Electricity	E-CCGT	0.00	0.00	0.00	0.00	0.00	+ 0.17	0.00
	E-Fringe	1.95	+ 0.45	+ 0.45	+ 0.45	+ 0.34	+ 0.27	+ 0.73
Gas	G- Gas + SMR	3.21	- 0.17	- 0.15	- 0.17	+ 0.03	- 0.11	- 0.26
Gas	G-Gas	2.70	- 0.04	- 0.05	+ 0.13	- 0.01	- 0.02	- 0.01
Urrdnogon	H-SMR	0.03	- 0.02	+ 0.14	- 0.02	0.00	- 0.02	- 0.03
Hydrogen	H-NewProd	-	+ 0.17	-	-	-	-	-
Total producer surplus		9.82	+ 0.95	+ 0.95	+ 0.95	+ 0.79	+ 0.65	+ 1.27
						•		
Gas	Gas storage surplus		0.00	0.00	0.00	0.00	0.00	0.00
Hydrog	en storage surplus	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total	storage surplus	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Electricit	ty consumer surplus	6.33	- 0.81	- 0.81	- 0.81	- 0.61	- 0.50	- 1.39
Gas c	onsumer surplus	4.57	+ 0.03	+ 0.05	+ 0.03	+ 0.01	+ 0.02	+ 0.01
Hydroge	n consumer surplus	0.42	+ 0.10	+ 0.08	+ 0.10	0.00	+ 0.06	+ 0.21
Total c	Total consumer surplus		- 0.68	- 0.68	- 0.68	- 0.60	- 0.42	- 1.17
Revenue yie	Revenue yielded by carbon pricing		+ 0.003	+ 0.005	+ 0.003	- 0.004	+ 0.002	+ 0.024
Net social welfare including carbon pricing		22.78	+ 0.270	+ 0.267	+ 0.270	+ 0.192	+ 0.231	+ 0.117

- 1. The ownership structure retained for PtG has a significant impact of its operations.
- 2. The change in short-term welfare associated with the addition of PTG is positive.

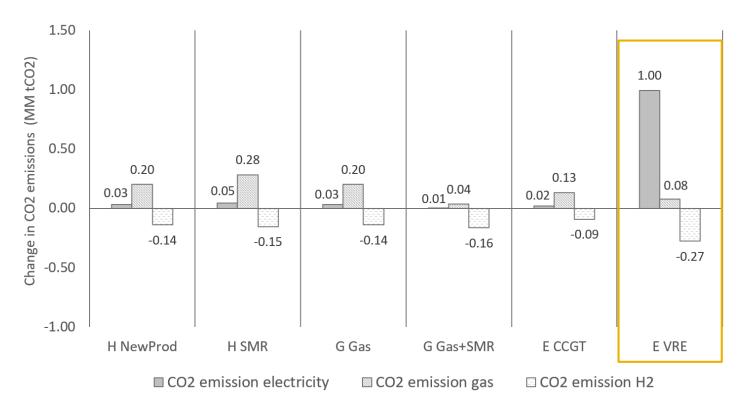
However, its distribution is <u>unequal</u>.

3. PtG investment cost is too high to make PtG a welfare-enhancing technology in the long term.

SOCIAL IMPACTS

		NoPtG	H-NewProd	H-SMR	G-Gas	G-Gas+SMR	E-CCGT	E-VRE
	$\operatorname{E-VRE}$	1.92	+ 0.55	+ 0.56	+ 0.55	+ 0.44	+ 0.36	+ 0.84
Electricity	E-CCGT	0.00	0.00	0.00	0.00	0.00	+ 0.17	0.00
	E-Fringe	1.95	+ 0.45	+ 0.45	+ 0.45	+ 0.34	+ 0.27	+ 0.73
Gas	G-Gas+SMR	3.21	- 0.17	- 0.15	- 0.17	+ 0.03	- 0.11	- 0.26
Gas	G- G as	2.70	- 0.04	- 0.05	+ 0.13	- 0.01	- 0.02	- 0.01
IId.	H-SMR	0.03	- 0.02	+ 0.14	- 0.02	0.00	- 0.02	- 0.03
Hydrogen	H-NewProd	-	+ 0.17	-	-	_	-	_
Total producer surplus		9.82	+ 0.95	+ 0.95	+ 0.95	+ 0.79	+ 0.65	+ 1.27
Gas	storage surplus	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hydroge	en storage surplus	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total	storage surplus	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Electricity	y consumer surplus	6.33	- 0.81	- 0.81	- 0.81	- 0.61	- 0.50	- 1.39
Gas co	onsumer surplus	4.57	+ 0.03	+ 0.05	+ 0.03	+ 0.01	+ 0.02	+ 0.01
Hydroger	n consumer surplus	0.42	+ 0.10	+ 0.08	+ 0.10	0.00	+ 0.06	+ 0.21
Total c	onsumer surplus	11.31	- 0.68	- 0.68	- 0.68	- 0.60	- 0.42	- 1.17
	<u> </u>							
Revenue yiel	lded by carbon pricing	1.65	+ 0.003	+ 0.005	+ 0.003	- 0.004	+ 0.002	+ 0.024
	l welfare including bon pricing	22.78	+ 0.270	+ 0.267	+ 0.270	+ 0.192	+ 0.231	+ 0.117

