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1. Introduction

The influence of energy prices on green innovat@as attracted a lot of
attention in recent years. In particular, empirstaidies, pioneered by Newell,
Jaffe, & Stavins (1999), have estimated the imp&anergy price variations
on the level of innovation in various sectors aadhhology fields: e.g. the
auto industry (e.g. Aghioet al, 2016; Crabb & Johnson, 2010), energy
conservation (Popp, 2002; Noailly, 2012) and rer@avanergy (Diaz Arias &
van Beers, 2013).

Policy relevance is the primary reason for thigiiest. The production and use
of energy strongly contribute to increasing greerseogas emissions. Meeting
climate policy targets — in particular, the commetits formalized in the Paris
Agreement to limit global warming below 2 °C abqwe-industrial levels —
require drastic emission cuts that are only feasitith the development and
diffusion of new energy technologies. Against theéekground, assessing the
impact of energy prices on innovation is usefulptedict how price-based
policy instruments like emissions taxes and canmankets can influence the
pace of climate-friendly innovation. These investigns contribute to a
broader literature on the relationships betweeremgri@novation and public

regulation (for a survey, see Popp, Newell, & J&#&10).

Previous papers have primarily relied on paterd @t measuring the level of
innovation. Patent data have advantages and wesds\@or a discussion, see
Griliches, 1990). On the positive side, they arglgavailable; they provide a
wealth of information on both the nature of theentton and the applicant;
they can be disaggregated into specific technoddgaceas, a particularly
useful characteristic when conducting sector- ohnelogy-specific analyses.
On the negative side, patents are a better measureention than they are of
innovation. Schumpeter (1939) already makes thanaegt that many forms
of innovation can occur without the production ofyascientific novelty. On

the other hand, the economic reception of an ineeng uncertain. It follows



that the future economic value of individual paserst heterogeneous: Many
patents have very low value, and as a consequbraauimber of patents does
not perfectly reflect the value of technologicahawation. Furthermore, all
inventions are not patented because some inventaxs prefer secrecy to
prevent public disclosure of the invention impossdpatent law, or to save
the significant fees attached to patent filing; grepensity to patent differs

across sectors and technologies.

This paper takes a different approach by lookinghatresult of innovation.
Using product-level data from the UK refrigeratoanket, we examine the
impact of electricity prices on the characteristi€the products actually sold
on the market and we derive the impact on the gneogsumption of sold
appliances. In comparison with patent-based studes main advantage of
the approach used in this paper is that it prodeséismates of the impact of
energy prices on the level of energy use inducegrbgluct innovation, which
matters more for policy makers than the count of patents. Doing so, we
actually come closer to the strategy adopted by dllewaffe, & Stavins
(1999) in their seminal study. However, their cqioal framework is

different, which we clarify belo.

Looking at energy efficiency improvements in theitehgoods sector has
strong policy relevance. Domestic appliances aspamesible for a large share
of the energy consumed by households: 16% of eneoggumed in the
residential sector and more than 60% of residesteitricity consumption in

2009 (Enerdata, 2010). At the same time, theragh hotential for energy

! We restrict our analysis to product innovationh@tforms of innovation, such as process
innovation (i.e. reductions in the cost of prodgcenergy efficient appliances), are beyond
the scope of this study.

2 Newell, Jaffe, & Stavins (1999) use data from ®ears catalogue and other publicly
available information on 735 room air conditione235 central air conditioners and 415 gas
water heaters offered for sale between 1962 an8.I8%ey directly look at product attributes
of commercialized products to assess the magnifideluced innovation. Our method relies
on a similar panel of appliances. Our method, empthin section 2, is however different
from theirs.



efficiency improvements; for example, an energyicefht refrigerator

consume up to five times less energy than an eneeffjcient one.

Methodologically, our approach starts from Lancagl®66)’s view that, at
any point of time, the refrigerator market includesny differentiated models,
each being a particular combination of product abi@ristics (e.g. capacity,
energy consumption, height, colour). Product intiove amounts to the
launch of new models that substitute older ones.thée take advantage of
the fact that we observe the dates of launch aricerach model sold in the
UK market between 2002 and 2007. We use a dynamawelgata probit
model (Wooldridge, 2005) to identify the impact efergy prices on the

probability that a given model is commercialized.

This method faces two main econometric challendé® first one results
from the inclusion of refrigerator prices as a cohvariable in the product
offer equation. This creates a simultaneity problémhigh price arguably
increases the incentives to launch the productnbut products also modify
the market equilibrium and thus the prices. We sadhis issue by adopting a
strategy inspired by Hausmaat al. (1994), i.e. using the price of similar
products as instrumental variabfedhe identification assumption is that
prices in outside markets reflect underlying pradeamst and that stochastic
market-specific factors are independent from traisserved in the refrigerator
market. The second challenge is that informatiorthenprice of refrigerator
models that are not commercialized is not obserWgd. circumvent this
problem by predicting prices for non-commercializptbducts by using
multiple imputations. This gives unbiased standardrs when prices of non-

commercialized products are uged.

% Hausman's approach is slightly different, but ltgic is similar. He considers the price of
the same product in different geographical markets.

