The Market for Standard Essential Patents

Marc Bourreau¹ Yann Meniere² Tim Pohlmann²

¹Telecom ParisTech & CREST-LEI

²Centre d'Economie Industrielle MINES ParisTech, Paris, France.

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 _ のへで

• "Standard essential patents" (SEPs) cover standard specifications

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 … 釣�?

► Fast growing number in ICT (Simcoe, 2005)

• "Standard essential patents" (SEPs) cover standard specifications

- Fast growing number in ICT (Simcoe, 2005)
- SEPs are different from ordinary patents
 - Underlying technology is public information
 - Value proceeds from standard adoption
 - "Timely" declaration + FRAND licensing

- "Standard essential patents" (SEPs) cover standard specifications
 - Fast growing number in ICT (Simcoe, 2005)
- SEPs are different from ordinary patents
 - Underlying technology is public information
 - Value proceeds from standard adoption
 - "Timely" declaration + FRAND licensing
- SEPs come in packages
 - > Standards (e.g., UMTS or Blu-Ray) incorporate hundreds of different SEPs

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー のへで

Technology sponsors hold and license several SEPs as a bundle

- "Standard essential patents" (SEPs) cover standard specifications
 - Fast growing number in ICT (Simcoe, 2005)
- SEPs are different from ordinary patents
 - Underlying technology is public information
 - Value proceeds from standard adoption
 - "Timely" declaration + FRAND licensing
- SEPs come in packages
 - > Standards (e.g., UMTS or Blu-Ray) incorporate hundreds of different SEPs

- Technology sponsors hold and license several SEPs as a bundle
- Recent evidence of SEPs trading activities
 - Nortel (5,000 patents), Motorola Mobility (17,000 patents)
 - Privateering (Core Wireless, Unwired Planet, IPcom)
 - Pooling (Vringo, Sisvel)

The paper

A theoretical framework to study:

• How the size of a SEP portfolio affects licensing strategies.

- The incentives of SEP owners to buy and sell SEPs.
- The effects of SEP trading on the industry.

The paper

A theoretical framework to study:

- How the size of a SEP portfolio affects licensing strategies.
- The incentives of SEP owners to buy and sell SEPs.
- The effects of SEP trading on the industry.

Related literature

- Lerner-Tirole (2004, 2014): competition and demand margins
- Baron et al. (2013): incentives to increase the size of SEP portfolio

The model

A product market where the technological standard embodies *k* Standard Essential Patents (SEPs), owned by $n \le k$ patent holders:

- Each patent holder *i* has a portfolio of k_i SEPs, with $\sum_i k_i = k$
- FRAND royalty program: per-unit royalty *r_i* for using the SEP portfolio
- Patent holders not involved in the product market
- Each SEP has the same probability $\theta \in (0, 1)$ of being held valid by a court when challenged

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 _ のへで

The model

A product market where the technological standard embodies *k* Standard Essential Patents (SEPs), owned by $n \le k$ patent holders:

- Each patent holder *i* has a portfolio of k_i SEPs, with $\sum_i k_i = k$
- FRAND royalty program: per-unit royalty *r_i* for using the SEP portfolio
- Patent holders not involved in the product market
- Each SEP has the same probability $\theta \in (0, 1)$ of being held valid by a court when challenged

Product market:

- Free entry
- Large number of downstream producers, which are identical and offer each a fixed quantity \overline{q} of a homogeneous good

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 _ のへで

- Demand function in the downstream market: *Q* = *D*(*p*)
- The producers that enter the market compete in prices

The timing

- The SEP owners set simultaneously FRAND licensing terms for producers.
- Manufacturers enter the market; each manufacturer decides whether to take a license from SEP owner *i* or not.
- Manufacturers compete in prices.
- SEP owner *i* can decide to enforce its patent rights in courts against the manufacturers that did not take a license.

Litigation decision against infringing active manufacturers?

◆□▶ ◆舂▶ ◆臣▶ ◆臣▶ 臣 のへで

Litigation decision against infringing active manufacturers?

Simple litigation setting:

• Licensor *i* wins the litigation with probability $w(k_i) = 1 - (1 - \theta)^{k_i}$

- Per-unit damage d
- Litigation costs *L* for both parties

Litigation decision against infringing active manufacturers?

Simple litigation setting:

- Licensor *i* wins the litigation with probability $w(k_i) = 1 (1 \theta)^{k_i}$
- Per-unit damage d
- Litigation costs *L* for both parties

Enforcement requires critical portfolio size:

- The threat of enforcement is credible if only if $w(k_i)d\overline{q} \ge L$
- That is, iff $k_i \ge \overline{k}$, where $\overline{k} = L/(d\overline{q})$ is the critical portfolio size

Litigation decision against infringing active manufacturers?