Annual surpluses obtained under the baseline scenario and the changes observed under the alternative scenarios when $P_{CO2} = 30 \notin /t_{CO2}$ (Bn \notin)


PtG annual equivalent cost of capital: €0.71 billion

- 1. The ownership structure retained for PtG has a significant impact of its operations.
- 2. The change in short-term welfare associated with the addition of PTG is positive.

However, its distribution is <u>unequal</u>.

- 3. PtG investment cost is too high to make PtG a welfare-enhancing technology in the long term.
- 4. PtG could indirectly lead to a high increase in carbon-based electricity generation

ENVIRONMENTAL IMPACTS

Change in CO2 emissions by sector compared to the No PTG case when PCO2 =30€/ tCO2

CONCLUSION

In an imperfectly competitive electricity, gas and hydrogen system:

- The operation and profitability of PtG differ depending on the profile of its owner.
- The operation of PtG can increase the total social welfare but change its distribution.
- The ownership organization that provides the PtG owner with the largest individual gain is also the least desirable from a social and environmental perspective.

CONTACT

Camille MEGY

camille.megy@centralesupelec.fr

Olivier MASSOL

olivier.massol@ifpen.fr

Thanks for your attention!

REFERENCES

- Blanco, H., Faaij, A., 2018. A review at the role of storage in energy systems with a focus on power to gas and long-term storage. Renew. Sust. Energ. Rev. 81, 1049–1086
- Götz M, Lefebvre J, M'ors F, McDaniel Koch A, Graf F, Bajohr S, et al. *Renewable power-to-gas: a technological and economic review.* Renew Energy 2016;85:1371–90
- Böhm H., Zauner A., Rosenfeld D. C., Tichler R., *Projecting cost development for future large-scale power-to-gas implementations by scaling effects*, Applied Energy, Volume 264, 2020, 114780, ISSN 0306-2619,
- Breyer C., Tsupari E., Tikka V., Vainikka P., Power-to-Gas as an Emerging Profitable Business Through Creating an Integrated Value Chain, Energy Procedia, Volume 73, 2015, Pages 182-189, ISSN 1876-6102
- Jentsch M, Trost T, Sterner M. *Optimal use of Power-to-Gas energy storage systems in an 85% renewable energy scenario*. Energy Procedia 2014;46:254–61.
- Qadrdan M, Abeysekera M, Chaudry M, Wu J, Jenkins N. Role of power-to-gas in an integrated gas and electricity system in Great Britain. Int J Hydrog Energy 2015;40:5763–75
- Lynch M., Devine M. T., Bertsch V., The role of power-to-gas in the future energy system: Market and portfolio effects, Energy, Volume 185, 2019, Pages 1197-1209, ISSN 0360-5442,
- Roach M, Meeus L. *The welfare and price effects of sector coupling with power-to-gas*. Energy Economics 2020;86:104708.
- Li X., Mulder M., Value of power-to-gas as a flexibility option in integrated electricity and hydrogen markets, Applied Energy, Volume 304, 2021, 117863, ISSN 0306-2619,
- W.-P. Schill and C. Kemfert, "Modeling Strategic Electricity Storage: The Case of Pumped Hydro Storage in Germany," The Energy J., vol. 32, no. 3, pp. 59–87, 2011.
- R. Sioshansi, "Welfare Impacts of Electricity Storage and the Implications of Ownership Structure". The Energy Journal 31 (2010).
- V. Virasjoki, P. Rocha, A. S. Siddiqui and A. Salo, "Market Impacts of Energy Storage in a Transmission-Constrained Power System," in IEEE Transactions on Power Systems, vol. 31, no. 5, pp. 4108-4117, Sept. 2016