* On the other side, refrigerators have some adgest@ompared to other energy-using
products (e.g. cars, washing machines, dish wastwien studying how market outcomes are
affected by energy prices. For example, refrigesatend to be used with the same intensity at



In the last stage of the analysis, using the ecatatestimates, we produce a
micro-simulation in order to calculate the impadta 10% energy price
increase on energy consumption of the models comatized. We find that a
10% increase in the price of electricity reduces é&mergy consumption of
commercialized products by 2%. A large share of teduction is explained
by a reduction of freezing space. We also show that exit of energy-
inefficient products contributes more to the reducthan the launch of new
energy-efficient models. These findings suggedtith@vative improvements
in energy efficiency — the development of new epeaving technologies
embodied in new products — is not the primary raspoto energy price

increases.

The remainder of the paper is structured as folld®ection 2 explains our
modelling approach, detailing the challenges assediwith the simultaneous
price and commercialization decisions and unobserpeices of non-
commercialized products. Section 3 describes th& &ection 4 presents the
econometric results and we include the simulatibhaw product innovation
is affected by an increase of the electricity prineSection 5. Section 6

concludes.

2. Model

To study product availability, we focus on the mbility that a product is in
the market Thus, we jointly consider product entry and éx@ur dependent

variable isd;, with dj, = 1 if the produc{ is in the market in yedrand zero

otherwise. As our base specification, we use theviing probit model:

all times, i.e. energy consumption is fixed. Thigplies that intensity of use is hardly affected
by the energy price.

® An alternative approach is to analyze productyeatrd exit separately with, for example, a
survival model. This would drastically reduce thmoaint of information actually exploited

and create censoring problems as we have a timendion which is too short for survival

models.



djs = ¢(ad;t—1 +Bpje +vCe + T + ”J’)' €y

where ¢ () is a cumulative normal function with zero mean andariance
equal to one and, f§ andy are parameters to be estimated. We adopt a

*

dynamic specification witll;,_; as an independent variable in order to control

for path dependence: launching a product is costiych creates persistence.
In the data, 44% of the products available at tirfeare also available at time
t, whereas only 21% of the products that are nolahla att -1 can be found

in the market at time

The main variable of interest is obviously the arelectricity costCj,. It is

the product of modej's energy consumption (in kWh) and the electricity
price, which varies over time. An increaseCip is expected to decrease the
dependent variabley( < 0) as it corresponds to a negative demand shock on

the refrigerator market.

Our baseline econometric specification uses conbeamgous energy prices to
compute running costs. Yet, the energy costs adpgliance will depend on
the future electricity prices over the lifetime tbke appliance. If expectations
about future electricity prices are different froourrent prices (e.g. as
suggested by Panzone, 2013), then we may not by the right metric
to analyze the effect of energy prices on prodatityeand exit.

In fact, using contemporaneous energy prices isvalgnt to assuming that
consumers think that electricity prices follow agam walk. While there is
support for this assumption (lto, 20f4)we can alternatively produce
electricity price expectations based on the futyvgeses of the wholesale
electricity market. The general idea behind usingures is that these

constitute expectations about future prices fronll-iméormed actors in the

® He finds that consumers are more responsive toageeprices than to marginal electricity
prices or to expected marginal electricity prices.



electricity markets. This is done in Appendix D aedults are very similar to

our baseline specification.

We also include the refrigerator prigg,, which is an obvious driver of
product availability. However, its impact is diffit to predict. On the one
hand, producers have incentives to keep produdfs fwgh markups in the
market, and thus high prices. On the other handh@ease in the refrigerator

price hurts demand, and thus reduces sales.

The equation includes time dummies and productdfieéfects,t, and u;
respectively. Product fixed effects are particglaimportant because
refrigerators are differentiated goods, with selveharacteristics that are not
observed in the data (e.g. product design, electromadout) and that are
likely to be correlated with energy performanced(@musC;,). Fixed effects
offer perfect controls as these attributes are ymbdpecific and time-

invariant.

We estimate this dynamic probit model using the hoet suggested by
Wooldridge (2005). The correlation between the pobdixed effecty; and

the initial valued; , is made explicit. We formulate that as:

Z; is the row vector of all non-redundant explanateayiables in all time
periods. It includes time-invariant product featurge.g., size or energy
efficiency rating) but also the purchase price fdoicts at each time period
(i.e., the price in 2002, 2003..., 2007). To avaidlticollinearity, we exclude
year dummies and only include the electricity dostone year because they
are calculated from the annual energy consumptiomadel j, which is a
product feature that is given and does not varyr diee.k, and k,; are
parametersk, is a vector of parameters afigis a random effect such that

0;1(d;o, Z;) follows a normal distribution.



Substituting eq. (2) into eq. (1) leads to an eshil@ random-effects probit

model withd;, andZ; included as explanatory variables:
di = ¢p(adj_y + Bpje + vCie + ko + kadjy + k,Z; + 6, +7,)  (3)

The method by Wooldridge (2005) estimates a fixd#dce dynamic probit
model under the assumption tifatis normally distributed. To ensure that the
results are robust to model choice, we also usenplexr fixed effect logit
model with no dynamic component, which is displayedppendix A. Both
the dynamic probit and the fixed effect logit mofletl statistically significant
and negative impacts of energy costs on productwencialization.

