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The risk of a major nuclear accident: calculation and perception 

of probabilities 

 

François Lévêque 

 

 

 

 

The accident at Fukushima Daiichi, Japan, occurred on 11 March 2011. This nuclear 

disaster, the third on such a scale, left a lasting mark in the minds of hundreds of millions 

of people. Much as Three Mile Island or Chernobyl, yet another place will be permanently 

associated with a nuclear power plant which went out of control. Fukushima Daiichi 

revived the issue of the hazards of civil nuclear power, stirring up all the associated 

passion and emotion. 

The whole of this paper is devoted to the risk of a major nuclear accident. By this we mean 

a failure initiating core meltdown, a situation in which the fuel rods melt and mix with the 

metal in their cladding1. Such accidents are classified as at least level 5 on the 

International Nuclear Event Scale. The Three Mile Island accident, which occurred in 1979 

in the United States, reached this level of severity. The explosion of reactor 4 at the 

Chernobyl plant in Ukraine in 1986 and the recent accident in Japan were classified as 

class 7, the highest grade on this logarithmic scale2. The main difference between the top 

two levels and level 5 relates to a significant or major release of radioactive material to the 

environment. In the event of a level-5 accident, damage is restricted to the inside of the 

plant, whereas, in the case of level-7 accidents, huge areas of land, above or below the 

surface, and/or sea may be contaminated3. 

Before the meltdown of reactors 1, 2 and 3 at Fukushima Daiichi, eight major accidents 

affecting nuclear power plants had occurred worldwide4. This is a high figure compared 

with the one calculated by the experts. Observations in the field do not appear to fit the 

results of the probabilistic models of nuclear accidents produced since the 1970s. Oddly 

enough the number of major accidents is closer to the risk as perceived by the general 

public. In general we tend to overestimate any risk relating to rare, fearsome accidents. 

What are we to make of this divergence? How are we to reconcile observations of the real 

                                                
1 We have adopted a broad definition of what constitutes a major accident. Strictly speaking this term is 
limited to a core meltdown followed by massive discharge. 
2 The severity of an event increases tenfold, at each level: accordingly level 2 is 10 times worse than 
level 1, level 3 is 10 times worse than level 2, and so on. 
3 The term ‘major accident’ used in this part is more general than its usage in the terminology 
established by the INES scale. In this ranking only level-7 accidents rate as ‘major’; a level-5 core melt 
counts as an ‘accident with wider consequences’, whereas its level-6 counterpart counts as a ‘serious 
accident’.   
4 SER (1959), Enrico Fermi 1 (1961), Chapelcross 2 (1967), Saint-Laurent A1 (1969) and A2 (1980), 
Three Mile Island 2 (1979), Chernobyl 4 (1986), Greifswald 5 (1989). List taken from Thomas B. 
Cochran, 2011, Fukushima Nuclear Disaster and Its Implication for US Nuclear Power Reactors. This 
figure only includes grid-connected reactors. It does not include accidents on research reactors such as 
the SL-1 meltdown in Idaho, USA, in 1961.  
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world, the objective probability of an accident and the subjective assessment of risks? Did 

the experts err on the side of optimism? How should risk and its perception be measured?  

 

Calculating risk 

In a companion paper5 we made the tentative suggestion that the cost of accidents was 

low, indeed negligible, when compared with the value of the electricity generated. This 

introductory conclusion was based on a scratch calculation drawing on upper-case 

assumptions, multiplying the (ill) chance of a disaster of 1 in 100,000 years of a reactor’s 

operation by damage costing €1,000 billion. The cost of such an accident amounts to €1 

per MWh generated. Setting aside the back of an envelope, which lends itself to quick, 

simple calculations, we shall now look at the matter in greater detail, from both a 

theoretical and an empirical standpoint. 

 

At a cost of €0.10 per MWh, €1 per MWh or €10 per MWh? 

Is the cost per MWh of an accident negligible, at less than 10 euro cents? Or is it just 

visible, at about €1, or rather a significant fraction of the several tens of euros that a MWh 

costs to generate? How does our scratch calculation, in the companion paper6, compare 

with existing detailed assessments and how were the latter obtained? 

Risk is the combination of a random event and a consequence. To calculate the risk of an 

accident, the probability of its occurrence is multiplied by the damage it causes7. Much as 

many other forms of disaster, a major nuclear accident is characterized by an infinitesimal 

probability and huge damage. A frequently used short cut likens the former to zero, the 

latter to infinity. As we all know, multiplying zero by infinity results in an indeterminate 

quantity. The short cut is easy but idiotic. The probability of an accident is not zero; 

unfortunately some have already occurred. Nor yet is the damage infinite. Even the worst 

case accident on a nuclear reactor cannot lead to the destruction of the planet and 

humankind. (Would the latter outcome, following a collision with an asteroid 10 

kilometres in diameter, for example, or quarks going out of control in a particle 

accelerator, correspond to infinite damage?8) Mathematically, multiplying a very small 

number by a very large one always produces a determinate value. So nuclear risk 

assessments seek to approximate the two numbers and then multiply them. 

In its worst-case scenario ExternE, the major European study of the external effects of 

various energy sources published in 1995, estimated the cost of an accident at €83 billion. 

                                                
5 François Lévêque, Estimating the costs of nuclear power: benchmarks and 
uncertainties, i3 Working Paper 13-ME-01, May 2013. 
6 François Lévêque, Estimating the costs of nuclear power: benchmarks and 

uncertainties, i3 Working Paper 13-ME-01, May 2013. 
7 Other risk dimensions such as the duration and reversibility of damage are sometimes taken into 
account too. 
8 In his book on catastrophes Richard A. Posner estimates it at $600 trillion (6 followed by 14 zeros). 
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This estimate was based on the hypothetical case of a core melt on a 1,250 MW reactor, 

followed two hours later by emissions lasting only an hour containing 10% of the most 

volatile elements (cesium, iodine) of the core. The population was exposed to a collective 

dose of 291,000 person-sieverts. This contamination ultimately caused about 50,000 

cancers, one-third of which were fatal, and 3,000 severe hereditary effects. In a few days it 

caused 138 early diseases and nine fatalities. The impact on public health accounted for 

about two-thirds of the accident’s cost. The study also assessed the cost of restrictions on 

farming (lost production, agricultural capital, etc.), and the cost of evacuating and re-

housing local residents. This string of figures gives only a tiny idea of all the data required 

to estimate the cost of a nuclear accident. It merely lists some of the main parameters, in 

other words those that may double, or indeed multiply by ten, the total cost of economic 

damage. Let us now take a closer look. 

In theory the extent of emissions may reach the release of the entire contents of the 

reactor core. The explosion at Chernobyl released the equivalent of 30% of the radioactive 

material in the reactor, a huge, unprecedented proportion. Emissions from Fukushima 

Daiichi’s three damaged reactors are estimated to have amounted to 10 times less than the 

amount released in Ukraine. The collective dose reflects emissions measured in person-

sieverts and the sum of the radiation absorbed by groups of people subject to varying 

levels of exposure. The collective dose depends on emissions, but also the weather 

conditions and population density. Depending on whether radioactivity is deposited by 

rain on an area of woodland or a city, the number of people exposed will obviously vary. 

The person-Sv unit is used because it is generally assumed that the biological effects of 

radiation follow a linear trend: the health effect of exposure of 20,000 people to 1 

millisievert, or 20 people to 1 sievert is consequently taken as being the same. This 

approach is based on the assumption that even the lowest level of exposure is sufficient to 

increase the number of fatalities and diseases, in particular cancers. It is controversial 

because it implies that the natural radioactivity that exists in some areas, such as Brittany 

in France, exposes local residents to a specific hazard. For our present purposes we shall 

treat it as an upper-case hypothesis, in relation to one setting a threshold below which 

ionizing radiation has no effect. Translating the collective dose into figures for fatalities 

and diseases then depends on the effect it is decided to use. For example positing a 5% 

risk factor means that out of 100 people exposed, five will be affected by the disease under 

consideration. The final step in assessing health effects involves choosing a monetary 

value for human life. Without that it is impossible to add the damage to public health to 

the other consequences, such as population displacement or soil decontamination. There 

are several methods for calculating the value of human life, based for example on the 

amount allocated to reducing road accidents or the average contribution of a single 

individual to their country’s economy, in terms of gross domestic product9. 

The assumptions used in studies of the quantity and dispersion of emissions, the collective 

dose received, the risk factor, the value of human life, the number of people displaced, or 

indeed the amount of farmland left sterile all contribute to creating substantial disparities 

                                                
9 These methods are open to dispute and actively debated. Readers wishing to pursue the matter may 
refer to Chapter 4 of W. Kip Viscusi’s Rational Risk Policy, Oxford University Press, 1998. 
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in estimates10. Just looking at two indicators – the number of additional cancers and the 

total cost of an accident – is sufficient to grasp the scale of variations. In the ExternE study 

cited above, the scenario corresponding to the largest volume of emissions led to 49,739 

cancers and cost €199583.2 billion, whereas the scenario with the lowest emissions led to 

2,380 cancers and cost €19953.3 billion. In a recent German study11, the low-case values 

calculated were 255,528 cancers and €2011199 billion – which corresponds to frequently 

quoted orders of magnitude. But the high-case figures reported by the study are far larger, 

with 5.3 million cancers and €20115,566 billion. It is unusual for experts to produce such a 

high estimate, with a single accident leading to millions of cancers and total damage 

amounting to thousands of billions of euros. However it is close to the orders of magnitude 

reported in the first studies carried out in the 1980s12 after the Chernobyl disaster. 

Allowance must nevertheless be made for such extreme figures, which correspond to 

worst-case scenarios. For example in the German study just mentioned, the weather 

conditions were strong wind, changing in direction, and light rain (1 millimetre per hour). 

The rain and wind severely contaminated an area of 22,900 square kilometres (a circle 

about 85 kilometres in diameter), occupied by millions of people who had to be evacuated. 

The most catastrophic scenarios obviously correspond to accidents at power plants in 

densely populated areas. Some 8.3 million people live inside a 30-kilometre radius round 

the nuclear power plant at Karachi, Pakistan. Worldwide there are 21 nuclear plants with 

more than a million people living within a 30-kilometre radius around them13. 

Rather than picking a random number from the various damage assessments, the right 

approach would be to take these uncertainties into account, particularly the ones which 

affect the collective dose and risk factor. An accident having occurred with a given 

quantity of emissions, we now need to plot a curve indicating, for example, that there is a 

1% probability of the event causing economic losses in excess of €1,000 billion, a 10% 

probability of losses ranging from €500 billion and €999 billion, or indeed a 5% 

probability of losses below €1 billion. In conceptual terms an exercise of this sort is easy 

to carry out. But in practice the problem is obtaining sufficient data on variations in the 

determinants of damage. This is the case for weather parameters: the wind and rainfall 

conditions have been statistically established for each plant. But for many other factors, 

the scale of their variation is unknown. In which case it must be modelled on the basis of 

purely theoretical considerations. 

There have been too few accidents in the past with significant emissions to allow 

observation of the statistical variations affecting their impacts, such as the frequency of 

cancers. We do not even know exactly how many fatal cancers followed the Chernobyl 

disaster. This is not so much due to a lack of epidemiologic studies or monitoring of the 

local population: plenty of studies have been carried out since the accident; nor yet their 

manipulation inspired by on some conspiracy theory. On the contrary the uncertainty is 

due to the fact that cancer is a very common cause of death and that cancers caused by 

                                                
10 Some recent estimates (Institut de Radioprotection et de Sûreté Nucléaire, 2013) have also sought to 
estimate direct and indirect macroeconomic consequences, as well as the impact on society as a whole 
and on private individuals, through the emotional and psychological disturbance caused by an accident. 
11 Versicherungsforen Leipzig, Calculating a risk-appropriate insurance premium to cover third-party 
liability risks that result from operation of nuclear power plants, commissioned by the German 
Renewable Energy Federation, April 2011.  
12 op. cit.  
13 Reactors, residents and risk, Nature online, 21 April 2011, doi: 10.1038/472400a. 
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ionizing radiation are difficult to isolate. According to the Chernobyl Forum – a group of 

international organizations – of the 600,000 people who received the highest radiation 

doses (emergency recovery workers, or liquidators, and residents of the most severely 

contaminated areas), 4,000 fatal cancers caused by radiation are likely to be added to the 

100,000 or so cancers normally expected for a population group of this size. Among the 5 

million people exposed to less severe contamination and living in the three most affected 

countries (Ukraine, Belarus and the Russian Federation), the Forum forecasts that the 

number of additional fatal cancers will amount to several thousand, 10,000 at the very 

most. This estimate is one of the lowest in the literature. For the whole population of the 

contaminated areas in the three countries, estimates vary between 4,000 and 22,000 

additional deaths. It should be noted that these figures do not take into account emissions 

outside the officially contaminated areas, nor in other parts of these countries, nor yet in 

Europe or the rest of the world. The second set of estimates is less reliable, more 

controversial, as radiation exposure per person is very low. Only the hypothesis of a linear 

relationship between dose and effect leads to additional fatal cancers outside the three 

areas, estimated for example at 24,700 by Lisbeth Gronlund, a senior scientist at the US 

Union of Concerned Scientists14. 