APPENDICES

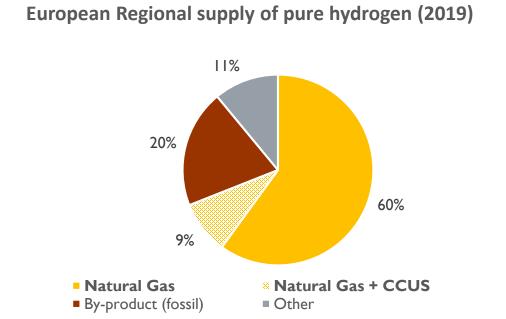
- Appendices Background technology at its early stage
- Appendices Data
 - Electricity market
 - Gas market
 - H2 market
- Appendices Preliminary results
 - Production / Demand
 - Emission costs

BACKGROUND - POWER-TO-GASA TECHNOLOGY AT ITS EARLY STAGE

There are still challenges associated with the widespread adoption of PtG technologies

Lack of Maturity

Strong need for renewable electricity


Political and regulation uncertainty

Change in the industrial organisation

BACKGROUND - POWER-TO-GAS A TECHNOLOGY THAT IS PART OF THE EUROPEAN ENERGY CLIMATE POLICY

Producing decarbonized hydrogen requires strong changes and adaptations of current production sources

Future European Regional supply of pure hydrogen?

Production of low carbon hydrogen in the short and medium term:

Retrofitting of existing hydrogen production facilities/steam methane reformers (SMRs) with CCS

&

Production of renewable hydrogen: Power-to-Gas

Production of green hydrogen from renewable electricity by electrolysis of water

DEDDECENITATIVE DAVC

8 representative days (2 per season, I weekday and I weekend day), and 5 representative hours

per day.

Seasons:

- Summer: May -> August (weight: 123)

- Autumn: September, October (weight: 61)

- Winter: November -> February (weight: 120)

- Spring: March, April (weight: 61)

Day	Description	
1	Summer - Week	
2	Summer – Weekend	
3	Autumn – Week	
4	Autumn – Weekend	

Day	Description	
5	Winter – Week	
6	Winter – Weekend	
7	Spring – Week	
8	Spring – Weekend	

Time steps per day:

- 2h – 7h AM (weight: 5)

- 7h – 12h AM (weight: 5)

- I2h AM – 5h PM (weight: 5)

- 5h – 10h PM (weight: 5)

- 10h PM – 2h AM (weight: 4)

Hours	Description
1	I0h PM – 2h AM
2	2h – 7h AM
3	7h – 12h AM
4	12h AM – 5h PM
5	5h – 10h PM

For each period, the data found for the year is averaged

DATA – ELECTRICITY MARKET

Technology costs:

- Operational cost
- Ramp up cost
- Fuel cost (when exogenous)
- Conversion efficiency
- CO2 Emission rate
- CO2 price

Producer portfolio

- Global installed capacity
- Maximum generation capacity for each producer

Technology features:

- Availability factor for conventional energy generation
- Availability factor for renewable energy generation

Demand function:

- Intercept and slope of linear inverse demand function

DATA – ELECTRICITY MARKET GENERATION CAPACITY

References:

- Capacity by generation source: EU Reference Scenario 2020: Energy, Transport and GHG Emissions: Trends to 2050 (PRIMES assumptions)
- Maximum generation capacity per producer: personal preference

Capacity by generation source

	GW	%
VRE (solar, wind)	53	82%
CCGT (Gas)	12	18%
TOTAL (GW)	65	100%

Maximum generation capacity per producer

	VRE	CCGT
E VRE	50%	0%
	26 GW	
E CCGT	0%	50%
_		6 GW
E Fringe	50%	50%
- 0	27 GW	6 GW

DATA – ELECTRICITY MARKET GENERATION COST

References:

- Operational, Fuel cost:, and conversion efficiency: EU Reference Scenario 2020: Energy, Transport and GHG Emissions: Trends to 2050 (PRIMES assumptions)
- CO2 emission rate and ramp-up cost: (Virasjoki & al, 2016)
- CO2 Price: IAE projected cost of generating energy 2020 (lien)