First-stage price equation

The inclusion of the refrigerator price in eq.(2)sps two problems. The first
is that the electricity cost;. is likely to affectp;. Remember that an
electricity price increase amounts to a negativenaded shock on the
refrigerator market and less demand leads producersduce their prices.
Overall, the electricity cost potentially affectgoguct availability both

directly — as measured by coefficientin eq.(3) — and indirectly through
refrigerator price adjustments. A full evaluatiohtbe impact of electricity

prices thus requires us to estimate the price emuaSecond, the product
price could be endogenous because commercializaidnprices are jointly

determined in market equilibrium.

We use a control function approach to deal with fttet two problems: we
regress prices on a series of instruments andléuogrieity cost and then use
predicted prices when estimating the probit mo@sst shifters are good
candidates as instrumental variables. They obwaunfluence the refrigerator
price as this price is the sum of the unit productost and the markup. They
are also exogenous: production cost shocks havéireot influence on the
decision to launch or remove a product from theketawhen controlling for

the refrigerator price as done in Eqg. (3). We iseinstruments developed by



Cohen, Glachant and Soderberg (2017) and referppeAdix B for a full
description. In short, we exploit variations praddby the price of similar
products in two outside markets: the upright freemarket (i.e. excluding
chest freezers) and the washing machine marketceptumally, we use the
same strategy as Hausmanakt(1994)’ Freezer and washing machines are
sold outside the refrigerator market, and thus itterént consumers. This
implies that taste shocks on these markets ardiketg to be correlated with
those experienced on the refrigerator market. phawides the basis for the
exclusion requirement: the instruments will not dmrelated with demand
shocks on the refrigerator maratiowever, these products share similarities
with refrigerators because they are also large dtimappliances. Cost shocks
that affect the price of freezers and washing maahi- e.g., an increase in

steel price — are likely to be correlated acrosse¢market8.

The difficulty with this approach is to match thecps of freezers or washing
machines to the price of a specific refrigeratour Golution is to use two
product characteristics that are common to refatpes, freezers, and washing
machines, i.e. capacity and whether the appliasdauilt-in or freestanding.
Using a hedonic pricing model, year-specific imipliorices for these two

characteristics are estimated on product-level datahe UK freezer and

" Hausman et al. (1994) aim to identify cost-shiftathen data on costs is missing. It uses
information on the same products, but sold in défifé markets, to construct instruments. The
idea is that demand shocks on different marketisneil be correlated, whereas supply shocks
are since we are talking about the same produstsmercialized by multi-country firms. The
idea behind our instrumentation strategy is simidimand shocks on different product types
should not be correlated, whereas these produet:anufactured with similar material.

8 There are a few elements that will substantiathjtithe correlation between demand shocks
across these products. In particular, whereas ewerthas a refrigerator at home, many
households never buy a freezer and some houseldoldsot have a washing machine.

Furthermore, these appliances have different ilifet (washing machines have the shortest
lifetime, freezer the longest lifetime) and thetfdlcat an appliance breaks down largely
explains the decision to buy a new appliance. Theze purchasing decisions are rarely

performed at the same time.

° See the robustness checks in Cohen, Glachantadett®rg (2017), which demonstrate that
these instruments are strong predictors of theepfgefrigerators.



washing machine markets between 2002 and 2007, deith obtained from
GfK.1® This technique yields year-specific averages fobcategories of
freezers and washing machines, which are matcheth he same
subcategories of refrigerator-freezers and refages. For example, the
implicit price of smaller than average built-in émers at timet is used as an
instrument for the price of smaller than averagaitin refrigerators and

refrigerators-freezers at timé*

In the end, we fit the following price equation:

ln(pjt — n) =6C;; + p1Wje + pzfjt +60; + 1.+ 1)

The dependent variable is a transformation of tredyct price withn =
27.52 so that the predictions can be used to computépteuimputations —
we provide detailed explanations below when présgritow we deal with
missing price valuesv;, is the implicit price in yeat of the washing machine
of which size is similar to produgtf;, is the equivalent price for freezers. We
also include product fixed effectg; and time dummiest,. n;. is the

disturbance term.

Missing information on product prices

As mentioned previously, information qr, is missing in the data for all

periods when produgtis not available in the market;{ = 0). We therefore

19 The hedonic approach is described in Appendix B Mh fixed effect regressions and
interact specific product features with time dumsrti@ capture shocks on the implicit price of
these features. The regression therefore accoontsinie-constant unobservables such as
brands and stores in which the products are seidh&more, the hedonic regression includes
brand-specific time trends that control for the e@ah development of brand-specific
marketing strategies.

™ The hedonic regressions include brand-specifie tinends to control for brand-specific

marketing strategies and image. Therefore, vanatiof the hedonic prices of the two

characteristics do not capture changes in brandema feature that could be correlated with
the sales of refrigerators with the same brand ndmeaddition, and to ensure that our

estimation is not biased by changes in the rettcs, trade brand products have been
withdrawn from the samples of freezers and washiaghines used to estimate the implicit
price of the two attributes.