If we accept the rough estimate suggested in my previous paper15, with a €1,000 billion 

loss for a major nuclear accident, we would be somewhere in the upper range of estimates. 

But also in relation to other accidents in the past: Three Mile Island cost an estimated $1 

billion and Chernobyl several hundreds of billions of dollars16. The provisional estimate 

for Fukushima Daiichi is about $100 billion17. 

 

Calculating the frequency of major accidents 

We shall now turn to the task of putting figures on the probability of a major nuclear 

accident. The ExternE study reports a probability of a core melt of 5x10-5 per reactor-

year18, in other words a 0.00005 chance of an accident on a reactor operating for one year; 

or alternatively, due to the selected unit, a frequency of five accidents for 100,000 years of 

reactor operation, or indeed a frequency of one accident a year if the planet boasted a fleet 

of 100,000 reactors in operation. Following a core melt, two possibilities are considered: 

either an 8-in-10 chance that radiation will remain confined inside the reactor 

containment; or a 2-in-10 chance that part of the radiation will be released into the 

                                                
14 How many cancers did Chernobyl really cause? Monthly Review Magazine 
http://mrzine.monthlyreview.org/2011/gronlund070411.html 
15 François Lévêque, Estimating the costs of nuclear power: benchmarks and 

uncertainties, i3 Working Paper 13-ME-01, May 2013. 
16 Belarus, for instance, has estimated the losses over 30 years at $235 billion. Footnote 6, on page 33 
of Chernobyl’s Legacy: Health, Environmental and Socio-Economic Impacts, published by The Chernobyl 
Forum.  
17 Estimate, ranging from $70 billion to $250 billion, published by the Japan Center for Economic 
Research. There is no estimate of the effects on public health. 
http://newsonjapan.com/html/newsdesk/article/89987.php 
18 This figure is taken from the very first studies carried out by EDF in the late 1980s on its 900 MW 
nuclear reactors. In its subsequent, more detailed studies, the figure was 10 times lower, at about 5x10-
6. But in both cases the relevant studies made no allowance for external initiating factors such as 
earthquakes or floods.  
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environment. In the first case damage is estimated at €431 million, in the second case at 

€83.252 billion. As we do not know which of the two scenarios will actually happen, the 

forecast damage is calculated using its expected value, in other words: 0.8 x 431 + 0.2 x 

83252, which equals roughly €17 billion. This simple example illustrates two connected 

concepts, which are essential to understanding probabilistic analysis of accidents: 

conditional probability and event trees. 

 

 

Conditional probability, event trees and probabilistic safety assessment 

The probability that in the event of core melt the radiation will remain confined inside the 

reactor containment is 0.8 (8-in-10 chance). This is a conditional probability. It is 

commonly denoted using a vertical bar: p(release|melt). In a general way, A and B being 

two events, it is written as p(A|B), which reads as ‘the probability of A given B’. 

Conditional probability is a key concept. In Section 3 we shall see that it gave rise to a 

fundamental mathematical formula, known as Bayes’ rule, or theorem. It enables us to 

update our appraisals on the basis of new information. In the present case conditional 

probability is used as a tool for estimating the probability of various sequences of events, 

and for estimating the cost of the event among their number which leads to a major 

accident. For example, p(release|melt|cooling system failure|loss of emergency power 

source|protective wall round plant breached by wave|7.0 magnitude quake). All the 

possible sequences form an ‘event’ tree, with a series of forks, each branch being assigned 

a probability, for example p for one branch and therefore (1-p) for the other19. Try to 

picture an apple tree growing on a trellis, and the route taken by sap to convey water to 

each of its extremities, one of which is diseased. The event tree maps the route taken by a 

water molecule which reaches the diseased part without taking any of the other possible 

routes. 

Probabilistic assessment of nuclear accidents is based on this type of tree structure. It 

seeks to identify all the possible technical paths leading to an accident, then assigns a 

probability to the faulty branch at each fork. The starting point is given by the probability 

of a factor triggering an accident, for example a 1-in-1,000 chance per year of a quake 

resulting in peak ground acceleration of 0.5g at the site of the plant. The outcome is the 

occurrence of core melt, or the massive release of radiation into the environment 

following meltdown. There may be many intermediate forks, concerning both technical (1-

in-10,000 chance that a pump will break down for each year of operation) and human 

failures (1-in-5,000 chance that an operator disregards a flashing light on the control 

panel). 

 

 

                                                
19 If there are only two options – such as drawing a red ball or a black ball from an urn only containing 
balls of these two colours – once you know the probability of one option, the other can be deduced, the 
sum of the two being equal to 1. So if the probability of drawing a red ball is 1/3, the probability of not 
drawing a red ball is 2/3; as all the non-red balls are black, the probability of drawing a black ball is 2/3. 
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The first large-scale probabilistic assessment20 was carried out in the US in the 1970s. It 

was led by Norman Rasmussen, then head of the nuclear engineering department at the 

Massachusetts Institute of Technology. The study was commissioned by the Atomic 

Energy Commission, which was keen to reassure public opinion by demonstrating that the 

risks, albeit real were actually infinitesimal. To this end it circulated a misleading 

summary of the study, which over-simplified its findings. To impress readers the 

document made dubious comparisons – not contained in the main report – with other 

risks. For example it asserted that the likelihood of a person dying as a result of a nuclear 

accident was about the same as being hit by a meteorite. Such distortion of the report and 

some of the errors it contained prompted a major controversy21. The Nuclear Regulatory 

Commission, which was set up to separate nuclear safety from the other missions 

allocated to the AEC, rejected the contents of the report summarized in 1979. But 

ultimately the Rasmussen study is remembered for the work done establishing a detailed 

method, rather than the values it calculated for probabilities and damages. Since then 

probabilistic assessment has become more rigorous and an increasing number of such 

safety studies have been carried out. 

The first probabilistic safety assessments changed several deeply rooted beliefs. They 

highlighted the possible input of operators, capable of either interrupting a sequence of 

material faults, or in some cases making it worse. Accidents and preventive measures do 

not only have a technical dimension. Rasmussen and his fellow scientists showed that the 

loss of liquid through small breaks in the primary cooling system could also be a frequent 

cause of accidents, largely disregarded until then. Several years later the Three Mile Island 

disaster prompted new interest in probabilistic safety assessment. Since then its scope has 

broadened and it has grown more complex. It has taken into account additional factors 

which may initiate an accident, both natural and human (for example the risk of falling 

aircraft). Probabilistic safety assessments have now been carried out on all the nuclear 

plants in the US and many others worldwide. Similarly reactor engineering firms carry out 

such studies for each reactor model while it is still in the design stage. 

The main purpose of probabilistic safety assessments is not to estimate the probability of 

an accident on a specific plant or reactor, but rather to detect exactly what may go wrong, 

to identify the weakest links in the process and to understand the faults which most 

contribute to the risk of an accident. In short such studies are a powerful instrument for 

preventing and ranking priorities, focusing attention on the points where efforts are 

required to improve safety. But our obsession with single numbers has pushed this goal 

into the background and all we remember of these studies is the final probability they 

calculate, namely core-melt frequency. This bias is all the more unfortunate because the 

overall result is rarely weighted by any measure of uncertainty. If no confidence interval is 

indicated, we do not know whether the figure reported – for example one accident per 

100,000 reactor-years –  is very close to the mean value – for example an 8-out-of-10 

likelihood that the accident frequency ranges from 0.9 to 1.1 accidents per 100,000 

reactor-years – or more widely spread, with an 8-out-of-10 likelihood that the frequency 

ranges from 0.1 and 10 accidents per 100,000 reactor-years. Intuitively it is not the same 

                                                
20 US National Regulatory Commission, Reactor Safety Study: An Assessment of Accident Risks in U.S. 
Commercial Nuclear Power Plants [NUREG-75/014 (WASH-1400)], October 1975. 
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risk, but in both cases the mean frequency is the same. In the second case there is some 

likelihood that more than 10 accidents will occur per 100,000 reactor-years, whereas in 

the first case this risk is almost non-existent. Of the studies which have estimated the 

uncertainty, it is worth noting an NRC appraisal carried out in 1990 on five plants. It 

found, for example, that for the two PWRs at Surry (Virginia) the confidence interval for 

the mean frequency of 4.5x10-5 ranged from 1.3x10-4 at its upper limit to 6.8x10-6 at the 

lower limit. The first figure indicates that there is a 5% chance that the value of the 

frequency may be even greater; the second that there is a 5% chance it may be lower. In 

other words, there is a 90% chance that the core-melt frequency is somewhere between 

the two limits. However this interval was not calculated. It was based on the judgement of 

various experts who were questioned. 

The widespread lack of any mention of the distribution on either side of the mean may be 

explained by the method employed. The probabilities assigned to the various branches of 

the tree used to calculate the overall core-melt frequency are selected as best estimates. 

The final number is single, because it is the sum of a succession of single numbers. Safety 

specialists naturally know how to use statistics and calculate uncertainties. They do not 

make do with averages. But they are concerned with the details, because it is here that 

there is scope for improving safety, for example using a probability density function to 

model the failure of a particular type of pump. At this scale, the error and distribution 

parameters – with barbaric names such as standard deviation, mode, variance or kurtosis 

– are generally entered. So why are they not systematically used to obtain an overall core-

melt probability expressed as more than just a single number? The first reason is that 

uncertainty propagation in an event tree is far from trivial, compared to addition or 

multiplication. It is not just a matter of adding up or combining the standard deviations at 

each fork to obtain the one governing core-melt frequency. The second reason is that the 

prime aim of probabilistic safety assessments is not to obtain a final result. Rather they 

focus on the details of each branch. Only in recent years have the specialists started paying 

sustained, systematic attention to presenting the uncertainty affecting the aggregate 

probability of an accident. 

Non-specialists are consequently inclined to think that probabilistic safety assessments 

reveal the true value for accident frequency for a given reactor, whereas in fact this value 

is subject to uncertainty. At best it is possible to offer a confidence interval within which 

the probability of an accident will fall. 

It is worth noting that with advances in reactor technology the probability of a core melt 

has dropped. For example, on its 1,300 MW palier, or step, EDF estimated the core-melt 

frequency as 7.2x10-6. On the following generation, represented by EPR, the results of 

safety studies carried out by Areva and vetted by the British regulator show a core-melt 

frequency of 2.7x10-7 per reactor-year22, almost 20 times lower. In the US an Electric 

Power Research Institute study23 found that the mean core-melt frequency of the [US] fleet 

had dropped by a factor of five since the early 1990s. 

                                                                                                                                          
21 See in particular the criticism voiced by the Union of Concerned Scientists, published in The Risks of 
Nuclear Power Reactors: a Review of the NRC Reactor Safety Study, Henry W. Kendall (dir); Richard B. 
Hubbard, Gregory C. Minor, 1977, 210 pages.   
22 HSE Health and Safety Executive, Nuclear Directorate, Generic Design Assessment – New Civil 
Reactors Build, Step 3, PSA of the EDF and Areva UK EPR division 6, Assessment report n° AR 09/027-P, 
2011. 
23 Safety and Operational Benefits of Risk-Informed Initiatives, EPRI White Paper, February 2008. 
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Divergence between real-world observation of accidents and their frequency as 

predicted by the models 

The Fukushima Daiichi disaster revealed an order-of-magnitude difference between the 

accident frequencies forecast by probabilistic safety assessments and observed 

frequencies24. Since the early 1960s and grid-connection of the first nuclear reactor, 

14,400 reactor-years have passed worldwide. This figure is obtained by adding up all the 

years of operation of all the reactors ever built that generated kWhs, whether or not they 

are still in operation, were shut down earlier than planned or not. In other words the 

depth of observation currently at our disposal is equivalent to a single reactor operating 

for 14,400 years. Given that the global fleet currently numbers about 500 reactors, it may 

make more sense to say that this depth is equivalent to 28.8 years for 500 rectors. At the 

same time, since grid-connection of the first civil reactor, 11 partial or total core-melt 

accidents have occurred, of which three at Fukushima Daiichi. So the recorded core-melt 

frequency is 11 over 14,400, or 7.6x10-4, or indeed an accident for every 1,300 reactor-

years. Yet the order of magnitude reported by probabilistic safety studies ranges from 10-4 

to 10-5, or an accident every 10,000 to 100,000 reactor years. Compared to 1,300 that 

means a ten to hundred-fold divergence between calculated and observed probabilities. 

How can such a large divergence be justified? The reasons are good or bad, trivial or 

complicated. 

The first possible reason is simply bad luck. Just because you score six, five times running 

with the same die, it does not mean it is loaded. There is a 1-in-7,776 chance of this 

sequence with a perfectly balanced die. So experts firmly convinced of the accuracy of 

their models or passionate advocates of nuclear power may set aside the suggestion that 

the calculated frequencies are erroneous, despite them being much lower. Much as with 

the die, 14,400 reactor-years is not enough to obtain a true picture. This reason is 

legitimate in principle but it does mean ignoring observations if there are only a limited 

number. All in all it is not very different from the opposite standpoint which consists in 

discarding probabilistic safety assessments and only accepting observations. The right 

approach is to base our reasoning on data obtained from both observation and modelling. 