	Technology	Operational cost	Ramp up cost	Fuel cost (€/MWh)	Conversion	CO2 emission rate
		in 2030 (€/MWh)	(€/MWh)		efficiency (%)	(tCO2/MWh)
	Gas (CCGT)	2.3	5,8	Endogenous to the	0,58	0,37
				model		
	VRE	0	0	0		0
L						

CO₂ price:

- The EGC includes a harmonized carbon price of USD 30 per tone of CO2
- The Fit for 55 package will lead to a rise in CO2 prices to EUR 90 by 2030

DATA – ELECTRICITY MARKET AVAILABILITY FACTOR

References:

- Conventional technologies: IAE projected cost of generating energy 2020 (<u>lien</u>)
- Variable renewable technologies: https://data.open-power-system-data.org/ninja_pv_wind_profiles/

Technology	Capacity Factor
Gas	85%
(CCGT)	
VRE	Variable (ref : 2019)

DATA – ELECTRICITY MARKET DEMAND FUNCTION

References:

- Demand Data: ENTSOE Transparency Platform: electricity consumption data hour by hour or 15min by 15min, and by country
- Price: Eco2Mix RTE website: electricity price by hour and by country
- Elasticity : same reference as in (Li & Mulder, 2021): Labandeira X, Labeaga JM, Lopez-Otero X. A meta-analysis on the price elasticity of energy demand. Energy policy

Electricity price elasticity = -0,3

Demand function coefficient $a_{d,h}$ and $b_{d,h}$:

Demand function:
$$\forall d, h \quad D_{d,h}^{elec} = a_{d,h}^{elec} - b_{d,h}^{elec} * P_{d,h}^{elec}$$

With
$$a_{d,h,c}^{elec} = (1 - \varepsilon) * D_{d,h,c}^{elec}$$
 and $b_{d,h,c}^{elec} = -\varepsilon * \frac{D_{d,h,c}^{elec}}{P_{d,h,c}^{elec}}$

DATA – GAS MARKET

Long term contract:

- Procurement cost function coefficients

Storage:

- Working gas capacity
- Maximum storage withdrawal rate
- Storage injection cost

Demand function:

- Intercept and slope of linear inverse demand function

DATA – GAS MARKET LONG TERM CONTRACT

References:

Same reference as in (Roach &Meeus, 2021): Del Valle & al, A fundamental analysis on the implementation and development of virtual natural gas hub.

$$c_m(Q^{gaz}) = c_{intercept} + c_{slope} * Q^{gaz}$$

C _{intercept}	I5 €/MWh	
c_{slope}	0,000002 €/MWh²	

DATA – GAS MARKET STORAGE

References:

- Working Gas Capacity & Storage Withdrawal Rate : Picturing the value of underground gas storage to the European hydrogen system Gas Infrastructure Europe (<u>lien</u>) Appendix Natural Gas Statistics (p.52)
- - Storage injection cost: PRIMES Study

	Working Gas capacity (TWh)	Storage withdrawal rate (% of working gas capacity)	Storage injection cost (€/MWh)
Underground Gas Storage	144	0.02	0,7

DATA – GAS MARKET DEMAND FUNCTION

References:

- Demand: ENTSOG Transparency Platform: daily gas consumption data
- Prix: Pink Sheet World Bank: price marker for the European price ~ German price
 - Elasticity : same reference as in (Li & Mulder, 2021): Labandeira X, Labeaga JM, Lopez-Otero X. A meta-analysis on the price elasticity of energy demand. Energy policy

Gas price elasticity = -0.3

Demand function coefficient a_d^{gas} and b_d^{gas} :

Demand function:
$$\forall d$$
, $D_d^{gas} = a_d^{gas} - b_d^{gas} * P_d^{gas}$

With
$$a_{d,c}^{gas} = (1 - \varepsilon) * D_{d,c}^{gas}$$
 and $b_{d,c}^{gas} = -\varepsilon * \frac{D_{d,c}^{gas}}{P_{d,c}^{gas}}$

DATA – H2 MARKET

SMR & PTG:

- Operational cost
- Conversion efficiency
- Generation capacity

Storage:

- Working gas capacity
- Maximum storage withdrawal rate
- Storage injection cost

Demand function:

- Intercept and slope of linear inverse demand function

DATA — H2 MARKET GENERATION CAPACITY & GENERATION COST

References:

- Electrolysers capacity: Dutch National Climate agreement
- SMR capacity: personal choice
- Conversion efficiency: PRIMES study assumptions & (Li & Mulder, 2021)
- CCS cost: (Li & Mulder,2021)

	Capacity (GW)	Efficiency
Electrolyser	4	0,7
SMR	10	0,6

- PTG generation cost: Electricity price
- SMR generation cost: Gas price and CO2 capture and storage (CCS) cost:

SMR cost:
$$\gamma * (\lambda * c_{carbon\ price} + (1 - \lambda) * c_{CCS})$$

With γ carbon emission of burned gas, et λ fraction of carbon being emitted in SMR

	γ (t CO2/MWh)	λ	c _{CCS} (€/t CO2)
SMR	0,2	0,2	50

DATA – H2 MARKET STORAGE

References:

- Working Gas Capacity: Picturing the value of underground gas storage to the European hydrogen system Gas Infrastructure Europe (<u>lien</u>)) (p.38)
- Storage Withdrawal Rate: personal assumption considering Picturing the value of underground gas storage to the European hydrogen system Gas Infrastructure Europe (<u>lien</u>)) (p.38)
- Storage injection cost: PRIMES Study

	Working Gas capacity (TWh)	Storage withdrawal rate (% of working gas capacity)	Storage injection cost (€/MWh)
H2 Storage	6	0,12	0,7

DATA – H2 MARKET DEMAND FUNCTION

References:

- Demand: Etude Picturing the value of underground gas storage to the European hydrogen system Gas Infrastructure Europe (<u>lien</u>) (p.38)
- H2 price and elasticity: (Li & Mulder, 2021)

Demand	Daily demand	Price	Elasticity
4,42 Mt H2/year	403,2 GWh/day	45 €/MWh	-0,5

Demand function coefficient a_d and b_d : $D_d^{H2} = a_d^{H2} - b_d^{H2} * P_d^{H2}$

- $a_d^{H2} = (1 \varepsilon) * D_d^{H2} = 604.8 \text{ GWh}$
- $b_d^{H2} = -ε * \frac{D_d^{H2}}{P_d^{H2}} = 4480 \text{ MWh}/€$

METHODOLOGY EQUATIONS – ELECTRICITY MARKET

Electricity Producer: Optimization problem - Profit Maximization

$$\underset{q_{p,x,d,h}^{E}, q_{p,x,d,h}^{E}, q_{p,x,d,h}^{E}, q_{p,x,d,h}^{E}}{\text{maximize}} \sum_{d,h} w_{d}.w_{h}. \left[\sum_{x \in \mathcal{X}} \left(q_{p,x,d,h}^{E}.\pi_{d,h}^{E} - q_{p,x,d,h}^{E}.C_{p,x,d}^{E} \right) - q_{p,CCGT,d,h}^{E,up}.C_{CCGT,d}^{E,up} \right]$$
(1a)

$$+ q_{p,PTG,d,h}^H \cdot \left(\pi_d^H - \frac{1}{\gamma_{PTG}} \cdot \pi_{d,h}^E \right)$$

$$(1b)$$

subject to

$$q_{p,VRE,d,h}^{E} = K_{p,VRE}^{E}.AVA_{p,d,h}^{E} \qquad \forall d, h, \quad (\lambda_{p,d,h}^{E,1}), \tag{1c}$$

$$q_{p,CCGT,d,h}^{E} \le K_{p,CCGT}^{E} \qquad \forall d, h, \quad (\lambda_{p,d,h}^{E,2}),$$
 (1d)

$$q_{p,PTG,d,h}^{H} \leq K_{p,PTG}^{H} \qquad \qquad \forall d,h, \quad (\lambda_{p,d,h}^{E,3}), \tag{1e} \label{eq:equation:equation:equation}$$

$$w_{h}.q_{p,CCGT,d,h}^{E} \leq w_{h-1}.q_{p,CCGT,d,h-1}^{E} + w_{h}.q_{p,CCGT,d,h}^{E,up} \forall d, h, \quad (\lambda_{p,d,h}^{E,4}), \tag{1f}$$

$$0 \le q_{p,x,d,h}^E, \quad 0 \le q_{p,CCGT,d,h}^{E,up}, \quad 0 \le q_{p,PTG,d,h}^{H} \qquad \forall d, h, x$$
 (1g)