10



need to make an assumption about the purchase giripeoducts in years
when they are not available in the market. Forttadl products that are not
commercialized at timd, one could perform a regression on observed
refrigerator prices (whed;, = 1) and produce out-of-sample predictions for
pjc Whend;, = 0. However, this approach would underestimate thedstal

error of the estimated coefficients.

To solve this problem, we perform multiple impubat for each missing;,,

a technique that provides unbiased standard erforsthe estimated
parameters (Rubin, 1987). The procedure is aswslld-irst, we look at the
distribution of refrigerator priceg;; and perform a transformation @n, so

that the transformed refrigerator prices followistribution close to normaf
The transformation that we use is:

pje = In([pje] —n) )
p;. are transformed prices, is a parameter that ensure that the skewness of

the distribution is close to 0, which is one prapef normal distributions. In

our case, we set = 27.52.13 Then, we run a fixed effect linear regression on

transformed prices:

whereh; is the product specific fixed effect; the time fixed effecta is a
parameter ana;; is the random error term. Importantly}, corresponds to

the vector of instruments used to control for tlemmercialization-price

endogeneity and is a vector of parameters. Using the instrumértsin the

imputation process allows us to control for the acgeheity on imputed

2 Such multiple imputation method is known to besbih if applied to non-normally
distributed variables (Rubin, 1987).

13 We have performed the Skewness and Kurtosis teg} 0 The p-values of this test is 0.99
with n = 27.52. Thus, the normality hypothesis @f; is not rejected.

11



refrigerator prices. The predictions obtained frtims regression are denoted
Djt-
Based on the results of the linear regression, iwate 25 imputed prices for
each missing value gf;.. Let m denote the imputation number, then each
imputed transformed price of prodyat timet is given by:

Pt = Dje + xj¢
where xji" is a randomly assigned and normally distributedoreterm
corresponding to imputatiom for productj at timet. Next, we use eq. (4) to
calculate the value of the imputed prigg from their transformationgy;.
This step gives imputed valugg; with a distribution that is close to the
distribution of observed prices. Once thg values have been obtained, we
estimate eq. (3) as many times as there are impusatnd then compute

coefficient values and standard errors that accéamthe uncertainty of the

value ofp;, whend;, = 0.

The technique described above also solves the enddy problem of
unobserved prices. In parallel and as previousplaered, we also control for
the endogeneity of observed refrigerator prices:rwe a linear regression
similar to eq. (5) and extract predicted valuesdbserved prices that we use

later in the dynamic probit model.

3. Data

We use product level data from 2002 to 2007 fromréfrigerator market in
the UK collected by the market research comp@afl§ Retail and Technology
(received by the Department for Environment, Food Rural Affairs). The
data includes detailed annual information on refiagors and combined
refrigerators-freezers sold in the UK. We idenpfpducts by brand name and

12



series number¥' If not available, we rely on available information product
features (width, height, total capacity, energystonption, energy efficiency
rating, free-standing / built-in feature, availagilof no-frost system and of

freezer)®

Each observation is a prodycin yeart with information about the average
consumer price and annual electricity consumptiboreover, we observe the
number of units sold and a set of product feataueh as size, whether it is a
standard refrigerator or a combined refrigerateefier and indication of
whether it has a separate freezing compartmentctraistore food at -18°C.
We also know the product’s classification accordiaghe EU energy label.
Energy labeling is mandatory since 1995 for allrigefrators sold in the
European Union. In our data, each product is asedign a class from A++
(the most energy-efficient) to G (the least enegfficient). This rating does
not capture the absolute energy consumption oafpdiance, but its relative

consumption across different classgs.

We drop the following outliers: all products witesk than 10 units of sales,
and the 2.5% of products with the highest salesl$¢V We also drop the
2.5% products with the largest and smallest capacit energy consumption.
Any product falling within at least one of theseegpories is dropped from the
sample.

14 Note that a product that would be altered by mactufers would be coded under a
different series number, and would therefore hast#farent identifier in our dataset.

!> Brand name and series numbers were not avail@bleefailers’ own brands. For these
products, identification is based on product feadualone. This means that, with this method,
two models from different retailers’ brand but wekactly the same product features cannot
be properly distinguished. Therefore, observationgetailers’ brand appliances are dropped
each time the same product features correspongsitmus models of appliances for the same
year.

® However, the EU label also displays, next to thgng, the energy consumption of the
appliance in kWh per year.

" The disappearance of best-selling products fromyaar to the other could only be due to
dataset incompleteness.

13



Summary statistics on product characteristics fog trimmed sample of
observed, commercialized products are displayelhbie 1. It includes 4,928
observations consisting of the commercializatioproduct] in yeart. Table 2
provides an overview of the distribution of pricassd market shares across
energy efficiency classes. Note that almost altpobs were rated A, B or C

during the study periotf.