Faced with uncertainty, all data should be considered, whether obtained from the field or 

from laboratories. We shall examine this approach in greater depth in the section devoted 

to Bayesian revision of probabilities. 

A variation on the bad luck theory is to point out that the observed frequency actually falls 

within the range predicted by probabilistic assessments. As we saw above, in their 

forecast for the Surry plant, the experts estimated a 5% likelihood that the core-melt 

frequency would exceed 1.3x10-4, in other words an accident every 769 reactor-years. The 

observed value of an accident every 1,300 reactor-years is actually lower than this limit 

value. So convinced experts have no reason to review their position: there is no divergence 

between observations and the model. This stance might carry some weight if core-melt 

frequencies were reported with a confidence interval, but this is not the case. Moreover 

the previous comment still holds true: the upper and lower limits on uncertainty must 

move to accommodate fresh observations. 

                                                
24 See Cochran and Repussard. 
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The second possible reason is that the probabilistic assessments are not exhaustive. The 

event trees they examine and assess do not cover all the possible scenarios. The first 

safety studies only focused on internal initiating events, such as a device failure. The 

sequences of faults initiated by an earthquake or flood which might lead to core-melt have 

only gradually been taken into account. The validity of calculated frequencies is restricted 

to the perimeter under study. If no allowance is made for the risk of a falling aircraft the 

frequency is lower. The studies which do take it into account estimate that it is lower than 

10-7 per reactor-year25. On its own this figure is too small to significantly change core-melt 

frequency which is much higher. All this example shows is that by adding scenarios the 

frequency gradually increases. Little streams make big rivers. The Fukushima Daiichi 

accident is a concrete illustration of missing scenarios. It made people realise that spent-

fuel pools could cause a massive release of radioactive material into the atmosphere. 

Probabilistic safety assessments do not usually register a break in the water supply to 

these pools as a possible initiating event. At Fukushima Daiichi, much as other Japanese 

nuclear plants, the possibility that two risk factors – an earthquake and a tsunami – might 

coincide was apparently not studied either. Readers may be surprised by this oversight. 

Tidal waves and quakes are frequent in Japan and the two events are connected: one 

triggers the other. In fact the scenario which was not considered (nor its probability 

assessed) was the failure of the regional electricity network, knocked out by the quake, 

combined with flooding of the plant, due to the tsunami. With the surrounding area 

devastated, the backup diesel pumps underwater and the grid down, the power plant was 

left without an electricity supply for 11 days. Safety assessments generally assume power 

will be restored within 24 hours. 

But is it possible for probabilistic studies to take into account all possible scenarios? 

Obviously not. It is impossible to imagine the unimaginable or to conceive the 

inconceivable: joking apart, there is an intrinsic limit to probabilistic analysis: it can be 

applied to risk and uncertainty, not to situations of incompleteness. 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                
25 EDF studied the risk of falling aircraft for the Flamanville 3 reactor. The probability of an attack on one 
of its safety functions is 6.6x10-8 per reactor-year. See EDF PSA 
http://www.edf.com/html/epr/rps/chap18/chap18.pdf. 
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Risk, uncertainty and incompleteness 

These basic concepts may be explained using the example of an urn containing different 

coloured balls. We shall start from what is a certainty. It may be described using the case 

of an urn only containing balls of the same colour, red for instance. We know that if we 

pick one ball out of the urn, it will inevitably be red. The outcome is a foregone conclusion. 

Risk corresponds to an urn of which the content is known, 30 red balls and 60 white, for 

instance. We can no longer be sure of picking out a red ball, but we do know that we have 

a 1-in-3 chance of picking a red, a 2-in-3 chance of picking a white. In the theoretical 

jargon, we would say that all the states of the world (or indeed the universe of events) are 

known with certainty, and for each state or event there is a corresponding probability, 

also known with certainty. Uncertainty may be represented by an urn known to contain 30 

red balls, but we do not know whether the 60 others are black or white. So only the 

probability of picking a red ball (1-in-3) is known. On the other hand all the states of the 

world (picking a red, black or white ball) are known. There is no possibility of a surprise, 

such as picking a blue ball. Lastly, incompleteness corresponds to an urn full of balls of 

unspecified colours. We may pick a white or a purple ball, perhaps even a multicoloured 

one. Unlike risk and uncertainty, in a situation of incompleteness all the states of the world 

are not known. So probability theory cannot apply. A probability cannot be assigned to an 

unknown event26. 

This presentation makes a distinction between uncertainty and risk. However this 

vocabulary is not universally accepted and must be handled with care. The term 

‘uncertainty’ is often used with a broader sense, which encompasses the notion of risk. 

The part of uncertainty which is not covered by the term ‘risk’ is then referred to as 

‘ambiguity’ or ‘non-specific uncertainty’27. But such quibbles are of secondary importance, 

the priority being to draw a line between situations in which we have probabilities for all 

the events under consideration, and situations in which we do not. In the second case it is 

necessary to make assumptions in order to assign probabilities to events for which they 

are unknown. Returning to the urn containing 30 red and 60 black or white balls. A simple 

way of assigning a probability to picking a black ball and a white ball would be to posit 

that the two events are of equal likelihood, namely a 1-in-2 chance of picking a black or 

white ball from among the 60 which are not red28. The probability of picking a black, white 

or red ball, from among the 90 balls in the urn, is 1-in-3 (30/90). In other words, 

ignorance is treated by assuming equiprobability: if n outcomes are possible, and if we 

have no idea of their chances of occurring, we consider them to be equiprobable (equally 

probable) and equal to 1/n. This approach provides a way of treating non-specific 

uncertainty as a risk, thus making it possible to apply the calculation of probabilities to 

situations of uncertainty in general (in other words including non-specific uncertainty). 

                                                
26 Nor is it possible to assign probabilities to the share of known events in an incomplete whole. The sum 
of all probabilities must be 1, but as the probability associated with the sub-set of disregarded events is 
not known, it cannot be subtracted from 1 to obtain the probability assigned to known events.  
27 In an even more comprehensive definition of uncertainty, this term also encompasses incompleteness. 
The term ‘radical uncertainty’ may be used to distinguish this form of uncertainty from non-specific 
uncertainty. 
28 The intuition underpinning this hypothesis is that all the distributions of black and white balls (1 white, 
59 black; 2 white, 58 black; ...; 30 white, 30 black; ..... 59 white, 1 black) are possible, and that there 
is nothing to suggest that one is more probable than another. It is no more likely that the distribution 
contains more black than white balls, than the opposite. 
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The third reason is that every event is unique, so probability theory cannot apply. The 

divergence between the observed frequency of accidents and their calculated probability 

is not a matter of bad luck, but results from the impossibility of applying probability 

theory to exceptional or one-off events. This reason is intuitive but must nevertheless be 

discarded. 

In our minds the concept of probability is associated with that of frequency, and the law of 

large numbers too. We all learned at school that probability is the ratio of favourable or 

unfavourable outcomes to the number of possible cases. We all remember having to apply 

this definition to the observation of rolling dice or drawing cards. We also recall that 

calculating a probability requires the operation to be repeated a large number of times. 

We need to toss a coin several dozen times to grasp that it will land on one or the other 

side roughly the same number of times. This frequency-based approach to calculating 

probabilities is the best known and it does not work without data. But there are other 

ways of, or theories for, analyzing probabilities, which do away with the need for repeated 

experiments, and consequently a large number of observations, to calculate frequencies. It 

is quite possible to carry out probabilistic analysis without any observation at all. The 

reader may recall the wager made by Pascal. The thinker was puzzled about the right 

approach to adopt regarding uncertainty of the existence of God. Here there could be no 

repeated events. The existence of a Supreme Being was a singular proposition, which 

Pascal subjected to probabilistic reasoning. 

So probabilistic logic can be applied to one-off events. The concept of probability refers to 

a degree of certainty regarding the veracity of a proposition. It applies for instance to the 

reasoning of a court judge who takes a different view of the guilt of the accused if it is 

known that the latter lacks an alibi or that traces of his or her DNA have been found on the 

body of the victim. John Maynard Keynes defined probability theory thus: ‘Part of our 

knowledge we obtain direct; and part by argument. The theory of probability is concerned 

with that part which we obtain by argument, and it treats of the different degrees in which 

the results so obtained are conclusive or inconclusive.’ This reference to the author of The 

General Theory of Employment, Interest and Money [1936] may surprise readers 

unfamiliar with the work of the Cambridge economist. A Treatise on Probability [1921] 

was one of the first works published by Keynes, but is still well worth reading even now. 

The theory of subjective probability opens up a second approach to probability, not based 

on frequency. It has been advocated and developed by three leading figures in economic 

science: Britain’s Frank Plumpton Ramsey, already cited with reference to discount rates; 

Bruno de Finetti, from Italy; and an American, Leonard Jimmie Savage. These authors 

understand the concept of probability as the belief which an individual invests in an event, 

regardless of whether or not the event recurs. According to Finetti, probability is the 

degree of confidence of a given subject in the realization of an event, at a given time and 

with a given set of data29. So probability is not an objective measurement, because it 

depends on the observer and his or her knowledge at that time. Probability is thus 

assimilated to the odds a punter will accept when betting on a given outcome, odds at 

which he or she will neither lose nor win money. Imagine, for example, that two nuclear 

experts are asked to bet on the likelihood of a nuclear accident occurring in Europe in the 

                                                
29 Quoted by Simona Morini, Bruno de Finetti: l’origine de son subjectivisme, Journal Electronique 
d’Histoire des Probabilité et de la Statistique, Vol. 3, n°2, December 2007, p. 1-16. 
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course of the next 30 years. One agrees to odds of 100 to 1, the other 120 to 1, or 200 to 1. 

So according to subjective probability theory anyone can bet on anything. However we 

should not be misled by the terms ‘belief’ and ‘subjective’. The odds accepted do not 

depend on a person’s mood or state of mind, but are supposed to be based on their 

knowledge. Furthermore the person making the wager is deemed to be rational, being 

subject to the rules governing the calculation of probabilities. For example he or she 

cannot bet 3 to 1 for and 1 to 2 against a given outcome. The theory of decision under 

uncertainty, a monument elaborated by Savage in the middle of the last century, assumes 

that economic agents comply with all the axioms for calculating probabilities: they must 

behave as perfect statisticians. 

The fourth reason for the divergence between observations and forecasts is that the 

models may be faulty or use the wrong parameters. It is vital to avoid mistakes when 

assigning a probability to the known states of the world, and consequently when 

measuring the probability and associated uncertainty. Returning to what happened at 

Fukushima Daiichi, the six reactors at the plant were commissioned in the 1970s. We do 

not have access to the probabilistic studies carried out or commissioned by the plant 

operator, Tepco, at the time of the plant’s construction or afterwards. But we do know 

some of the values taken into account by the generating company or the regulator for the 

risk of an earthquake or tsunami. The figures were largely underestimated. The plant was 

designed to withstand a magnitude 7.9 earthquake and a 3.1 metre tidal wave. On 11 

March 2011 at 14:46 JST it was subjected to a magnitude 9 tremor, then swamped by a 

wave more than 10 metres high. So, much as Tepco, the nuclear industry is purportedly 

inclined to play down risks by picking values or models favourable to their growth. Unless 

one is an adept of conspiracy theories, this explanation for the divergence between 

observations and forecasts is barely convincing. For many years safety authorities and 

independent experts have scrutinized such probabilistic studies. 

 

 

 

The wrong values taken into account for Fukushima Daiichi 

When the nuclear power plant at Fukushima Daiichi was built the risk of an earthquake 

exceeding magnitude 8 on the Richter scale was estimated30 as less than 2x10-5 per year. 

This value was taken from the work of modelling and numerical simulation carried out for 

each plant in Japan by the National Research Institute for Earth Science and Disaster 

Prevention (NIED). However historical research has identified six major quakes which 

have occurred on the Sanriku coast since 869. That was the year of the Jogan undersea 

earthquake, probably the most devastating ever known on this stretch of coastline until 

March 2011. The various pieces of evidence which have been gathered suggest that these 

quakes all exceeded magnitude 8. This means the observed annual frequency should be 

about 5x10-3, in other words 100 times higher than the results calculated by the NIED31. 