METHODOLOGY EQUATIONS – ELECTRICITY MARKET

Electricity Market Clearing Constraint

$$\forall d, h, \quad D_{d,h}^E = a_{d,h}^E - b_{d,h}^E \cdot \pi_{d,h}^{E^*} \qquad a_{d,h}^E > 0, b_{d,h}^E > 0 \tag{2}$$

$$\forall d, h, \quad 0 \le \sum_{p,x} q_{p,x,d,h}^E - \left(D_{d,h}^E + \sum_p \frac{1}{\gamma_{PTG}} . q_{p,PTG,d,h}^H \right) \perp \pi_{d,h}^E \stackrel{*}{\ge} 0 \tag{3}$$

METHODOLOGY EQUATIONS – GAS MARKET

Gas Midstreamers: Optimization problem - Profit Maximization

$$\max_{\substack{q_{p,d}^G, q_{p,SMR,d}^H, \\ q_{p,PTG,d,h}^H}} \sum_{d} w_d \cdot \left[q_{p,d}^G \cdot \pi_d^G - q_{p,d}^G \cdot \left(C_{inter}^G + C_{slope}^G \cdot q_{p,d}^G \right) \right]$$
(4a)

$$+ \sum_{d} w_{d} \cdot \left[q_{p,SMR,d}^{H} \cdot \left(\pi_{d}^{H} - \frac{1}{\gamma_{SMR}} \cdot (\pi_{d}^{G} + C_{CCS}) \right) \right]$$
 (4b)

$$+ \sum_{d,h} w_d.w_h. \left[q_{p,PTG,d,h}^H. \left(\pi_d^H - \frac{1}{\gamma_{PTG}}.\pi_{d,h}^{E^*} \right) \right]$$
 (4c)

subject to

$$q_{p,SMR,d}^{H} \leq K_{p,SMR}^{H} \qquad \qquad \forall d \qquad (\lambda_{p,d}^{G,1}), \qquad (4\mathrm{d})$$

$$q_{p,PTG,d,h}^{H} \leq K_{p,PTG}^{H} \qquad \qquad \forall d,h \quad (\lambda_{p,d,h}^{G,2}), \qquad (4\mathrm{e})$$

$$0 \le q_{p,d}^G, \quad 0 \le q_{p,SMR,d}^H, \quad 0 \le q_{p,PTG,d,h}^H \qquad \forall d, h$$
 (4f)

METHODOLOGY EQUATIONS – GAS MARKET

Gas Storage : Optimization problem - Profit Maximization

$$\underset{\substack{u_{stor,d}^G, r_{in,d}^G, \\ r_{out,d}^G}}{\operatorname{maximize}} \sum_{d \in \mathcal{D}} w_d \cdot \left[r_{out,d}^G \cdot \pi_d^{G^*} - r_{in,d}^G \cdot \left(\pi_d^{G^*} + C_{in}^G \right) \right]$$
(5a)

subject to

$$r_{in,d}^G \le T_{in}^G \cdot K_{stor}^G \qquad \forall d \quad (\lambda_{stor,d}^{G,1}),$$
 (5b)

$$r_{out,d}^G \le T_{out}^G.K_{stor}^G \qquad \forall d \quad (\lambda_{stor,d}^{G,2}),$$
 (5c)

$$u_{stor,d}^G \le K_{stor}^G \qquad \forall d \quad (\lambda_{stor,d}^{G,3}),$$
 (5d)

$$u_{stor,d}^G = u_{stor,d-1}^G + w_d \cdot \left(r_{in,d}^G - r_{out,d}^G\right) \quad \forall d \quad (\lambda_{stor,d}^{G,4}), \tag{5e}$$

$$0 \le r_{in,d}^G, \quad 0 \le r_{out,d}^G, \quad 0 \le u_{stor,d}^G \quad \forall d$$
 (5f)

METHODOLOGY EQUATIONS – GAS MARKET

Gas Market Clearing Constraint

$$\forall d, \quad D_d^G = a_d^G - b_d^G . \pi_d^{G^*} \qquad a_d^G > 0, b_d^G > 0 \tag{6}$$

$$\forall d, \quad 0 \le \sum_{p} q_{p,d}^{G} - \left(D_{d}^{G} + \sum_{p} \frac{q_{p,SMR,d}^{H}}{\gamma_{SMR}} + \sum_{p} \sum_{h \in \mathcal{H}} \frac{q_{p,CCGT,d,h}^{E}}{\gamma_{CCGT}} \right) + \left(r_{out,d}^{G} - r_{in,d}^{G} \right) \perp \pi_{d}^{G^{*}} \ge 0 \quad (7)$$