Electricity price statistics come from the UK Depaent of Energy and
Climate Change (DECC, 2013). The UK experiencedrgesin the electricity
price by around 40% between 2002 and 2007. Thee peached about 12
pence per KWh by 2007. The increase in electrigitges was mostly due to a
concomitant drastic increase in wholesale gas griahich peaked in 2006.
Gas is a major input in the UK electricity prodoectimarket. Thus, electricity

prices vary substantially over the 2002-2007 period

4. Results

Table 3 gives the results of the dynamic probit elod@hey confirm that an
increase in the electricity cost reduces the pritibalihat the product is
available on the market. Thus, highly energy-conegnproducts — energy-
inefficient products and large refrigerators — aw@re likely to exit the market

when the electricity price increases. Likewisegduction in the selling price

18 A potential problem is that the data does notlidel information on energy efficiency
policies that may have influenced market outcorfiesvever, there has been no change in the
design of the labeling scheme or in the strictrdthe regulatory standards during the sample
period. Admittedly, the Energy Efficiency CommitmdiEEC) scheme was enforced during
the study period, offering the possibility for éfite households to get financial support for the
purchase of energy efficient cold appliances. Hawgthis policy had very limited impact on
the refrigerator market. In practice, support mog&itused on energy efficient light bulbs and
on home insulation. Lees (2008) reports that sutesid fridge-freezers by EEC have
represented 0.43% of the market between 2005 a@8. 20we also include subsidies from
local authorities and the Warm Front, subsidizegdliapces may have represented around
1.5% of all cold appliances sold between 2005 &aB2

14



of an appliance increases its probability of bekept in the market. This

result is statistically significant at 1.

Table 1: Summary statisticson product characteristicsfor
commer cialized products

Variable Unit Mean S.td.
deviation
Refrigerator price real £ 429.3 310.3
Energy consumption kWhl/year 315.6 137.5
Annual energy cost real £/lyear 31.6 14.1
Height cm 143.8 42.4
Width cm 60.2 10.3
Total capacity (cooling + freezing) litres 259.6 3131
Freezing capacity litres 63.7 72.4
Energy efficiency ratinfy 2.47 0.85
Share of combined refrigerators-freezers 0.55 -
Share of built-in appliances 0.76 -
Share of appliances with no-frost system 0.26 -

Notes. Source: GfK, provided by Defra. Survey years: 2Q007. 4,928 observation5To
obtain a numeric value for the energy efficienciing (from “G” to “A++"), ratings were
recoded with “A++” set equal to 0, “A+"=1, “A"=2 a@hso on up to “G"=8.

Table 2: Price, number of products and average year of
commer cialization in the data, by energy efficiency class

Energy efficiency Average price Number of Year of
rating observations commercialization
A++ 528.1 14 2006.3

A+ 478.7 407 2006.2
A 458.1 2886 2005.4
B 400.7 1053 2004.3
C 299.0 520 2003.4
D 251.7 27 2002.6
E 351.1 17 2003
F 239.4 2 2003
G 233.3 2 2004.5

Notes. Source: GfK, made available by Defra. Survey ye2002-2007. 4,928 observations.

¥ The probit model correctly predicts 62.5% of dlservations, or more precisely 74.6% of
all 0’s (product is not commercialized) and 27.3P&lb1's (product is commercialized). This
is based on the assumption that products withedfjpprobability over 0.5 are commercialized.

15



The other parameters have #ected signs. For example, path dependence
is confirmed: the probability that a product is iéalale in yeart is higher if it

was in the market in the year before. Converselysoaluct available in 2002

is more likely to be obsolete in future years anereéfore to exit the market
(i.e. kq is negative).

Table 3: Dynamic panel data probit estimation of product availability
based on Wooldridge (2005)

Dependent variable Availability of productj: d;,
The product was commercialized the year befaje ( 0.6926***
(26.42)
Imputed refrigerator prices| -0.0016***
(6.01)
Electricity costs §) -0.0489***
(4.84)
The product was commercialized in 20@2)( -0.3348***
(11.34)
Non-redundant explanatory variables covering aikti Yes
periods and including time-constant product feafkg)
Year dummies Yes
Observations 15,875
Number of imputations for appliance prices 25

Notes. t-statistics in brackets. Standard errors are rotusteteroskedasticity, clustered on
products, and take into account uncertainty regagrtlie imputed values of appliance prices.
Table 3 is estimated 25 times with different coraltimns of imputations for the product
prices. The number of observations (15,875) comedp to the full sample of products used
in the dynamic probit estimation (3,175) times ange(from 2003 to 2007 since the 2002 data
is used as the first lag). The number of obseratis lower than the ones reported in the data
table and used for the FE estimation for produittegt This is because we need observations
to have non-missing information on all product feas to be used in the panel data probit
model. Results marked with *, ** and *** are stditally significant at 10%, 5% and 1%,
respectively.

Table 4 displays the results of the first-stagegrquation. Instruments are
found to be strong. The joint F-test of significanitas a statistic equal to
16.08. We find a statistically significant and nidga coefficient for the

electricity costs, suggesting that manufacturer§ebuhe increase in energy
costs by reducing their product margins. For therage product in the
sample, a £1 increase in energy costs translatesairE7 reduction in the
refrigerator price. Considering that the lifetimiecold appliances is between

12 and 15 years, this means that only about hdaliefncrease in energy costs

16



translates into a reduction in the refrigeratorc@riThis is consistent with
economic literature, which says that consumers tendinderestimate the
energy costs when they purchase domestic appliafsees Gillingham and

Palmer, 2014, for a review on the energy efficiegap).