Simple litigation setting:

- Licensor *i* wins the litigation with probability $w(k_i) = 1 (1 \theta)^{k_i}$
- Per-unit damage d
- Litigation costs *L* for both parties

Enforcement requires critical portfolio size:

- The threat of enforcement is credible if only if $w(k_i)d\bar{q} \ge L$
- That is, iff $k_i \ge \overline{k}$, where $\overline{k} = L/(d\overline{q})$ is the critical portfolio size

If enforcement is credible, the owner and the producer reach a settlement agreement \rightarrow the manufacturer then agrees to pays $w(k_i)d$ per unit of output

Manufacturer *j* licensing strategy?

Manufacturer *j* licensing strategy?

If litigation from owner *i* is *not credible* $(k_i < \overline{k})$?

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 … 釣�?

Manufacturer *j* licensing strategy?

If litigation from owner *i* is *not credible* $(k_i < \overline{k})$? \rightarrow the manufacturer does not take a license.

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 … 釣�?

Manufacturer *j* licensing strategy?

If litigation from owner *i* is *not credible* $(k_i < \overline{k})$? \rightarrow the manufacturer does not take a license.

If litigation is a credible threat $(k_i \ge \overline{k})$?

• If $r_i > dw(k_i)$, the manufacturer prefers to pay damages (via the settlement procedure) than royalties \rightarrow it does not take the license

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 _ のへで

Manufacturer *j* licensing strategy?

If litigation from owner *i* is *not credible* $(k_i < \overline{k})$? \rightarrow the manufacturer does not take a license.

If litigation is a credible threat $(k_i \ge \overline{k})$?

- If $r_i > dw(k_i)$, the manufacturer prefers to pay damages (via the settlement procedure) than royalties \rightarrow it does not take the license
- Otherwise, if *r_i* ≤ *dw*(*k_i*), the manufacturer prefers to pay royalties than damages → it takes the license

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 _ のへで

Manufacturer *j* licensing strategy?

If litigation from owner *i* is *not credible* $(k_i < \overline{k})$? \rightarrow the manufacturer does not take a license.

If litigation is a credible threat $(k_i \ge \overline{k})$?

- If $r_i > dw(k_i)$, the manufacturer prefers to pay damages (via the settlement procedure) than royalties \rightarrow it does not take the license
- Otherwise, if *r_i* ≤ *dw*(*k_i*), the manufacturer prefers to pay royalties than damages → it takes the license

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 … 釣�?

 \Rightarrow maximum royalty $\bar{r}(k_i) = dw(k_i)$ for owner *i*, increasing in portfolio size k_i

At the beginning of the licensing game, each owner *i* sets its royalty r_i , taking as given the total royalties set by the other owners, R_{-i} (simultaneous moves):

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 _ のへで

 $\max_{r_i} r_i D(R) \text{, s.t. } r_i \leq \overline{r}(k_i)$ Unconstrained solution: $\widehat{r} = \arg\max_{r_i} r_i D(R)$

At the beginning of the licensing game, each owner *i* sets its royalty r_i , taking as given the total royalties set by the other owners, R_{-i} (simultaneous moves):

 $\max_{r_i} r_i D(R), \text{ s.t. } r_i \leq \overline{r}(k_i)$

Unconstrained solution: $\hat{r} = \arg \max_{r_i} r_i D(R)$

If $k_i < \overline{k}$, no credible threat of litigation $\rightarrow r_i = 0$, the SEP owner cannot charge royalties

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 _ のへで

At the beginning of the licensing game, each owner *i* sets its royalty r_i , taking as given the total royalties set by the other owners, R_{-i} (simultaneous moves):

 $\max_{r_i} r_i D(R), \text{ s.t. } r_i \leq \overline{r}(k_i)$

Unconstrained solution: $\hat{r} = \arg \max_{r_i} r_i D(R)$

If $k_i < \overline{k}$, no credible threat of litigation $\rightarrow r_i = 0$, the SEP owner cannot charge royalties

Otherwise:

If $\hat{r} > \bar{r}(k_i)$, the enforcement margin is binding \rightarrow the SEP holder charges an enforcement bound royalty $\bar{r}(k_i)$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 … 釣�?

At the beginning of the licensing game, each owner *i* sets its royalty r_i , taking as given the total royalties set by the other owners, R_{-i} (simultaneous moves):

 $\max_{r_i} r_i D(R), \text{ s.t. } r_i \leq \overline{r}(k_i)$

Unconstrained solution: $\hat{r} = \arg \max_{r_i} r_i D(R)$

If $k_i < \overline{k}$, no credible threat of litigation $\rightarrow r_i = 0$, the SEP owner cannot charge royalties

Otherwise:

If $\hat{r} > \bar{r}(k_i)$, the enforcement margin is binding \rightarrow the SEP holder charges an enforcement bound royalty $\bar{r}(k_i)$

If $\widehat{r} \leq \overline{r}(k_i)$, the demand margin is binding \rightarrow the SEP holder charges a demand bound royalty \widehat{r} .