METHODOLOGY EQUATIONS – H2 MARKET

H2 Producer: Optimization problem - Profit Maximization

$$+ \sum_{d \in \mathcal{D}, h \in \mathcal{H}} w_d.w_h. \left[q_{p,PTG,d,h}^H. \left(\pi_d^H - \frac{1}{\gamma_{PTG}}.\pi_{d,h}^{E^*} \right) \right]$$
 (8b)

subject to

$$q_{p,SMR,d}^H \le K_{p,SMR}^H \qquad \forall d \qquad (\lambda_{p,d}^{H,1}), \tag{8c}$$

$$q_{p,PTG,d,h}^{H} \leq K_{p,PTG}^{H} \qquad \qquad \forall d,h \quad (\lambda_{p,d,h}^{H,2}), \tag{8d}$$

$$0 \le q_{p,SMR,d}^H, \quad 0 \le q_{p,PTG,d,h}^H \qquad \forall d, h \tag{8e}$$

METHODOLOGY EQUATIONS – H2 MARKET

H2 Storage : Optimization problem – Profit Maximization

$$\underset{v_{stor,d}, r_{in,d}}{\operatorname{maximize}} \sum_{d \in \mathcal{D}} w_d \cdot \left[r_{out,d}^H \cdot \pi_d^{H^*} - r_{in,d}^H \left(\pi_d^{H^*} + C_{in}^H \right) \right]$$
(9a)

subject to

$$r_{in,d}^H \le T_{in}^H . K_{stor}^H \qquad \forall d \quad (\lambda_{stor,d}^{H,1}),$$
 (9b)

$$r_{out,d}^H \le T_{out}^H . K_{stor}^H \qquad \forall d \quad (\lambda_{stor,d}^{H,2}),$$
 (9c)

$$u_{stor,d}^{H} \le K_{stor}^{H}$$
 $\forall d \ (\lambda_{stor,d}^{H,3}),$ (9d)

$$u_{stor,d}^{H} = u_{stor,d-1}^{H} + w_d \cdot \left(r_{in,d}^{H} - r_{out,d}^{H}\right) \quad \forall d \quad (\lambda_{stor,d}^{H,4}), \tag{9e}$$

$$0 \le r_{in,d}^H, \quad 0 \le r_{out,d}^H, \quad 0 \le u_{stor,d}^H \quad \forall d$$
(9f)

METHODOLOGY EQUATIONS – H2 MARKET

H2 Market Clearing Constraint

$$\forall d, \quad D_d^H = a_d^H - b_d^H . \pi_d^{H^*} \qquad a_d^H > 0, b_d^H > 0 \tag{10}$$

$$\forall d, \quad 0 \le \sum_{p} \left(q_{p,SMR,d}^{H} + \sum_{h \in \mathcal{H}} w_{h} \cdot q_{p,PTG,d,h}^{H} \right) - D_{d}^{H} + \left(r_{out,d}^{H} - r_{in,d}^{H} \right) \perp \pi_{d}^{H}^{*} \ge 0$$
 (11)

METHODOLOGY MARKET POWER REPRESENTATION

Price in the agent's optimization problem :
$$\pi=(1-\delta).\pi^*+\delta.\Pi(.)$$

Market clearing Inverse demand price function

The parameter δ denotes the player's degree of market power.

 $\delta=0 \ o \ \pi=\pi^*$: The agent bases its operations on the market clearing price

 $\delta=1 \to \pi=\Pi(.)$: The agent knows the inverse demand function and adapt its production accordingly, thus influencing the market price

PRELIMINARY RESULTS IMPACT OF PTG ON PRODUCTION AND DEMAND

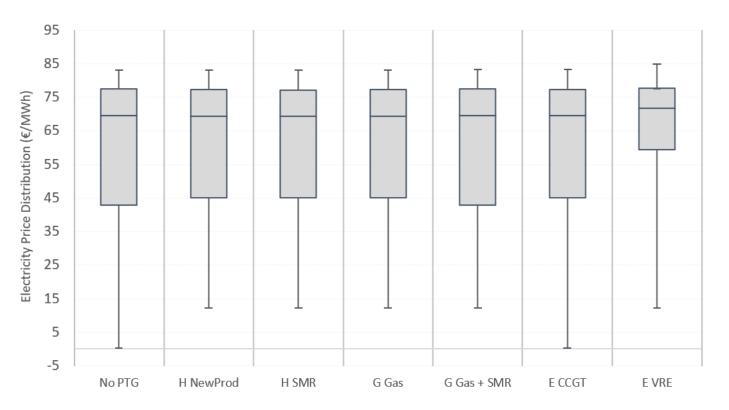
(a) Comparison of annual production by sector