                                                
30 Woody Epstein, A Probabilistic Risk Assessment Practitioner looks at the Great East Japan Earthquake 
and Tsunami, A Ninokata Laboratory White Paper, 29 April 2011. 
31 The estimated frequencies for the other NPPs on the same coastline do not display such a large 
difference. At Fukushima Daini the estimated frequency is 10 times lower than the historic frequency; at 
Onagawa the two frequencies converge. The differences are due to the choice of too fine a mesh to 
differentiate seismic risks in the Sanriku area. See the article by Geller published in 2011 in Nature. 
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The protective seawall at Fukushima Daiichi was built in 1966. It was six metres high, a 

dimension decided in line with a classical deterministic principle: take the most severe 

historic event and add a twofold safety margin. The three-metre wave which struck the 

coast of Chile in 1960 was taken as a baseline value. This was a surprising choice, the 

Jogan quake having triggered a four-metre wave locally, a fact that was already known 

when the plant was built32. Be that as it may, 40 years later, our understanding of past 

tsunamis had made significant progress but the initial height of the wall was considered to 

comply with the guidelines for tsunami assessment set by the regulatory authority33. Such 

compliance was based on an annual probability of less than 10-4. Yet historical studies 

have established that waves exceeding eight metres have been recorded on the Sanriku 

coast. Witness the stones set into the ground marking the points furthest inland reached 

by the flood. Some of these stones are more than 400 years old. The inscriptions on them 

urge residents not to build homes lower down the slope. Core samples have revealed 

sedimentary deposits left by previous tsunamis. At the Onagawa plant, on the basis of 

remains found in the hills one kilometre inland, it was estimated that the 1611 quake had 

caused a six-to-eight-metre wave34. On the evidence of old records Epstein estimated that 

the average frequency of a tsunami of eight metres or more on the Sendai plain, behind the 

Fukushima Daiichi plant, was about one every 1,000 years. He estimated as 8.1x10-4 the 

probability of an earthquake of a magnitude equivalent to or greater than a seismic 

intensity of 635 or more followed by a tidal wave of over eight metres. Due to the layout of 

the plant, this dual shock would almost certainly lead to flooding of the turbine building, 

destruction of the diesel generators, loss of battery power and station blackout lasting at 

least eight hours. This sequence of events would correspond, according to Epstein, to a 

probability of core-melt of about 10-4, five times higher than the authorized limit. Tepco 

based its various probabilistic studies36 on very low values, very probably taken from a 

badly designed historical database or unsuitable simulation models. 

 

 

Two points are of particular note in this long list of possible reasons for the divergence 

between the observed frequency and calculated probability of an accident. Firstly, with 

regard to method, we should make use of all the available instruments, combining 

empirical and theoretical data. Assessments of the risk of a major nuclear accident based 

exclusively on either data from past observations or theoretical probabilistic simulations 

lead to a dead end. Secondly, in practical terms, the limitations of probabilistic assessment 

lead to the deployment of deterministic safety measures. As we do not know all the states 

of the world, nor yet the probability of all those we do know, it is vitally important to 

install successive, redundant lines of defence as a means of protection against 

                                                
32 W. Epstein p. 52. 
33 2002 guidelines. Tsunami Assessment Method for Nuclear Power Plants in Japan, published by the 
Tsunami Evaluation Subcommittee, Nuclear Civil Engineering Committee, Japan Society of Civil 
Engineers (JSCE). ‘We have assessed and confirmed the safety of the nuclear plants [at Daiichi] based 
on the JSCE method published in 2002.’ [Tsunami Study for Fukushima 1 and 2, p. 14]. Written 
statement by Tepco submitted to the regulator, cited by Woody Epstein p. 24.  
34 W. Epstein. 
35 On Japan’s Shindo scale of seismic intensity. Seismic scales not being strictly speaking comparable 
with one another, seismic intensity 6 on the Shindo scale is roughly equivalent to between magnitude 6 
and 7 on the Richter scale.   
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unforeseeable or ill appraised events. In short we must protect ourselves against the 

unknown. Among others37 we may raise protective walls or quake-resistant structures 

able to withstand events twice as severe as the worst recorded case, install large numbers 

of well protected backup diesel generators, and build nesting containments – the first one 

in the fuel cladding itself, forming an initial barrier between radioactive elements and the 

environment – the largest one, made of reinforced concrete encasing the reactor and 

steam-supply system. 

 

Perceived probabilities and aversion to disaster 

The concept of subjective probability can be a misleading introduction to individuals’ 

perception of probabilities. Perceived probability, much as its subjective counterpart, 

varies from one person to the next but it does not take the same route in our brain. The 

former expresses itself rapidly, effortlessly, in some sense as a reflex response; the latter 

demands time, effort and supervision. Perceived probability is based on experience and 

routine, whereas subjective probability is rooted in reason and optimization. In response 

to the question, ‘Which is the most dangerous reactor: the one for which the probability of 

an accident over the next year is 0.0001; or the one which has a 1 in 10,000 chance of 

having an accident over the next year?’, most people will spontaneously pick the second 

answer. Yet reason tells us that the two reactors are equally dangerous (i.e. 1:10,000 = 

0.0001). So how do we perceive risks? Are individuals poor statisticians, or perhaps not 

statistically minded at all? In which case, what use is the theory of decision under 

uncertainty, given that it requires us to calculate probabilities accurately? How do 

individuals make a choice if they do not optimize their decisions? These questions are 

central to 40 years’ work by experimental cognitive psychology on how individuals assess 

the probability of events. Understanding this work is essential, for almost all its findings 

contribute to amplifying the perception of nuclear risk. 

 

Biases in our perception of probabilities 

What is the connection between cognitive psychology – which is an experimental science – 

and economics? In fact, there is a significant link. In 2002, in Stockholm, Daniel Kahneman 

was awarded the most coveted distinction to which an economist can aspire: the Sveriges 

Riksbank prize in Economic Sciences in memory of Alfred Nobel. His work was 

distinguished for ‘for having established laboratory experiments as a tool in empirical 

economic analysis, especially in the study of alternative market mechanisms’. That year, 

the winner of the Nobel prize for economics was not an economist, but a psychologist! 

Economic analysis focuses on many subjects and lends itself to many definitions: decision 

theory is among these subjects; it may, among others, be defined as the science of human 

behaviour. Economics investigates how humans seek the best means of achieving their 

aims (Lionel Robins, 1932). When an individual needs to take a decision under 

uncertainty, he or she assigns more or less weight to the probabilities associated with each 

                                                                                                                                          
36 It is of little concern here whether this was done knowingly or not. This point is addressed in Part III. 
37 For a detailed discussion of the concept of defence in depth see Part III of the book. 
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choice. A rational being faced with an alternative between an action yielding a satisfaction 

of 100 associated with a probability of 0.3, and an action yielding a satisfaction of 105 

associated with a probability of 0.29, will choose the second option because its 

mathematical expectation is greater (100 x 0.3 < 105 x 0.29). The expected utility of the 

payout is thus optimized. 

The Swiss mathematician Daniel Bernoulli laid the foundations of expected utility theory. 

In his 1738 essay he raised the question of how to give formal expression to the intuition 

according to which the rich were prepared to sell insurance to the poor, and that the latter 

were prepared to buy it. He also sought to resolve an enigma of great interest at the time, 

subsequently known as the Saint Petersburg paradox: why does a gamble which holds an 

infinite expectation of gain38 not attract players prepared to bet all they own? The answer 

to both these questions is to be found in our aversion to risk. This psychological trait 

means that we prefer a certain gain of 100 to an expected gain of 110. This is explained by 

the fact that a rich person attaches less value to a sum of €100 than a poor person does, 

which is translated into the contemporary jargon of economics as the declining marginal 

utility of income. In mathematical terms it is represented by the concave form of the utility 

function. (The curve, which expresses our satisfaction depending on the money we own, 

gradually flattens out. Bernoulli thus used a logarithmic function to represent utility). 

The connection between risk aversion and the form of the utility function may not be 

immediately apparent to the reader. In which case, illustrating the point with figures 

should help. Let us assume that €100 yields a satisfaction of 1; €200 yields a 

proportionately lower satisfaction, 1.5 for example; €220 less still, say 1.58. I offer you 

€100 which you either accept or we toss a coin with the following rule: heads, I keep my 

€100; tails, you take the €100 and I add €120 more. Which option would you choose? The 

certainty of pocketing €100, or a one in two chance of winning €220?. In the first case 

your gain is €100, whereas in the second case there is the expectation of €110 (€220 x 

1/2). But what matters to you is not the money, but the satisfaction – or utility – it yields. 

The first case yields a utility of 1, the second an expected utility of 0.79 (1.58 x 1/2). So 

you choose the first option, which does not involve any risk. With the resolution of the 

Saint Petersburg paradox, by altering the form of the utility function, Bernoulli opened the 

way for progress towards decision theory, which carried on to Kahneman. This was 

achieved through a back-and-forth exchange between economic modelling and 

psychological experimentation. The latter would, for instance, pick up an anomaly – in a 

particular instance people’s behaviour did not conform to what the theory predicted – and 

the former would repair it, altering the mathematical properties of the utility function or 

the weighting of probabilities. The paradoxes identified by Allais and Ellsberg were two 

key moments in this achievement. 

During a university lecture in 1952 Maurice Allais, a Professor at the Ecole des Mines in 

Paris, handed out a questionnaire to his students, asking them to choose between various 

simple gambles, arranged in pairs. He then collected their answers and demonstrated that 

                                                
38 Imagine the following game in a casino: a coin is tossed a number of times, with an initial kitty of $1, 
which doubles each time the coin comes up tails. The game stops and the player pockets the kitty when 
the coin lands heads up. At the first toss, the winner pockets $1 if the coin lands heads up; if it is tails, 
the game continues, with a second toss. If the coin then lands heads up, the player pockets $2, 
otherwise it is tossed a third time and so on. The expectation of gain equals 1x1/2 + 2x1/4 + 4x1/8 + 
8x1/16 + or 1/2 + 1/2 + 1/2 + 1/2 + ..., making an infinite amount provided the casino has unlimited 
resources. 
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they had contradicted expected utility theory in what was then its most advanced form, as 

developed by Leonard Jimmie Savage. Their responses violated one of the theory’s axioms, 

which, along with the others, was supposed to dictate the rational decision under 

uncertainty. In simple terms the Allais paradox may be expressed as follows39: the first 

gamble offers the choice between (A) the certainty of winning €100 million, and (B) 

winning €500m with a probability of 0.98, or otherwise nothing. The second gamble offers 

the choice between (C) receiving €100 million with a probability of 0.01, or otherwise 

nothing, and (D) €500 million with a probability of 0.0098, or otherwise nothing. The 

paired gambles are therefore the same, but with a probability 100 times lower. Most of the 

students chose A, not B, but D rather than C. It seemed to them that the probability of 

winning €500 million with D (0.0098) was roughly the same as that of winning €100 

million with C (0.01), whereas in the previous case the same difference of 2% between 

probabilities seemed greater. Yet, according to Savage, rational behaviour would have 

dictated that if they chose A rather than B, they should also pick C, not D. Ironically, Savage 

also attended the lecture and handed in answers to the questionnaire which contradicted 

his own theory. 

A common solution to the Allais paradox is to weight the probabilities depending on their 

value, with high coefficients for low probabilities, and vice versa. Putting it another way, 

the preferences assigned to the probabilities are not linear. This is more than just a 

technical response. It makes allowance for a psychological trait, which has been confirmed 

since Allais’ time by a large number of experimental studies: people overestimate low 

probabilities and underestimate high probabilities. In other words they tend to see rare 

events as more frequent than they really are, and very common events as less frequent 

than is actually the case. 

To our preference for certainty, rather than risk, and our varying perception of 

probabilities depending on their value, we must add another phenomenon well known to 

economists: our aversion to ambiguity. This characteristic was suggested by Keynes, and 

later demonstrated by Daniel Ellsberg in the form of a paradox. In his treatise on 

probabilities the Cambridge economist posited that greater weight is given to a probability 

that is certain than to one that is imprecise. He illustrated his point by comparing the 

preferences for a draw from two urns containing 100 balls. One contains black and white 

balls, in a known, half-and-half proportion; the other urn also contains black and white 

balls but in an unknown proportion. In the second urn, all distributions are possible (0 

black, 100 white; 1 black, 99 white; ...; 100 black, 0 white) with equal probability (p = 

1/101). So the expected probability of drawing a white ball is also 1/240, the same value as 

for the probability of drawing a white ball from the first urn. But we would rather win, by 

drawing white (or black) balls from the first urn. 

In 1961 Ellsberg revisited Keynes’ example, developing it and making experiments. We 

shall now look at his experiment with an urn containing balls of three different colours. In 

all it contains 90 balls, of which 30 are red and the remaining 60 either black or yellow. So 

all we accurately know is the probability of drawing a red (1/3) and that of drawing a 

black or yellow – in other words one that is not red – (2/3). You are presented with two 

pairs of gambles. In the first pair, (A) you win €100 if you draw a red ball from the urn, (B) 

                                                
39 Gigerenzer, Heuristics and the Law, p. 32.  
40 It equals (1/101)(100/100 + 99/100 +... + 1/100 + 0/100). 
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you win €100 if you draw a black ball from the urn. Which option do you choose? If, like 

most people, you are averse to ambiguity, you choose A. The other pair is more 

complicated: (C) you win €100 if you draw a red or a yellow ball from the urn, (D) you win 

€100 if you draw a black or a yellow ball from the urn. The question, however, is the same: 

which option do you choose?. The answer is also the same: aversion to ambiguity prompts 

most people to pick D rather than C. You know very well that you have a 2/3 chance of 

drawing a black or yellow ball (one that is not red). The paradox resides in the fact that the 

preference for A and D is inconsistent on the part of a rational person, as modelled in the 

classical theory of expected utility. Preferring A to B implies that the player reckons 

subjectively that the probability of drawing a black ball is lower than 1/3, whereas for a 

red ball it is higher than 1/3. Knowing that there is a 2/3 probability of drawing a black or 

yellow ball, the player deduces that the probability of drawing a yellow ball is higher than 

1/3. As the probability of drawing a yellow or black ball is higher than 1/3 in both cases, 

their sum must exceed 2/3. According to Savage, the player picks C. But in the course of 

experiments, most players who choose A also choose D, which suggests that there is an 

anomaly somewhere, which the aversion to ambiguity corrects. 