Table 4: Fixed effect regression of the price of appliances

Dependent variable Ln(Price of product — 27.52)
Electricity costs -0.0178**
(2.27)
Implicit price at timet of a freestanding/build in 0.0087
washing machine of similar size (1.64)
Implicit price at timet of a freestanding/build in 0.0224***
freezer of similar size (3.21)
Product fixed effects Yes
Year dummies Yes
Observations 4,928

Notes. t-statistics in brackets. Standard errors are dledten products. Results marked with
* ** gnd *** are statistically significant at 1095% and 1%, respectively.

5. Simulation of a 10% electricity price increase

This section assesses the impact of an electriitye increase on the
characteristics of the products commercialized ba market. The main
objective is to assess the extent to which totalgghconsumption decreases.
Moreover, we also want to identify the channelstigh which this potentially

Ooccurs.

We chose to model a 10% increase in the priceeddtigtity. This figure is an
ad hocvalue allowing the reader to easily compute eafdsts to electricity
prices. However, it also has some policy relevaifeCC (2014) estimates
that the current cost of supporting home-grown,-t@sbon sources of energy
accounts for 5% of a household energy bill. Howewaost of the electricity
price fluctuations in the UK relate to fluctuationsvholesale gas prices.

We consider two scenarios: |) the Business-As-UgB#U) scenario as
observed in the data; and Il) a counterfactual agenn which energy prices

are 10% higher over the sample period. For eachasice we compute the
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predicted probabilities that each prodycis available in yeart. These
probabilities are denoted}t and ci]’{ respectively, where the superscript

indicates the scenario number.

When calculatingl/, andd/;, we take the dynamics of product entry and exit
into account: a higher probability of exiting therket at timet — 1 impacts
the probability that the product is still availakdé timet. The relationship
between d, and df_,Vae€{I;1I} is nonlinear and captured by the

coefficient for the lagged dependent variallgi( the dynamic probit model.

We restrict the calculation o:ﬁ;lt to 2003-2007 to avoid making "out of
sample" predictions on the probability that produston the market at a later
date. Furthermoreﬁﬁ for 2002 cannot be calculated since it requires
information on initial market conditions to makesgictions from the dynamic

a

probit model. We recurrently predi&ﬁ based oraijt_1 such that:

ja _ ja *
djt = djt—lq)jt(adjt—l

&y = 1) + (1 - d%_) D (0ld},_, = 0)

where®;,(ad},_,) is the probability that produgtis on the market at time
depending on whether prodyatvas on the market at tintel or not. We use
the functional forms of®;.(.) that have been estimated with the dynamic
probit model. That is®;, = ¢p(@d},_y + Bpje + 7Cie + ko + kadjy + k,Z; +

6, + %) whered, B, 7, ko, k1, kz, 9, andz, are coefficient estimates.

We also make recurrent predictions to calculél;g based ondjt_l. We
therefore proceed as if we did not know the redlizalue ofd;,_;. This

ensures that we model the effect of product emidyexit on market outcomes

over more than one year.

Last, we account for the indirect impact of thectleity costs that passes
through the refrigerator price with the first-stagace equation. We can
therefore compute the impact of higher energy camtsthe price of
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appliances, and from this the impact of lower pgfrator prices on the

probability of commercializatiof?

Simulation results

Table 5 presents the results of a first simulatitvere probabilitiesl/, andd){

are used to compute weighted values for the aveemgegy consumption
under each scenario. We find that a 10% rise ictred#ty prices reduces
average energy consumption by 2%.

What is the composition of this reduction? As shawTable 5, this energy
reduction is partly due to a decrease in refriggrafipacity which decreases
by 0.6%. However, the major contribution is the%.6eduction of specific
energy consumption, that is, energy consumptioritby of capacity. This
could signal the inclusion of more efficient teclogies in new models.
However, the table shows that this mostly occur®uph a decrease in

freezing capacity (remember that freezing uses raoeegy than cooling).

As shown in the preceding section, electricity @rishocks also affect
refrigerator prices, and thereby energy consumpiiadirectly. Table 6
actually shows that the average refrigerator pueereases by 3.6% in
response to the 10% electricity price increases Tigure is net of two
phenomena. On the one hand, manufacturers moddys#t of products
available in the market. This new offer includesdurcts of higher quality that

sell at a 2.5% higher price under the BAU scendbin.the other hand, they

2 In Appendix C, we account for both effects simuétausly. To do so, we run a dynamic
probit model that does not control for the price appliances. Therefore, the correlation
between the price of appliances and electricitytés captured by the electricity costs
coefficient. Both methods display similar resuligher energy costs reduce the selling price
of appliances and therefore soften the direct impéa@nergy costs on the likeliness that a
product is commercialized.