Royalty stacking and double marginalization

Assume that there is:

- a group *S* of *n*_s strong SEP owners (demand-bounded)
- a group *E* of *n_e* SEP owners of medium strength (enforcement-bounded)

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー のへで

Total royalties: $R = \overline{R} + \widehat{R}$, with $\overline{R} = d \sum_{i \in E} w(k_i)$ and $\widehat{R} = n_s \widehat{r}$.

Royalty stacking and double marginalization

Assume that there is:

- a group *S* of *n*_s strong SEP owners (demand-bounded)
- a group *E* of *n_e* SEP owners of medium strength (enforcement-bounded)

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー のへで

Total royalties:
$$R = \overline{R} + \widehat{R}$$
, with $\overline{R} = d \sum_{i \in E} w(k_i)$ and $\widehat{R} = n_s \widehat{r}$.

"Royalty stacking" = increase in \overline{R} due to an increase of n_e

"Double marginalization" = increase in \widehat{R} due to an increase of n_s

Royalty stacking and double marginalization

Assume that there is:

- a group *S* of *n*_s strong SEP owners (demand-bounded)
- a group *E* of *n_e* SEP owners of medium strength (enforcement-bounded)

Total royalties: $R = \overline{R} + \widehat{R}$, with $\overline{R} = d \sum_{i \in E} w(k_i)$ and $\widehat{R} = n_s \widehat{r}$.

"Royalty stacking" = increase in \overline{R} due to an increase of n_e

"Double marginalization" = increase in \widehat{R} due to an increase of n_s

Assume strategic substituability between licensors' royalties:

- **Double marginalization** \rightarrow elasticity of \widehat{R} to $n_s = \varepsilon \in (0, 1)$
- Substitution between royalty stacking and double marginalization: $\partial \widehat{R} / \partial \overline{R} = \varepsilon 1 \in (-1, 0)$.

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 … 釣�?

SEP trading: Direct and indirect effects

Assume a trade of 1 SEP between two enforcement-bounded holders *i* and *j*:

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 … 釣�?

- $r_i(k_i) = dw(k_i)$ and $r_j(k_j) = dw(k_j)$
- $k_i \rightarrow k_i 1$
- $k_j \rightarrow k_j + 1$

SEP trading: Direct and indirect effects

Assume a trade of 1 SEP between two enforcement-bounded holders *i* and *j*:

◆□▶ ◆□▶ ◆目▶ ◆目▶ ○日 - のへで

- $r_i(k_i) = dw(k_i)$ and $r_j(k_j) = dw(k_j)$
- $k_i \rightarrow k_i 1$
- $k_j \rightarrow k_j + 1$

Direct effects:

- negative for the seller: $r_i(k_i)$ decreases
- positive for the buyer: $r_i(k_i)$ increases
- $k_i > k_j \rightarrow r_i(k_i) + r_j(k_j)$ increases $\rightarrow R$ increases

SEP trading: Direct and indirect effects

Assume a trade of 1 SEP between two enforcement-bounded holders *i* and *j*:

- $r_i(k_i) = dw(k_i)$ and $r_j(k_j) = dw(k_j)$
- $k_i \rightarrow k_i 1$
- $k_j \rightarrow k_j + 1$

Direct effects:

- negative for the seller: $r_i(k_i)$ decreases
- positive for the buyer: $r_i(k_i)$ increases
- $k_i > k_j \rightarrow r_i(k_i) + r_j(k_j)$ increases $\rightarrow R$ increases

Indirect effects due to royalty stacking (higher cumulative royalties \rightarrow lower demand):

- if $k_i > k_j$, negative for both: D(R) decreases
- if $k_i < k_j$, positive for both: D(R) increases
- same (external) effect on other SEP holders

SEP trading \rightarrow concentration or deconcentration of SEP ownership?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

SEP trading \rightarrow concentration or deconcentration of SEP ownership? If the trade involves enforcement-bounded (medium) SEP owners:

•
$$n_S \ge 1$$
: general condition $\widehat{r} > r_i(k_i) + r_j(k_j) \left[1 + n_s \frac{\partial \widehat{r}}{\partial \overline{R}} \right]$

SEP trading \rightarrow concentration or deconcentration of SEP ownership?