Just as there is a premium for taking risks, some compensation must be awarded to 

players for them to become indifferent to gain (or loss) with a 1/2 probability or an 

unknown probability with an expected value of 1/2. Technically speaking there are 

several solutions for remedying this problem, in particular by using the utility function, 

yet again41. It is worth understanding Ellsberg’s paradox because ambiguity aversion with 

regard to a potential gain, has its counterpart with regard to a loss: with the choice 

between a hazard associated with a clearly defined probability – because the experts are 

in agreement – and a hazard of the same expected value – because the experts disagree – 

people are more inclined to agree to exposure to the first rather than the second hazard. 

Putting it another way, in the second instance people side with the expert predicting the 

worst-case scenario. Simple intuition enables us to better understand this result. If players 

prefer (A) the prospect of drawing a red ball associated with the certainty of a 1/3 

probability, rather than that (B) of drawing a black ball, it is because they are afraid that in 

the latter case the person operating the experiment may be cheating. The latter may have 

put more yellow balls in the urn than black ones. The experimental proposition is 

suspect42. Out of pessimism, the players adjust their behaviour to suit the least favourable 

case, namely the absence of black balls in the urn, comparable to the worst-case scenario 

among those proposed by the experts. 

Kahneman’s work followed on from previous research, but it also diverged in two 

respects. 

He and his fellow author, Amos Tversky43, introduced two changes to the theory of 

expected utility44. Firstly, individuals no longer base their reasoning on their absolute 

                                                
41 The Choquet integral. 
42 The aim is not to explain Ellsberg’s paradox: an individual who finds this behaviour suspect for the 
first pair of gambles, should subsequently prefer C rather than D, unless he or she also suspects that the 
experimenter has changed the content of the urns in the meantime!  
43 Amos Tversky and Daniel Kahneman co-authored a great many academic papers, in particular those 
awarded the prize in economics by Sweden’s central bank. But Tversky died at the age of 59 and was 
consequently not awarded the Nobel prize for economics alongside Kahneman.  
44 See Daniel Kahneman and Amos Tversky, ‘Prospect Theory: An Analysis of Decision under Risk’, 
Econometrica, XLVII (1979), p. 263-291; and Daniel Kahneman and Amos Tversky, ‘Advances in 
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wealth, but in relative terms with regard to a point of reference. For example, if your boss 

gives you a smaller rise than your fellow workers, you will perceive this situation as a loss 

of utility, rather than a gain. The value function does not start from zero, corresponding to 

no wealth, subsequently rising at a diminishing rate as Bernoulli indicated with his model. 

A whole new part of the curve, located to the left of the zero, represents the value of losses 

in relation to the status quo. This part is convex (see Figure 1): just as we derive less 

satisfaction from our wealth rising from 1,000 to 1,100, than when it rises from 100 to 

200, so our perception of the loss between -1,000 and 1,100 is less acute than between -

100 and -200. 

 

 

Secondly individuals are more affected by loss than gain. For example if a teacher 

randomly hands out mugs marked with their university shield to half the students in a 

lecture theatre, giving the others nothing, the recipients, when asked to sell their mugs, 

will set a price twice as high as the one bid by those who did not received a gift45. 

Reflecting such loss aversion the slope of the value function is steeper on the loss side than 

on the gain side. Regarding the perception of probabilities Kahneman and Tversky revisit 

the idea of distortion, in particular for extreme values (overweighting of low probabilities, 

underweighting of high probabilities). Armed with these value functions and probability 

weighting, the decision-maker posited by the two researchers assesses the best option out 

of all those available and carries on optimizing the outcome.  

Kahneman has also experimented widely and published on heuristics, the short-cuts and 

routines underpinning our decisions. In so doing he distances himself from previous work 

on optimal decision-making under uncertainty. The decision-maker no longer optimizes 

nor maximizes the outcome. Anomalies in behaviour with regard to expected utility theory 

are no longer detailed to enhance this theory and enlarge its scope, but rather to detect the 

ways we react and think. Here the goal of research is exclusively to describe and explain: 

in the words of the philosophers of science it is positive. The aim is no longer to propose a 

                                                                                                                                          
prospect theory: Cumulative representation of uncertainty’. Journal of Risk and Uncertainty 5 (4), 1992, 
p. 297–323. 
45 This type of experiment, simplified here, is presented in detail in Daniel Kahneman, Jack L. Knetsch 
and Richard H. Thaler, Anomalies: The Endowment Effect, Loss Aversion, and Status Quo Bias, Journal 
of Economic Perspectives, Vol. 5, n°1, 1991, p. 193-206.  
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normative theoretical framework indicating how humans or society should behave. 

Observing the distortion of probabilities becomes a way of understanding how our brain 

works. This line of research is comparable to subjecting participants to optical illusions to 

gain a better understanding of sight. For example a 0.0001 probability of loss will be 

perceived as lower than a 1/10,000 probability. Our brain seems to be misled by the 

presentation of figures, much as our eyes are confused by an optical effect which distorts 

an object’s size or perspective. This bias seems to suggest that the brain takes a short-cut 

and disregards the denominator, focusing only on the numerator. 

Psychology has also done a great deal of experimental work revealing a multitude of 

micro-reasoning processes, which sometimes overlap, their denomination changing from 

one author to the next. Economists may find this confusing, much as psychologists are 

often thrown by the mathematical formalism of decision theory. Readers may feel they are 

faced with a choice between two unsatisfactory options. On the one hand, an economic 

model has become increasingly complex as it has been built up with the addition of post 

hoc hypotheses, the theory of expected utility having gradually taken onboard aversion to 

risk, ambiguity, loss, while nevertheless remaining a schematic, relatively unrealistic 

representation. On the other hand, a host of behavioural regularities, identified through 

observation, throw light on the countless facets of the decision-making process but, 

lacking a theoretical basis, simply stand side by side. In one case we have a discipline 

which is still basically normative, in the other a science obsessed by detailed description. 

Building bridges between economics and psychology does not eliminate their differences. 

However in a recent book targeting the general public, Thinking, Fast and Slow, Kahneman 

sets out to reconcile the two disciplines. In a synthesis which rises above doctrinal 

differences he draws a distinction between two modes of reasoning which direct our 

thoughts and decisions, one automatic, the other deliberate. The first mode is swift, and 

requires no effort on our part nor supervision, being mainly based on association and 

short-cuts. The second one is quite the opposite, slow, demanding effort and supervision, 

largely underpinned by deduction and rules we have learnt. Supposing we submit the 

following problem to a group of mathematically adroit students46: a baseball bat and ball 

cost €110, the bat costs €100 more than the ball, so how much does the ball cost? The 

spontaneous answer is €10. But in that case the bat would cost €110, and the whole kit 

€120! Leave the students to think for a while or to write out the equations on paper and 

they will find the right answer. 

By revisiting and extending the classic psychological distinction between the two cognitive 

systems Kahneman stops seeing heuristics and calculation as mutually exclusive. It is no 

longer a matter of deciding whether humans are rational or irrational: they are both. 

 

Perception biases working against nuclear power 

The overall biases in our perception of probabilities, discussed above, amplify the risk of a 

nuclear accident in our minds. To this we must add other forms of bias, with which 

economists are less familiar, but which contribute to the same trend. 

                                                
46 Kahneman submitted this problem to his students at Princeton (Vérifier). 
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A major nuclear accident is a rare event. Its probability is consequently overestimated. 

Much as smallpox or botulism, the general public thinks its frequency is higher than it 

really is. Nuclear technology is thus perceived as entailing a greater risk than other 

technologies. Paul Slovic, an American psychologist who started his career working on 

perception of the dangers of nuclear power, asked students and experts to rank 30 

activities and technologies according to the risk they represented. The students put 

nuclear power at the top of the list (and swimming last), whereas the experts ranked it in 

20th position (predictably putting road accidents first). Faced with a low probability 

individuals are inclined to over-reassure themselves and demand higher protection or 

compensation. Protecting the personnel of nuclear power plants against workplace 

accidents costs more than in any other field47. In a general way we over-invest in 

protection against events with a low probability, the incremental improvement being seen 

as more beneficial than it really is, in contradiction with the fact that the risks at 

Fukushima Daiichi were under-estimated. 

The risk of a nuclear accident is ambiguous. Expert appraisals diverge depending on 

whether they are based on probabilistic assessments or the observation of accidents. 

Furthermore probabilistic assessments produce different figures depending on the 

reactors or initiating events they consider; the same applies to observations of accidents, 

for which the definitions and consequently lists differ. Lastly there is a divergence of views 

between industry experts working for operators and engineering firms, and scientists 

hostile to the atom, such as the members of Global Change in France or the American 

Concerned Scientists Association. The effect suspected by Keynes and demonstrated by 

Ellsberg is clearly at work here. In the face of scientific uncertainty we are inclined to opt 

for the worst-case scenario. The highest accident probability prevails. The same 

phenomenon affects the controversial estimation of damages in the event of a major 

accident. The highest estimates tend to gain the most widespread credence. 

The asymmetry between loss and gain highlighted by Kahneman and Tversky is behind a 

widespread effect which is less decisive and specific for nuclear power48. The main 

consequence of this commonplace, third bias is that it favours the status quo, the 

drawbacks of change being seen as greater than the benefits (there is a bend in the curve 

of the value function shown in Figure 1 near the point of reference separating the feeling 

of gain from that of loss). As a result local residents will tend to oppose the construction of 

a nuclear power plant in their vicinity, but on the other hand they will block plans to close 

a plant which has been operating for several years. Obviously what holds true for nuclear 

power is equally valid for other new facilities, be they gas-fired plants or wind farms. 

The risks of a nuclear accident are also distorted by the scale of potential damages and 

their impact on public opinion. With low frequency and a high impact they are among the 

various dread risks, along with plane crashes and terrorist attacks targeting markets, 

hotels or buses, or indeed cyclones. The perception of the consequences of such events is 

such that their probability is distorted. It is as if the denominator had been forgotten. 

Rather than acknowledging the true scale of the accident, attention seems to focus 

exclusively on the accident itself. Disregard for the denominator, mentioned very briefly 

above, is connected to several common routines of varying similarity which have been 

                                                
47 W. Kip Viscusi, Rational Risk Policy, Oxford University Press, 1998. 
48 Moreover it is not strictly speaking a biased perception of probability. Rather the utility function is 
distorted, depending on whether there is a loss or gain.  
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identified by risk psychologists49. Let us look at the main routines at work. The availability 

heuristic is a short-cut which prompts us to answer questions on probabilities on the basis 

of examples which spontaneously spring to mind. The frequency of murders is generally 

perceived, quite wrongly, to be higher than that of suicides. Violent or disastrous events 

leave a clearly defined, lasting mark, in particular due to the media attention they attract. 

It is consequently easy to latch onto them. Chernobyl reminds us of the accident at Three 

Mile Island, and in turn Fukushima Daiichi brings Chernobyl to mind. It matters little that 

each case is different, with regard to the established causes, the course of events or the 

consequences in terms of exposure of the population to radiation. The spontaneous mode 

of thought works by analogy and does not discriminate. The representativeness heuristic 

is based on similarity to stereotypes. It originated with a well know experiment by 

Kahneman and Tversky. Test participants were told that Linda was 31, single, outspoken 

and very bright. She had majored in philosophy. As a student, she was deeply concerned 

with issues of discrimination and social justice, and also took part in anti-nuclear 

demonstrations. Then they were asked to pick the job Linda did, in descending order of 

likelihood: elementary schoolteacher; bookstore salesperson, attending yoga classes; 

active feminist; psychiatric social worker; member of the League of Women Voters; bank 

teller; insurance salesperson; bank teller and an active feminist. Most of the participants 

placed the last answer ahead of the antepenultimate one. Yet logic tells us that there is a 

higher probability of being a bank teller, than being a bank teller and a militant feminist, 

the latter category being a sub-set of the female bank-teller population. The 

representativeness heuristic prompts us to confuse frequency and plausibility. We are 

consequently able to find regularities and trends where they do not exist. Two successive 

accidents separated by a short lapse of time will be interpreted as a substantial 

deterioration in nuclear safety, whereas their close occurrence is merely a matter of 

chance. This heuristic resembles another bias which often misleads us, namely our 

tendency to generalize on the basis of low numbers. Rather than waiting to see how a low-

probability event repeats itself, tending towards infinity or even with 100 recurrences, we 

immediately deduce the probability of its recurrence. 