2L Note that this figure only considers the comméimasion of the products. It does not
consider the impact of electricity prices on théesaof commercialized models, which is
analyzed in Cohen, Glachant and Soderberg (201iKgwise, we are not computing the
impact of the electricity price increase on thecktof appliances hold by UK households.
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reduce their margins. On average, the price ofvangproduct is 6.1% lower
under scenario Il compared to the BAU scenario.
Table5: Impact of the electricity priceincrease by 10% on average

ener gy consumption, total capacity, freezing capacity, and energy labels
of commercialized refrigerator s (2003-2007)

. Scenario | Scena(ipll : .
Predicted aver age values ; 10% electricity price Variation
Business as usual :
increase
Energy consumption 311.4 305.1 -2.0%
(kWh/year)
Total capacity (cooling + 263.7 262.2 -0.6%
freezing)
(litres)
Specific energy consumption 1.18 1.16 -1.6%
(kWh/yearlliters)
Freezing capacity 63.8 61.5 -3.8%
(liters)
Energy efficiency label 2.28 2.25 -1.2%
(scale 0 = A++,8=G)

Notes. The values for the business as usual scenaripraticted values. The values for the
product actually commercialized are close to therages predicted with the probit model.
The average energy consumption is 315.6 kWh per i 311.4 kWh per year in the
prediction) and the capacity is 259.7 litres (3.7 in the prediction).

Based on these results, we predict that energyuogoson would decrease by
4% if the firms did not reduce refrigerator pricébus, seller price

adjustments divide the energy savings by two.

Table 6: The average price of commercialized products under both

scenarios

Price of commer cialised products Average Variation

Business as usual 440.3 £

10% electricity priceincrease 4244 £ -159 £
(-3.6%)

A due to a change in the composition of the product +10.8 £

portfolio (assuming no change in individual prodpates) (+2.5%)

A Change in the refrigerator price of each product -26.7 £
(-6.1%)

Last, we examine whether energy use variationimmarily due to the launch

of new more energy-efficient models or to the exinefficient models. To do
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so, we focus the analysis on two subsets of predeatering products defined
as models that were not available at tirleand that are commercialized at
time t in the BAU scenario. Exiting products are simyadlefined as models
commercialized at timé-1 that are no longer available at tiheTable 7
shows no differences in the impact of electricitic@ increases on product
availability: The variation in the availability poabilities of the two sets of
products is roughly similar, slightly more than 10%We however find that
product exits tend to contribute more to energyrgg: Again, these numbers
suggest that the launch of new products embodyiogenefficient energy
saving technologies is not the major determinanhefreduction in energy use
since the disappearance of inefficient productdrdmrtes much to the change
in the average energy consumption of commercialggaliances.

Table 7. Estimated availability probabilities and aver age ener gy
consumption of entering and exiting products

10% electricity

BAU o
priceincrease

Variation

Predicted availability probability

- 0,
Entering products 0.36 0.32 11.8%

Exiting products 0.32 0.28 -13.2%

Aver age ener gy consumption

- 0,
Entering products 305.6 300.6 1.6%

Exiting products 313.8 306.5 -2.3%

6. Conclusions

Recent economic research has found that policyicfumence the pace of
climate-friendly innovation. However, innovation pimcal studies mostly use
patent data and do not directly measure the impiastduced innovation on
the environmental performance of products. Usintaitkel data on the UK
refrigerator market, we look at the effect of iraged electricity prices on the

commercialization of energy-efficient products.
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We confirm that manufacturers adapt to higher gnergces by changing the
portfolio of products that are available in the kedr This change is not
primarily driven by innovation of more energy eifint technologies, but by a
reduction of freezing capacity. In addition, theteof inefficient products

contributes more than the launch of efficient picidu
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Appendix A: logit model of product commercialization

As an alternative to Wooldridge’s (2005) dynamiolpt model, we run a
fixed effect logit model to predict commercializati Results suggest a
negative impact of energy costs on product comrakzetion.

Table 8: Fixed effect logit model to estimate theimpact of energy costson
product commer cialization

Independent variables
Imputed appliance price3() -0.0031***
(-7.77)
Electricity costs (7) -0.1114%+*
(-7.42)
Year dummies Yes
Observations 18,996
Number of imputations for appliance prices 25

Notes. Standard errors take into account uncertaintgndigg the imputed values of appliance
prices. Results marked with *, ** and *** are s#iically significant at 10%, 5% and 1%,
respectively.
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Appendix B: Construction of the instruments of the product

offer equation

To calculate the implicit price of the two attribat(capacity and built-in vs
free-standing), a hedonic pricing model is used {ke results in Table 9). We
run two regressions, one for freezers, and onaéshing machines to capture
the evolution of the price of each subcategoryeffigeration appliance. This
is done by including year-‘category of appliancé&rge/small and built-
in/freestanding) specific fixed effects.

In addition, we include product-specific fixed effe that control for all time-

invariant product features and therefore for arffedince in the sample of
appliances that we observe from one year to the aerl could be susceptible
to bias the estimation of the evolution of the ager price of the various
subcategories of appliances. As explained prewouwst also include brand-
specific time trends that control for the genemalopment of brand-specific

marketing strategies.