If the trade involves enforcement-bounded (medium) SEP owners:

- $n_S \ge 1$: general condition $\widehat{r} > r_i(k_i) + r_j(k_j) \left[1 + n_s \frac{\partial \widehat{r}}{\partial \overline{R}} \right]$
- Linear demand: always holds → trade from the strong to the weak
- $n_S = 0$: condition from a trade from the strong to the weak : $\hat{r} > r_i(k_i) + r_j(k_j)$; otherwise trade from the weak to the strong

SEP trading \rightarrow concentration or deconcentration of SEP ownership?

If the trade involves enforcement-bounded (medium) SEP owners:

- $n_S \ge 1$: general condition $\widehat{r} > r_i(k_i) + r_j(k_j) \left[1 + n_s \frac{\partial \widehat{r}}{\partial \overline{R}} \right]$
- Linear demand: always holds → trade from the strong to the weak
- $n_S = 0$: condition from a trade from the strong to the weak : $\hat{r} > r_i(k_i) + r_j(k_j)$; otherwise trade from the weak to the strong

SEP trading \rightarrow concentration or deconcentration of SEP ownership?

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 … 釣�?

SEP trading \rightarrow concentration or deconcentration of SEP ownership?

If the trade involves an enforcement-bounded (medium) owner and a demandbounded (strong) owner:

◆□▶ ◆□▶ ◆目▶ ◆目▶ ○日 - のへで

• $n_S = 1$: SEP transferred from the weak to the strong

SEP trading \rightarrow concentration or deconcentration of SEP ownership?

If the trade involves an enforcement-bounded (medium) owner and a demandbounded (strong) owner:

- $n_S = 1$: SEP transferred from the weak to the strong
- $n_S \ge 2$: for linear demand system, SEP transferred from the strong to the weak

SEP trading \rightarrow concentration or deconcentration of SEP ownership?

If the trade involves an enforcement-bounded (medium) owner and a demandbounded (strong) owner:

- $n_S = 1$: SEP transferred from the weak to the strong
- $n_S \ge 2$: for linear demand system, SEP transferred from the strong to the weak

SEP trading \rightarrow concentration or deconcentration of SEP ownership?

If the trade involves an enforcement-bounded (medium) owner and a demandbounded (strong) owner:

- $n_S = 1$: SEP transferred from the weak to the strong
- $n_S \ge 2$: for linear demand system, SEP transferred from the strong to the weak

Intuition:

Buying a SEP from an enforcement-bounded owner reduces royalty-stacking

SEP trading \rightarrow concentration or deconcentration of SEP ownership?

If the trade involves an enforcement-bounded (medium) owner and a demandbounded (strong) owner:

- $n_S = 1$: SEP transferred from the weak to the strong
- $n_S \ge 2$: for linear demand system, SEP transferred from the strong to the weak

Intuition:

- Buying a SEP from an enforcement-bounded owner reduces royalty-stacking
- But benefit lower with other strong owners (benefit is shared + strategic reaction of other strong owners)

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Concentration if one strong owner, deconcentration otherwise

- Same results with SEP auctioned by a weak licensor
- Deconcentration always reduces welfare and aggregate profits

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 … 釣�?

Concentration if one strong owner, deconcentration otherwise

- Same results with SEP auctioned by a weak licensor
- Deconcentration always reduces welfare and aggregate profits

Trading SEP portfolios: same qualitative results

• Merger only if maintains or creates a single strong SEP holder

Concentration if one strong owner, deconcentration otherwise

- Same results with SEP auctioned by a weak licensor
- Deconcentration always reduces welfare and aggregate profits

Trading SEP portfolios: same qualitative results

• Merger only if maintains or creates a single strong SEP holder

▲ロト ▲園ト ▲ヨト ▲ヨト 三国 - のへで

• Weak SEP holders have incentives to sell \rightarrow pooling

Concentration if one strong owner, deconcentration otherwise

- Same results with SEP auctioned by a weak licensor
- Deconcentration always reduces welfare and aggregate profits

Trading SEP portfolios: same qualitative results

- Merger only if maintains or creates a single strong SEP holder
- Weak SEP holders have incentives to sell \rightarrow pooling
- If $n_S > 1$, strong SEP holders have incentives to divest their portfolio \rightarrow privateering

▲ロト ▲園ト ▲ヨト ▲ヨト 三国 - のへで

Pooling and privateering

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Conclusion

- A simple model of FRAND licensing
 - > Highlights different licensing regimes based on critical size of portfolio
 - Enables analysis of motives for SEP trading
- Two main patterns for SEP trading:
 - Enhances SEP concentration when there is one (single) dominant licensor (or an opportunity to create one such licensor)
 - Strengthens weak portfolios otherwise if (i) no strong licensor or (ii) too many of them

- Explains observed privateering and pooling of small portfolios
- Limitations and extensions: cross-licensing
 - An obvious motive for buying SEPs
 - Equalizing portfolio sizes may then reduce royalty costs