To round off this list of biases in our perception of frequencies unfavourable to nuclear 

power, a word on very low probabilities. It is difficult to grasp values such as 0.00001, or 

even smaller. Much as it is hard to appreciate huge figures, in the billion billions, often due 

to the lack of tangible points of reference to which to connect them, dividing 1 by several 

hundred thousands makes little sense to the average person. Cass Sunstein, a Harvard law 

professor, carried out an interesting experiment. He asked his students how much they 

were prepared to pay, at the most, to eliminate a cancer risk of 1 in 100,000 or 1 in 

1,000,000. He also presented the problem in slightly different terms, adding that it 

‘produces gruesome and painful death as the cancer eats away at the internal organs of the 

body’. In the first case his students were prepared to spend more on saving one individual 

in 100,000 than on one in a million. On the other hand, playing on their emotions 

narrowed the difference. They forgot the denominator, despite being students with a basic 

understanding of fractions and probabilities! To an economist, the biased perception of 

frequencies is very odd. The way individuals react is light years away from the marginalist 

reasoning which underpins economic models. As an economist it is disconcerting to 

                                                
49 See Kahneman; and above all, Cass R. Sunstein and Richard J. Zeckhauser, Overreaction to Fearsome 
Risks, 2008. 
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discover that cutting a risk from 5x10-4 to 10-4 can pass unnoticed, even if it took time and 

means to achieve this shift. 

In practice if the authorities want to reassure citizens worried by nuclear risk, they will 

have difficulty basing their arguments on progress in reactor safety. It would apparently 

be more effective to emphasize the benefits. Slovic and a fellow author have noted a 

negative correlation between perception of risks and benefits. If the benefits of a given 

activity are thought to be high, the corresponding risks are perceived as being low and 

vice versa; on the other hand if the risks are thought to be high, the associated benefits will 

be underestimated. In more prosaic terms, if I like something, I will play down the risks 

involved; if I dislike something, I will minimize the benefits. It seems that shale gas 

currently benefits from this negative correlation in the US. Deeply attached to energy 

independence and wholly convinced of the economic benefits of cheap energy, Americans 

underestimate the risks entailed by exploiting this resource. 

Unlike very low probabilities, everyone understands zero. By playing on people’s 

emotions it seems possible to persuade them to spend large amounts to eradicate risk 

completely. In the field of nuclear power, the decision by Germany to shut down its 

reactors following the Fukushima Daiichi disaster is a case in point. Economists have 

estimated the loss resulting from the decision to retire the plants earlier than planned at 

between €15 billion and €40 billion50. 

In short, however psychologists address perception biases, the latter go against nuclear 

power. Their effect is cumulative, one consolidating another: in this way they amplify the 

perceived probability of an accident. At a practical level this has two major consequences. 

Firstly, there is a risk of over-investing in safety. For this to happen all that is required is 

for the authorities to follow the trend, either because policy-makers have an interest in 

giving way to the electorate’s demands, or because their perception of probabilities is no 

different from that of private individuals. Secondly, the options for alternative investment 

are distorted. On account of its dread nature, the perceived risk of a nuclear accident has 

been much more exaggerated than the risk inherent in other generating technologies. In 

2010 the Organization for Economic Cooperation and Development published a study51 on 

the comparative assessment of serious accidents (causing more than five deaths). The 

survey covered the whole world, from 1969 to 2000. In terms of fatalities and accidents 

coal came top of the list, a very long way ahead of nuclear power52. Does this correspond 

to your perception, given that the list of accidents during this period of time includes the 

Chernobyl disaster? Very probably not, much as most other people. If the authorities base 

their action on  perceived probabilities, their decisions may ultimately detract from the 

goal of reducing risks and loss of human life. 

                                                
50 See S. Douguet and F. Lévêque, The economic loss of the early retirement of nuclear power plants, 
energypolicyblog.com, 18 February 2012 
51 Comparing Nuclear Accident Risks with Those from Other Energy Sources, OECD, 2010. 
52 In all 80,250 people lost their lives in 1,870 accidents. Which accident caused the largest number of 
fatalities? The Chernobyl disaster? No! The failure of the Banquiao and Shimantan dams in China in 
1975. This accident, disregarded by all but the local population, claimed 30,000 lives. Bear in mind that, 
as we saw at the start of this Part, the number of fatalities at Chernobyl did not exceed 60 and that 
20,000 was an upper-range estimate of subsequent early deaths. Even if the OECD study had 
considered these deaths, serious accidents in the coal industry during this period caused more deaths. 
Moreover, in all fairness, the early deaths caused by coal should also be taken into account in any 
comparison with nuclear power. 
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The decisions taken following the terrorist attacks on 11 September 2001 provide a 

simple illustration of the dual effect of our aversion to dread risk. During the three months 

following the disaster Americans travelled less by plane, more by car. The well known 

German psychologist Gerd Gigerenzer has demonstrated that this behavioural shift 

resulted in an increase in the number of road deaths, exceeding the 265 passengers who 

perished in the hijacked planes. As the fearsome pictures of the collapse of the twin towers 

of the World Trade Center receded into the past, the sudden distortion of probabilities 

must have been partly dissipated. On the other hand we are all affected by the long-term 

impact of 9-11 whenever we travel by plane. Air passengers all over the world undergo a 

series of trials –queuing to be checked before entering the boarding area, taking off belts 

and shoes, emptying pockets, taking electronic devices out of hand luggage, trashing water 

bottles, putting other liquids into plastic bags, forgetting keys and setting off the alarm, 

and being handled by complete strangers. Not to mention the  rise in airport taxes to cover 

the extra security costs. In view of the infinitely low risk actually involved, they do seem to 

have been taken too far53. 

In conclusion there is good reason to suppose that the discrepancy between the perceived 

probability of a nuclear accident and the figures advanced by the experts will persist. The 

work by experimental psychologists on the amplification of risks for low-probability 

events seems convincing. The distorting effect of the Fukushima Daiichi disaster is likely 

to be a durable feature, particularly as we receive regular reminders, if only when 

progress is achieved or shortcomings are observed in the resolution of the many 

outstanding problems (soil decontamination, public health monitoring, dismantling of 

reactors, waste processing among others). It will also require great political determination 

to avoid pitfalls similar to tightening up checks on airline passengers. 

 

 

The magic of Bayesian analysis 

An English Presbyterian minister and a French mathematician forged a magic key which 

enables us to update our probabilistic judgements, use probability as a basis for reasoning 

without being a statistician, reconcile objective and subjective probability, combine 

observed frequency and calculated probability, and predict the probability of the next 

event. 

 

The Bayes-Laplace rule 

Thomas Bayes was the first person to use the concept of conditional probability, for which 

Pierre-Simon Laplace found a more widespread application. We presented this concept 

briefly in the opening section on the escalating severity of nuclear accidents, more 

                                                
53 In addition many observers maintain that they have not been very effective. 
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specifically in relation to the probability of massive release of radioactive material in the 

event of a core melt, or in other words given that core meltdown has occurred. This 

probability is denoted using a vertical bar: p(release|melt). In a general way, A and B being 

two events, the conditional probability is written as p(A|B), which reads as ‘the probability 

of A given B’. Or, to be more precise, we should refer to two conditional probabilities; as 

we are focusing on two events, we may also formulate the conditional probability p(B|A), 

the probability of B given A. In the case of a core melt and the release of radioactivity, 

p(release|melt) is almost equal to 1: with just a few exceptions (water loss from a spent-

fuel pool) a massive release is impossible unless the core has melted. 

 

 

Bayes’ rule and conditional probabilities 

The Bayes-Laplace rule, more commonly known as Bayes’ rule, enables us to write an 

equation linking two conditional probabilities. It is written as:  

p (A⎢B) = p(A)[p(B⎢A)/p(B)]  

It reads: ‘the probability of A given B is equal to the probability of A multiplied by the 

probability of B given A divided by the probability of B’. 

It may also be written as: 

(2) p (A⎢B) = [p(A)p(B⎢A)]/[p(A)p(B⎢A)+p(not A)p(B ⎢not A)] 

This formula is typically illustrated with examples from medicine. We shall use the 

following data for the problem:  

The probability that a patient undergoing an X-ray examination has a cancer is 0.01, so 

p(cancer) = 0.01 

If a patient has a cancer, the probability of a positive examination is 0.8, so 

p(positive⎢cancer) = 0.8 

If a patient does not have a cancer, the probability of a positive examination is 0.1, so 

p(positive⎢no cancer) = 0.1 

What is the probability that a patient has cancer if the examination is positive, so  

p(cancer⎢positive)?  

Using equation (2), we find 0.075 54. 

 

 

Bayes’ rule, set forth in the box above, is the key to inductive reasoning. Let us look at how 

it works. 

As the reader is probably more familiar with the concept of deduction rather than 

induction we shall start by confronting the two approaches. Deduction generally proceeds 

from the general to the specific: ‘All dogs have four legs; Fido, Rover, Lump and Snowy are 

dogs; so they have four legs.’ Induction generalizes on the basis of facts or empirical data: 

‘Fido, Rover, Lump and Snowy are dogs; they have four legs; so all dogs have four legs.’ 

                                                
54 p(cancer�positive)= [p(cancer)xp(positive�cancer)]/[p(positive�cancer)p(no cancer) +p(positive�no 
cancer)p(no cancer)=[0.01x0.8]/[0.01x0.8 +0.99x0.1] = 0.075. 
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A simple equation enables us to grasp the inductive power of Bayes’ rule. Let us suppose 

that event A is a hypothesis, H, and event B is an observed data, d. So p(A|B) is the 

probability that H is true, given that d is observed. Bayes’ rule is written thus: 

p(H⎢d) = p(H)[p(d⎢H)/p(d)] 

The conditional probability p(d⎢H) encapsulates the essence of deductive reasoning. It 

indicates the probability of a data d being observed when hypothesis H is true. The 

reasoning starts from a hypothesis, rooted in theory, to arrive at the probability of an 

observation. For example, the modern theory of physics implies the existence of a 

massless particle, the neutrino. Since the work of the physicist Wolfgang Pauli, much 

research has been devoted to proving its existence. In simple terms, if the theory is right, 

the particle should produce a particular effect. The conditional probability p(H⎢d) 

expressing inductive reasoning takes the same route but in the opposite direction. It 

indicates the veracity of a hypothesis, if a data d has been observed. Here, we start from 

the observation to infer the degree of certainty of a hypothesis. If our name is Isaac 

Newton, an apple falling on our head may lead to the hypothesis of universal gravity. We 

work back from the effect to the cause. 

The equation above also shows how Bayes’ rule provides a means of reviewing an 

appraisal in the light of new information. 

At the outset only the general, or prior, probability p(H) is known. It may be based on 

objective data from the past, on scientific theory or indeed on subjective belief. New data, 

which changes the picture, then comes to notice. Thanks to Bayes’ rule we can calculate a 

new, posterior probability, namely that H is true now that data d has been brought to light. 

It depends on the prior probability p(H) and the multiplier [p(d⎢H)/p(d)]. The inverse 

probability, p(d⎢H), is the probability of observing data d given that H is true. p(d) is the 

probability of observing data d; and is often referred to as the likelihood. The multiplier 

determines how much the prior probability is updated. It is worth noting, for example, 

that if the observation yields no additional information, then p(d⎢H) equals p(d) and the 

multiplier equals 1, so there is no reason to update the prior probability. Intuition would 

suggest that if there is no relation between d and H, observing d should not change the 

degree of certainty assigned to H. On the other hand, when the observation is more 

probable if the hypothesis is true, p(d⎢H) being greater than p(d) and the multiplier 

greater than 1, the probability will be revised upwards. In other words, if d and H are 

linked I must upgrade my appreciation of the hypothesis. But in the opposite case, when 

the observation is less probable if the hypothesis is true, p(d⎢H) being smaller than p(d) 

and the multiplier less than 1, the probability will be revised downwards. Or in other 

words, if d and H conflict, I must downgrade my appreciation of the hypothesis. Lastly, it 

should be borne in mind that a posterior probability calculated on the basis of a new item 

of information may in turn be used as a prior probability for calculating another posterior 

probability taking into account yet another new item of information. And so on. As the 

new inputs accumulate, the initial prior probability exerts less and less influence over the 

posterior probability. 

Bayes’ rule thus makes it possible to calculate probabilities with only a limited number of 

observations. It even provides for a complete lack of data, in which case the prior 

probability is unchanged. For example you did not toss the coin your adversary offered, or 

perhaps you have never tossed a coin. If you do not know whether the coin is loaded and 
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your adversary displays no criminal tendencies, you will choose 1/2 as the subjective 

initial odds and you will stick to these odds if the game is cut short before it even starts. 

 

Are we naturally good at statistics? 

In the above we presented Bayesian analysis as a relatively intuitive mechanism for 

inductive reasoning and updating earlier appraisals. However applying the rule on which 

it is based is tricky. In the previous section we explained that Ivy League students 

sometimes came up with the wrong answers to much simpler probability problems. 

Disregard for the denominator, apparently so common, is such that one may wonder 

whether the average person can really grasp the concept of probability. Probability is 

commonly defined by a frequency, the ratio of observed cases to possible cases. Omitting 

the denominator renders a probability completely worthless. 

Thanks to experimental psychology the focus of the classical debate on whether decision-

making by humans has a rational or irrational basis has shifted to the statistical mind, 

raising the question of whether we are capable of reasoning in terms of probabilities55. 

The response by most experimental psychologists is categorical. Kahneman and Tversky 

sum up their position thus: ‘People do not follow the principles of probability theory in 

judging the likelihood of uncertain events [...] Apparently, people replace the laws of 

chance by heuristics which sometimes yield reasonable estimates and quite often do not.’ 