We assign weights to each prodyigh our regressions. We do so to ensure
that the regression results are representativleoirtarket and to reduce the
risk of measurement error on the average pricact enodel. The weights are
identical for all of the observations of prodydtetween 2002 and 2007, and
correspond to the average of all of the sales texgd by produci between
2002 and 2007.
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Table9: Hedonicregressionsto construct the instruments (freezers and

washing machines)

B Price of built-in Price of
Dependent variable . 9 freezers freestanding
machines f
reezers
By year, by category of
appliance fixed effects
-18.8481
Small, 2002 0 0 (-0.46)
-42.5061*** -2.5749 -18.4543
Small, 2003 (-3.11) (-0.12) (-0.42)
-75.2039*** -11.508 -5.8397
Small, 2004 (-2.85) (-0.31) (-0.11)
-125.6751*** -16.0016 -7.9437
Small, 2005 (-3.18) (-0.29) (-0.13)
-159.7466*** -43.4277 15.2585
Small, 2006 (-3.05) (-0.6) (0.2)
-205.2927*** -38.6044 19.0729
Small, 2007 (-3.13) (-0.45) (0.21)
37.824 10.3909 8.3791
Large, 2002 (1.45) (0.24) (0.28)
-3.9397 1.2222 -2.8049
Large, 2003 (-0.12) (0.03) (-0.08)
-57.4207 13.543 9.7592
Large, 2004 (-1.59) (0.31) (0.21)
-128.0074*** 4.5595 17.6663
Large, 2005 (-2.94) (0.08) (0.3)
-174.3192%** 12.0702 27.5309
Large, 2006 (-3.18) (0.17) (0.38)
-218.5002*** -14.9726 29.2075
Large, 2007 (-3.24) (-0.18) (0.33)
Fixed effects Yes Yes
Brand-specific time trends Yes Yes
R® 0.31 0.28
Number of observations 1,637 851

Notes. t-statistics in brackets. Standard errors are rafouseteroskedasticity and clustered on
products. Results marked with *, ** and *** are sstically significant at 10%, 5% and 1%,
respectively. ‘Small’ means below sample mediamrde’ is above. Regression is weighted
for each observation of prodydby the total sales of produjcover 2002-2007. The prices for
built-in and freestanding freezers have been obthinom the same regression, where this
feature is interacted with size and year of commération.
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Appendix C: Dynamic probit model without controlling for the

refrigerator price

Here we estimate base model, using the probit atm except that it does
not control for the price of appliances at tim& herefore, the coefficient of
the electricity cost is net of the effect of elesty costs on the price of
appliances. The estimated coefficient is around tie coefficient of the

baseline specification. Simulation results (in ¢abll) are almost identical to
the ones displayed in the main part of the papdis Torroborates the
accuracy of our approach, which accounts for thpairth of higher energy
prices on appliance prices, and subsequently tomtipact of lower appliance

prices on product commercialization.

Table 10: Fixed effect regression of therefrigerator price

Dependent variable Availability of productj: dj;
The product was commercialized the year befaje 0.7043***
(27.10)
Imputed appliance pricg8) -
Electricity costs {) -0.0228***
(3.07)
The product was commercialized in 20@2)( -0.3342%**
(11.44)
Non-redundant explanatory variables covering| all
time periods and including time-constant product Yes
featuresk,)
Year dummies Yes
Observations 15,875

Number of imputations for appliance prices: [the

average of inputted values are includedkif) ( 25

Notes. t-statistics in brackets. Standard errors are rotusteteroskedasticity, clustered on
products, and take into account uncertainty reggrttie imputed values of appliance prices.
Results marked with *, ** and *** are statisticallgignificant at 10%, 5% and 1%,

respectively.
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Table 11: Impact of a 10% electricity priceincrease on product offer

10% electricity

Predicted aver age values Business as usual . I mpact
priceincrease

Energy consumption 303.1 289.7 -13.4
(kWh/year) (-4.4%)
Total capacity (cooling + 259.7 260.1 +0.4

freezing) (+0.2%)
(litres)

Freezing capacity 63.7 52.9 -10.8

(litres) (-17.0%)
Energy efficiency label 2.31 2.17 -0.15

(scale 0 = A++, 8 = G) (-6.4%)

Notes: relative impacts in brackets in fourth cotum
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Appendix D: Using expected electricity prices based on futures

in the wholesale market and the probit model

In the alternative specification below, we comptd&il price expectations
based on the futures prices from the wholesaldralitg market. To do so, we
reproduce the methodology described in Cohen, @lacland Soderberg
(2017). We use data on UK wholesale electricityifes from the Bloomberg
futures database: the price of Gregorian baseloadafds from the 1st to the
4th following winter/summer seasons, as registatedng OTC operations
and gathered by GFI Group Limited. These pricesaaeglable on a monthly
basis from 2002 to 2007. We also use data for gpoes of UK Power. The
data was extracted from Bloomberg's reference atttement data.

We report the results for the dynamic panel datbiprmodel with the

electricity price expectations below. Results amglar to the base model.

Table 12: Dynamic panel data probit estimation using expected prices,
based on futuresfrom the UK wholesale electricity market

Dependent variable Availability of productj: d;,
The product was commercialized the year befaje ( 0.6934***
(26.45)
Imputed refrigerator prices| -0.0015***
(5.94)
Expected Electricity costsy) -0.0308***
(4.52)
The product was commercialized in 20@2)( -0.3348***
(11.35)
Non-redundant explanatory variables covering athetj Yes
periods and including time-constant product feafg)
Year dummies Yes
Observations 15,875
Number of imputations for appliance prices 25

Notes. t-statistics in brackets. Standard errors are rotusteteroskedasticity, clustered on
products, and take into account uncertainty regagrtiie imputed values of appliance prices.
Results marked with * ** and *** are statisticallgignificant at 10%, 5% and 1%,

respectively.
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