		CO-NoPTG	CO-H NewProd	
Electricity	VRE	87.71	87.71	
	CCGT	14.00	14.09	
Gas		297.79	293.20	
Hydrogen	SMR	16.52	13.07	
	PTG	0	5.23	

(b) Comparison of annual demand by sector

		NoPTG	H NewProd
	Consumers	100.46	94.33
Electricity	Elec -> $H2$	0	7.47
	Curtailment	1.25	0
Gas	Consumers	246.91	247.93
	Gas -> Elec	23.34	23.49
	Gas -> H2	27.53	21.79
Hydrogen		16.52	18.30

PRELIMINARY RESULTS MARKET SHARES IN THE HYDROGEN MARKET


Table 4: Market shares in the hydrogen market by scenario (%)

(Note: In each scenario, asterisks signal an integrated multi-market player operating the two technologies)

	NoPtG	H-NewProd	H-SMR	G-Gas	G- Gas + SMR	E-CCGT	E-VRE
G-Gas+SMR	80.2	62.8	66.2	62.8	52.8*	67.9	47.7
H-SMR	19.8	8.6	4.5*	8.6	18.9	11.2	0.11
PtG owner	0.0	28.6	29.3*	28.6	28.3*	20.9	52.19

- In all scenarios, the supply of SMR-based hydrogen is dominated by the vertically integrated firm G-Gas+SMR.
- In all scenarios except "E-VRE," G-Gas+SMR's strategic advantage is powerful enough to dominate the entire hydrogen market.

RESULTS — PTG AS A PROVIDER OF FLEXIBILITY

Electricity price distribution (€/MWh)

- PTG consumes electricity generated from renewable sources, increasing electricity prices when they are low.
- It increases off-peak prices, resulting in a lower volatility of electricity prices.
- PTG eliminates periods of surplus electricity: except for the "E CCGT" case, the cases with PTG no longer have zero price occurrences, which occur when part of the electricity produced is spilled.

PRELIMINARY RESULTS PROFIT GAINED FROM PTG OWNERSHIP

Table 6: The incremental sectoral profits gained from PtG ownership (Bn €)

(Note: A dash signals that this firm does not operate in this energy market)

	H-NewProd	H-SMR	G-Gas	G-Gas+SMR	E-CCGT	E-VRE
In the electricity market		_			0.00	+0.91
In the gas market			-0.04	-0.12		
In the hydrogen market	+0.17	+0.14	+0.17	+0.15	+0.17	-0.07
Total incremental profit	+0.17	+0.14	+0.13	+0.03	+0.17	+0.84

- G-Gas+SMR obtains the smallest total incremental gain in profit and that gain is tiny.
 - -> G-Gas + SMR may not be ideally positioned to develop PtG.
- The largest gain is that of E-VRE
 - -> VRE producers may value PtG operations more than a pure player
- E-VRE strategically operates its electrolyzer at a loss, but that loss is more than compensated by the extra profits earned in the power market.
 - -> an integrated management of its PtG operations must be preferred to a segmented approach whereby PtG is operated as a separate profit center

PRELIMINARY RESULTS PTG CAPITAL RECOVERY FACTOR AND WELFARE

Comparison between overall welfare impact of PTG and the capital recovery factor of PTG (CRF):

$$CRF = \frac{i * (1+i)^n}{(1+i)^n - 1}$$

With i discount rate and n the expected lifetime of the investment in years (Li & Mulder, 2021).

With n = 25 years, i = 5%, and an investment cost of EUR 1 million/MWh, we get a yearly capital cost of PTG equals to EUR **0,71 billion**.

- > The yearly capital cost of PTG is higher than the overall welfare obtained by adding PTG to the system (negative long-term welfare).
- ➤ If we look at the additional profit obtained by the actors owning the PTG, only the E_VRE could have a personal incentive in investing in the PTG. For the others, the short-term welfare is insufficient to offset the investment cost of the PTG.