According to Slovic our lack of probabilistic skills is a proven fact: humans have not 

developed a mind capable of grasping uncertainty conceptually. This view was endorsed 

by the well known evolutionary biologist Stephen Jay Gould. After examining the work of 

the winner of the 2002 Nobel prize in economics and his main co-author, Gould concluded 

that: ‘Tversky and Kahneman argue, correctly I think, that our minds are not built (for 

whatever reason) to work by the rules of probability, though these rules clearly govern 

our universe.’ 

Under these circumstances Bayesian logic seems even further beyond our reach. The case 

of the medical examination described above was presented to American physicians and 

medical students. An overwhelming majority answered that the chances of being ill if the 

examination is positive ranged from 70% to 80%, 10 times higher than the right answer, 

7.5%. A survey in Germany revealed that HIV-Aids counsellors were just as confused by 

Bayesian reasoning. After being given the data to calculate the probability that a person 

who had tested positive was actually a carrier of the virus, test participants produced 

answers very close to 1, whereas the right answer is closer to 50%. If you think you are ill 

and decide to have an examination, make sure you choose a doctor who is trained in 

statistical analysis. 

In short it seems to be an open-and-shut case. As Kahneman and Tversky assert: ‘[In] his 

evaluation of evidence, man is apparently not a conservative Bayesian: he is not Bayesian 

                                                
55 NB: we are not talking about innumeracy, a shortcoming similar to illiteracy but for numbers. The 
experiments related above involved educated participants, students or graduates.  
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at all56.’ Participants in tests go so far as to resist attempts by experimenters to correct and 

instruct them. This reaction is comparable to the impact of optical effects: although we 

know they are optical illusions we persist in taking a bump for a hole, or in seeing an area 

as smaller or larger than it really is. 

In the 1990s Gerd Gigerenzer firmly opposed this standpoint. According to the German 

psychologist humans are not deaf to statistical reasoning. Unlike Gould he upholds the 

idea that the human mind evolved, while integrating Bayesian algorithms. However to be 

of any use such algorithms must be expressed in practical terms, close to their internal 

format, as is apparently the case with frequencies in their natural form, but not 

probabilities. 

 

 

Presenting Bayes’ rule in other terms 

People make mistakes in Bayesian calculations because the problem is not clearly stated. 

They make far fewer mistakes if data are set forth in a ‘natural frequency format’, instead 

of being given as frequencies expressed as percentages or values ranging from 0 to 1. 

This approach presents the medical examination in the following way: 

(a) 10 out of 1,000 patients who undergo an X-ray examination have cancer; 

(b) 8 out of 10 patients with cancer test positive; 

(c) 99 out of the 990 patients who do not have cancer test positive. 

If we take another group of patients, who have also tested positive, how many would you 

expect to have cancer? 

Presented in these terms one may easily reason as follows: 8 patients who tested positive 

have cancer and 99 patients who tested positive do not, so in all 107 patients tested 

positive; the proportion of patients with cancer among those who tested positive is 

therefore 8/107, in other words a probability of 0.075. 

This problem and numerous variants were experimented by Gigerenzer and his fellows on 

groups comprising doctors, students and ordinary people. They also developed a method 

for learning Bayes’ rule in under two hours, which is now widely used in Germany to train 

medical staff. 

Cognitive science has made further progress, since the experimental work of Kahneman, 

Tversky and Gigerenzer, in particular with regard to language learning. Recent work 

seems to favour the idea of a Bayesian brain57, endorsing the conviction expressed by 

Laplace two centuries earlier in the introduction to his philosophical treatise on 

probabilities: ‘[...] the theory of probabilities is basically just common sense reduced to 

calculus; it makes one appreciate precisely something that informed minds feel with a sort 

of instinct, often without being able to account for it.’  

 

                                                
56 Daniel Kahneman and Amos Tversky, ‘Subjective probability: a judgment of representativeness’, in 
Judgements under Uncertainty: Heuristics and Biases, D. Kahneman, P. Slovic and A. Tversky (ed.), 
Cambridge University Press, 1982, p. 46. 
57 See Stanislas Dehaene, Le cerveau statisticien: la révolution Bayésienne en sciences cognitives, a 
course of lectures at the Collège de France, in 2011-12. 
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Choosing the right prior probability 

We explained above that the degree of prior certainty we choose to assign to a hypothesis 

may be based on objective data from the past, scientific theory or indeed subjective belief. 

It is now time to tighten up that statement and show how this prior choice influences the 

degree of posterior certainty. 

Bayes’ rule applies equally well to statistical reasoning as to probabilistic logic. In the first 

case the prior value we take is based on observation. For example a die has been rolled 10 

times, the 6 has come up twice, and we are about to roll the same die, starting a new 

series. The prior probability of the 6 coming up again (or, more simply, the prior) is 2/10. 

Before rolling any dice at all, we may also choose a theory such as the one which posits the 

equiprobability of any of the faces coming up. This can no longer be treated as an 

observation, rather a belief. It assumes that the die is perfectly balanced, which is never 

the case. The strict equiprobability of 1/6 is rarely observed, even if a die is rolled several 

thousand times. Some people have taken the trouble to check this. So by choosing the 

prior, we are engaging in probabilistic logic. Equiprobability is the most plausible initial 

hypothesis, lacking any knowledge of the properties of the die on the board. Adopting a 

more subjective stance we may also opt to assign a prior probability of 1/10 to the 6, 

because we know we are unlucky or having a bad day. 

The effect of the prior is described visually in the following box. It shows that only in two 

cases does it have no effect: either there are an infinite number of observations or 

measurements, or the beliefs are vague and all the outcomes equiprobable. Between the 

two the prior carries a varying amount of weight. 

 

 

Illustrating Bayesian revision 

Figure 2 describes a probability density function58. It expresses your prior judgement on 

the proportion of your compatriots who hold the same opinion as you do on nuclear 

power. According to you, the proportion is probably (95% chance of being right) between 

5% and 55%, and its most likely value is 20%. (95% because the area below the curve has 

been normalized to 1 and the segments at the two extremities add up to 5%; 20% because 

the highest point of the curve coincides with this value on the x-axis.) Of course, someone 

else may be more sure than you are, in which case the curve would be more pointed; on 

the other hand a third party might only have a very vague prior conviction, making the 

curve very flat. 

 

                                                
58 Figure taken from Bayes Fastoche, by Emmanuel Grenier. 
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Probability density; Estimated proportion 

Let us now assume that one of your friends has carried out a mini-survey of 

acquaintances. Of the 20 people she has questioned, eight (40%) shared your point of 

view. With some knowledge of statistics you will be able to define what is known as the 

likelihood function, summarizing the survey’s findings. The blue curve in Figure 3 plots its 

density. Had a higher number of people been surveyed, the curve would have had a 

steeper peak. As we all know the larger the number of people polled, the greater the 

certainty associated with poll results. 

You are now ready to update your initial judgement by applying Bayes’ rule. Just multiply 

the two previous functions. The red curve in Figure 3 plots the new density function which 

expresses the proportion of your compatriots who hold the same opinion as you do on 

nuclear power, given the results of your friend’s mini-survey. 

 

 

Probability density; Estimated proportion; prior; likelihood; posterior 
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It is immediately apparent that the posterior is more certain than the prior – the red curve 

is not as flat as the green one. This is hardly surprising, because the new data confirms 

your judgement. It is also worth noting that observation carries more weight than the 

prior: the posterior peaks at 34%, a value closer to 40% than to 20%. Finally you should 

bear in mind that if the survey had polled a larger number of people, the red posterior 

curve would have been even closer to the blue curve, which would – others things being 

equal – also rise to a steeper peak. Likelihood would have weighed even more heavily on 

the prior. Ultimately, if observations are carried out on very large samples, the event is 

repeated a large number of times, or a quasi-exhaustive survey is conducted, the choice of 

the prior no longer has any bearing on the posterior. It makes no difference. 

On the other hand, what happens if the prior is changed? If your prior is subject to greater 

uncertainty (a flatter green curve), it will weigh less heavily on the posterior, which will 

resemble more closely the likelihood (the blue curve). The prior exerts less influence. If, at 

the outset, you have absolutely no idea of how many people share your views (a horizontal 

line from one end to the other), the prior will exert no influence on the posterior; the latter 

will follow the likelihood exactly – a horizontal straight line does not distort, through 

multiplication, the likelihood density function. The weightless prior is obtained in the 

same way as equiprobability when rolling dice. If you know nothing about its lack of 

balance, the posterior will only be influenced by each roll of the dice, not your initial belief. 

 

 

In this example Bayes’ rule worked one of its many magic tricks, reconciling perceived 

probability with its objective counterpart. It combines an initial perception, regarding the 

plausibility of a hypothesis or the probability of an event, with a calculated probability 

based on new knowledge. 

 

Predicting the probability of the next event 

Will the sun rise tomorrow? According to Laplace the answer is uncertain, having 

estimated the probability of it not rising to be 1/1.826215! In this example – which earned 

him much mockery and criticism – he applied a general formula which he had worked out 

himself. His rule of succession is based on Bayes’ rule. 

The problem of succession may be stated in the following abstract terms: what is the 

probability of picking a red ball out of an urn at the n+1th attempt, given that for the n 

previous attempts, k red balls were picked? Or alternatively, posing a more concrete 

question addressed in the following section, given that the global reactor fleet has 

experienced 11 core-melt events in 14,400 reactor-years, what is the probability of 

another core-melt occurring tomorrow? 

Your intuitive answer to the question on the next draw is very probably k/n. Previously k 

red balls have been picked from the urn in the course of n draws, so you conclude that the 

same proportion will also be valid next time. It is not a bad solution, but there is a better 
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one. From a mathematical point of view your answer does not work if n = 059. So you 

cannot use this formula to determine the probability of the first event, for example a core-

melt before an accident of this type ever happened. Using the formula means you can only 

base your judgement on observation. Much as Doubting Thomas, you only believe what 

you can see. You may however have carried out previous observations (though this is 

fairly unlikely in the case of picking balls out an urn) or perhaps you fear that the person 

who set the urn on the table wants to cheat you. In short you are not basing your decision 

on your prior; you are not using Bayesian reasoning. 

To solve the succession problem Laplace resorted to Bayes’ rule, though it was not yet 

known as such. Indeed Laplace reinvented it, very probably never having heard of the 

work done by the British minister. He started from an a priori judgement, assuming that 

only two outcomes were possible: picking a red ball or a ball that was not red. Each had an 

equal chance of occurring, so the probability was 1/2. He thus obtained a formula 

(k+1)/(n+2). For example, if five draws are made and a red ball is only picked once, the 

probability predicted by the formula for the sixth draw is (1+1)/(5+2), or 2/7, or indeed 

0.286. Alternatively, if we return to the example of the sun60, Laplace went back to the 

earliest time in history, 5,000 years or 1,826,214 days earlier, making 1,826,213 

successful sunrises out of 1,826,213. The probability that the sun would also rise on the 

following day was consequently (1,826,213+1)/(1,826,213+2) and the probability of the 

sun not rising was 1-(1,826,213+1)/(1,826,213+2), or one chance in 1.8 million. 

Laplace proceeded as if two virtual draws had been made, in addition to the real ones, one 

yielding a red ball, the other a non-red ball. Hence the simple, intuitive explanation of the 

origin of his formula: he adds 2 to n in the denominator, because there are two virtual 

draws; and adds 1 to k in the numerator, to account for the virtual draw of a red ball. From 

this point of view the choice of the sun is unfortunate. The merit of the prior depends on it 

being selected advisedly. Laplace was a gifted astronomer, yet he chose a prior as if he 

knew nothing of celestial mechanics, as if he lacked any understanding of the movement of 

the sun apart from the number of its appearances. 

The choice of the prior to predict picking a red ball at the next draw is more successful. It 

anticipates Keynes’ principle of indifference: when there is a priori reason to suppose that 

one outcome is more probable than another, equiprobability is the only option. If there is 

nothing to indicate a bias, the prior probability that a coin will land heads up is 1/2, the 

prior probability of scoring a 3 with a roll of a die is 1/6, and so on. A 1/n probability 

makes complete sense if no prior knowledge nor expertise suggests that a specific 

outcome among the n possible outcomes is more probable than another. 

Thanks to progress in probability theory we now have a better instrument than the 

Laplace formula for solving the succession problem. The solution found by the French 

mathematician, (k+1)/(n+2), has become the particular case in a more general formula. 

This formula is still the result of Bayesian reasoning, but it has the key advantage of 

introducing a parameter which expresses the strength of the prior in relation to new 

                                                
59 If n equals zero, k equals zero; zero divided by zero is indeterminate. 
60 ‘Thus we find that an event having occurred successively any number of times, the probability that it 
will happen again the next time is equal to this number increased by unity divided by the same number, 
increased by two units. Placing the most ancient epoch of history at 5,000 years ago, or at 1,826,213 
days, and the sun having risen constantly in the interval at each revolution of 24 hours, it is a bet of 
1,826,214 to 1 that it will rise again tomorrow.’ p. 23 Essai Philosophique sur les Probabilités, 1825. 
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observations and knowledge. For the two extreme values of this parameter, either your 

confidence in the prior is so strong that nothing will change your mind – so the posterior 

cannot diverge from the prior – or your confidence in the prior is so weak that the tiniest 

scrap of new data will demolish it – leaving the posterior exclusively dependent on the 

new data. 

In this modern version the expected probability of picking a red ball in the n+1th draw is 

written as (k+st)/(n+s), where t is the prior expected probability – for example 0.5 for 

equiprobability – and s is the parameter measuring the strength of the prior. The two 

virtual draws, of which one is successful, added by Laplace, are replaced here by st virtual 

draws (where t<1) of which s are successful. In other words we return to Laplace’s 

formula if s=1 and t=1/2. Bear in mind that if s=0, the posterior, in other words the 

probability of drawing a red ball in the n+1th draw becomes k/n. Only the observations 

count. On the other hand, if s tends towards infinity, the posterior tends towards the 

prior61. Only the prior counts.  

The general formula, (k+st)/(n+s), corresponds to the summit of a curve similar to the 

blue curve in Figure 3. Similarly the value t marks the top of the green curve in the same 

figure. So Bayes’ rule does apply to functions. The prior probability and the observed 

probability are both random variables for which only the distribution and classical 

parameters (expectation, variance) are known62. The exact value is not known, but simply 

estimated by statements such as ‘there is a 95% chance that the target value is between 

0.3 and 0.6’. The parameter s which expresses the strength of the prior may therefore be 

interpreted as the uncertainty of the prior. The greater the value of s, the steeper the 

curve; the lower the value of s, the flatter the curve (in mathematical terms 1/s is 

proportional to the variance which measures the distribution on either side of the mean 

value of the prior function). Expert opinions can be finely quantified, thanks to this 

property. They can be queried too, for the most probable prior measurement of a 

phenomenon (t), but also the strength of their opinion (s). In this way two experts can 

state that they estimate the probability of radioactive emissions in the event of a core melt 

as 0.1, but one may be confident, assigning a value of 10 to s, whereas the other is much 

less certain, only crediting s with a value of 0.5. 

An interesting feature of this way of calculating the probability of the next event is that it 

enables us to grasp the connection between perceived probability and acquired objective 

probability. At the outset all you have is your subjective prior (the expected probability, t). 

Then you receive the objective information that k red balls have been picked in n draws 

(an expected probability of k/n). So your perception of the next draw is given by the 

posterior (the expected probability of (k+st)/(n+s)) which combines the two previous 

elements. In other words the perceived probability is seen as the updated prior 

probability taking into account the acquired objective probability. This interpretation is 

fruitful because it provides a theoretical explanation63 for our biased perception of low 

and high probabilities. There is a linear relation between the expectation of the perceived 

                                                
61 If s is very high, the denominator n is negligible compared to s while the numerator k becomes 
negligible compared to st, the ratio is close to t, the initial expectation of probability.  
62 The general formula is obtained by choosing a beta distribution with parameters [(st, s(1-t)] for the 
prior function, and a binomial distribution for the likelihood function. In this case a beta distribution with 
parameters [st+k, s(1-t)+n-k ] is used for the posterior function.  
63 See W. Kip Viscusi, op cit. 
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probability (k+st)/(n+s) and the expectation of the acquired objective probability k/n. If 

k/n < t, the perceived probability is less than the objective probability. 

 

What is the global probability of a core melt tomorrow? 

Following the Fukushima Daiichi disaster two opponents of nuclear power published their 

estimate of the risk of a major accident in a French daily64. Both have a scientific 

background: Bernard Laponche is a nuclear physicist; Benjamin Dessus is an engineer and 

economist. Both started their career at France’s Atomic Energy Commission (CEA). They 

asserted that, ‘in the next 30 years the probability of a major accident is [...] over 100% in 

Europe”. The exact figure cited was 129%. Quite something, a probability of more than 1. 

It was as if the certainty of an accident was not enough to impress public opinion, so the 

two authors invented a super-certain hazard. Perhaps they were inspired by the 

manufacturers of washing powders which wash ‘whiter than white’. 

Joking apart, what caused this mistake? Certainly not the data they cited, which were 

correct. Dessus and Laponche’s calculations were based on a global fleet of 450 reactors 

(of which 143 in Europe), which has suffered four core melt events followed by a massive 

release of radioactive material (Chernobyl 4, Fukushima Daiichi 1, 2 and 3) with total 

operations spanning 14,000 reactor-years. So the observed accident frequency is 

4/14,000, or about 0.0003. The mistake is due to confusion between the number of 

accidents expected over a 30-year period and the probability of an accident. The expected 

number of accidents for this period, with an observed frequency of 0.0003 is indeed 1.29 

(30x143x0.0003). But this number is not a probability. Confusing it with a probability is 

tantamount to saying that in a family with four children the probability of having a 

daughter is 2 (0.5x4), whereas in fact it is 15/16 (1-1/2x2x2x2)! 

The mistake, if it is deliberate, is all the more stupid as an error-free calculation produces 

a figure which is sufficiently impressive in itself: the probability of a major accident in 

Europe over the next 30 years is 0.72. Were Dessus and Laponche afraid the general public 

would underestimate such a high probability? Were they trying to rectify this perception 

bias? The figure of 0.72 is calculated by modelling the probability of a major accident using 

a binomial distribution function [30x143; 0,0003]. Statistically speaking, this involves 

presenting the problem to students in these terms: 14,000 reactor-years have been polled 

(‘Have you had a major accident?’); four answered yes; what is the probability of an 

accident over the next 30 years for a fleet of 143 units?65 

However the mistake discussed above is harmless compared to a crippling fault in the 

approach which the rule of succession reveals. Dessus and Laponche behave as if the 

probability of another accident tomorrow can only be elucidated and parametered by the 

past observed frequency, k/n. They choose to focus exclusively on observation, completely 

disregarding all the other learning that has accumulated on the subject. Yet tens of 

                                                
64 B. Dessus and B. Laponche, Libération, 5 June 2011, Accident nucléaire: une certitude statistique. 
65 To simplify matters, we shall assume here that the number of accidents follows a binomial 
distribution. The probability of there not being a major accident in Europe over the next 30 years is 1-
0.0003 per reactor-year, or (1-0.0003)30x143, or about 0.28. The probability of there being a major 
accident in Europe over the next 30 years is therefore 0.72. The choice of a 30-year period is largely 
arbitrary; the calculation can be reduced to the probability of an accident in Europe next year, for which 
we find 0.042, or a nearly 4-in-1,000 chance.  
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thousands of engineers, researchers, technicians and regulators have been working on 

precisely this topic for the past 60 years. It is as if the only hope of salvation is in major 

accident data, despite their number being extremely limited, unlike other forms of 

knowledge. By considering that the parameter indicating the strength of the prior 

(previously designated as s) has a value of zero, these two opponents of nuclear power are 

behaving in exactly the same way as their counterparts, the obtuse advocates of the atom, 

who stick rigidly to their prior assumptions, refusing to attach any credit to observations 

of past accidents to predict the probability of an accident in the future (in other words, 

leaving s to tend towards infinity). 

A simple example may be used to illustrate how observation and other knowledge can be 

combined to predict future nuclear risks. There are no particular difficulties regarding 

observations, apart from their very limited number. This constraint may, however, be 

slightly reduced if we focus on the risk of a core-melt accident, of which there are 11 

cases66, rather than the risk of core melt leading to release, of which there are only four 

instances. As ever, choosing the prior is tricky, but we may take advantage of the 

availability of probabilistic safety assessments, the results of which summarize all the 

existing knowledge on accidents, apart from observations. On the basis of assessments 

carried out in the 1990s on US reactors, we may choose to add to the data on 11 accidents 

in 14,000 reactor-years a virtual observation of 1.6 accidents in 25,000 reactor-years. This 

virtual observation is derived from the expected value of the probability of core melt 

estimated by the experts as 6.5x10-5 per reactor-year associated with an uncertainty 

measured by a prior strength of 25,00067. We thus obtain values for t and s and can apply 

the formula (k+st)/(n+s), or [11+(25,000x6.5x10-5)]/14,000+25,000, which equals 3.2x10-

4. In other words the experts propose a mean probability of core-melt per reactor-year of 

6.5x10-5; and observed evidence leads to 7.8x10-4. By advisedly combining the two sources 

of knowledge we obtain a probability of 3.2x10-4. To make this figure easier to grasp, we 

may translate it by calculating that the probability of a core-melt accident next year in 

Europe is 4.4 in 1,000. This probability is less than half the value obtained from the 

observed frequency of core-melt accidents on its own. 

It is nevertheless very high, because the approach used in this example disregards 

progress towards greater safety. It assumes that the accident probability we want to 

measure has remained constant over time. But the design of reactors is steadily changing. 

Reactors built today are on the whole safer than their first-generation counterparts. 

Furthermore safety standards are increasingly strict and more efficiently applied, which in 

turn improves safety performance. Indeed these gains are reflected in the risk of core melt. 

A large number of the accidents considered occurred during the early years of the 

development of civil nuclear power68. 

Nor is the above approach ideal, because it assumes that events are unconnected. Yet the 

European, or global, nuclear fleet in 2012 is fairly similar to the one that existed in 2011, 

in 2010, and so on. In other words, we are not dealing with a situation akin to rolling dice, 

in which the result of one roll has absolutely no bearing on the following one. On the 

                                                
66 The eight core-melt accidents previous to Fukushima Daiichi (see footnote 4 on page #), plus the 
meltdown of reactors 1,2 and 3 at this NPP.  
67 Specify source. 
68 See also the changes in US probabilistic safety studies highlighted by the Electric Power Research 
Institute. 
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contrary the occurrence of one major accident may point to others, because we are still 

dealing with the same reactors69. For example, an accident may indicate that a similar 

problem affects other reactors of the same design or subject to comparable natural risks. A 

recent study70 sought to remedy these two shortcomings. The model it used weights 

accident observations according to the date when they occurred. It calculates a sort of 

discount rate which, with time, tends to reduce the influence of old accidents over the 

probability of an accident now. With this model the probability of a core-melt accident 

next year in Europe is 0.7 in 1,000, six times lower than with the previous approach. 

 

How may we conclude this second part devoted to risk? By emphasizing the pointless 

opposition  between experts and the general public, with both parties accusing the other 

of rank stupidity. The experts, with their sophisticated calculations, have allegedly made 

massive mistakes estimating the frequency of major accidents and the associated damage. 

Locked up in their laboratories, their certainty has purportedly blinded them to events 

that are glaringly obvious, namely the recurrence of disasters since Three Mile Island. On 

the other hand the general public is supposedly guilty of yielding exclusively to its fear of 

disaster, stubbornly clinging to its rejection of calculated probabilities. Brainwashed by a 

stream of disaster movies and incapable of basing the slightest decision on statistical 

evidence, people’s reactions are ruled by emotion and nothing else; they are ostensibly 

quite unable to see that coal or hydroelectric dams constitute risks every bit as serious as 

nuclear power plants. So you may choose sides, denigrating either the experts or the 

general public! However there is no contradiction between analysing on paper sequences 

of events that may potentially lead to a core melt, and observing accidents and their 

causes. Furthermore theory provides ways of combining and associating such knowledge. 

It enables us to find rational explanations for the irrational, which becomes much less or 

not at all irrational. We have a better grasp of how probabilities are distorted, either 

through simple heuristics or gradual acquisition of Bayesian methods, depending on one’s 

school of thought. What was once perceived as irrational loses that connotation once it is 

seen to conform to identified mechanisms. A fuzzy border now separates rational 

decision-making from other forms of choice. Is it irrational to take decisions under 

uncertainty without allowing for risk aversion? Surely it would in fact be irrational to go 

on denying the existence of such aversion? When Maurice Allais presented Jimmie Savage 

with a puzzle the latter’s answer contradicted the results of his own theory. When he 

appears as a guest-speaker in Israel, Daniel Kahneman avoids travelling on Tel Aviv buses 

for fear of an attack. In so doing he is fully aware his actions are dictated by perceived, 

rather than calculated probability. 

The loss of bearings which fuels discord between experts and the general public, opposing 

the rational and irrational, is most uncomfortable. It raises a terrifying question: should 

government base its decisions on perceived probabilities or on those calculated by 

experts? In the case of nuclear power, the former are largely overestimated, a situation 

which is likely to last. It would be foolish to treat the attitude of the general public as the 

                                                
69 At least with respect to their location and type. Improvements to safety through changes to 
equipment and operating procedures mean that a reactor is not quite the same over time.  
70 Lina Escobar Rangel and François Lévêque, How did Fukushima Daiichi core meltdown change the 
probability of nuclear accidents?, i3 Working Paper 12-ME-06, October 2012. 
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expression of fleeting fears which can quickly be allayed, through calls to reason or the 

reassuring communication of the ‘true’ facts and figures. If government and the nuclear 

industry did share an illusion of this sort, it would only lead to serious pitfalls. The reality 

test, in the form of hostile demonstrations or electoral reversals, may substantially add to 

the cost for society of going back on past decisions based exclusively on expert 

calculations. On the other hand the airline security syndrome will inevitably spread to 

nuclear power unless the authorities pay attention to public perception of probabilities. If 

the propensity to invest in nuclear safety is not brought under control, many expensive 

new protective measures will accumulate, without necessarily having any effect. Which 

brings us to the subjects of the next two papers: safety regulation and nuclear policy. 
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