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Abstract 

When evaluating policy treatments that are persistent and endogenous, available instrumental 

variables often exhibit more variation over time than the treatment variable. This leads to a 

weak instrumental variable problem, resulting in high bias or uninformative confidence 

intervals. We propose two new estimation approaches that strengthen the instrument. We 

derive their theoretical properties and show in Monte Carlo simulations that they outperform 

standard IV-estimators. We use our procedures to estimate the effect of public utility 

divestiture in the U.S. nuclear energy sector. Our results show that divestiture significantly 

increases production efficiency. 
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1. Introduction 

We consider a situation where analysts have access to panel observations of a binary 

policy variable (treatment) and a dependent variable (policy outcome). It is assumed that the 

treatment is endogenous and that an instrumental variable is available. Moreover, in a context 

of a policy evaluation, the treatment is sometimes persistent, i.e. once the policy is 

implemented it remains in place for several or all remaining periods.1 Leading examples of 

such policies are legal and regulatory changes in infrastructure sectors where assets have long 

lifetimes. Moreover, typical instruments are based on economic shocks and exhibit much 

higher variation over time than the treatment variable.2 As a result, the instrument becomes 

weak and, furthermore, it weakens over time even when it is strong on the cross sectional 

level. We refer to this phenomenon as the persistent treatment problem. In this paper, we 

propose two methods that strengthen the instrument by excluding unnecessary variation.  

The first method, which we denote as the Forward Variation Reduction (FVR) approach, 

takes the value of the instrument in the first treated period and copies it to all future periods.  

This transformation is carried out for each unit. Next, a standard Two Stage Least Squares 

(TSLS) is performed using the transformed instrument. The intuition behind the FVR 

approach is that variation in the instrumental variable is uninformative in periods after the 

implementation of the treatment due to the persistence of the treatment.  

The second method, the Forward and Backward Variation Reduction (FBVR) approach, 

is an extension of the FVR approach. As its name indicates, the instrument variation is also 

                                                 
1 Policy persistence can occur because: 1) it takes time to evaluate a policy change since, for example, policy 
shifts obstruct information about true market conditions (Warren and Wilkening, 2012); 2) it might not be 
possible to implement another change quickly since market agents may lobby for the protection of sunk 
investments (Coate and Morris, 1999); 3) uncertainty about future gains and losses alters voters’ preferences in 
favor of the status quo (Fernandez and Rodrik, 1991).  
2 Examples and references are provided in Section 2.  
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restricted backwards: all instrument values during periods prior to the period when the 

treatment is first implemented are set equal to the value of the instrument in the last untreated 

period. In this way, we only retain the variation that triggers a change in the treatment 

variable. For both approaches, we prove identification and derive asymptotic properties.  

 In Monte Carlo simulations, we study the small sample properties of the FVR and FBVR 

approaches and compare them to OLS and standard TSLS. We construct a data generation 

process that allows us to compare the results obtained at different instrument strength, holding 

the endogeneity level constant, and vice versa. The simulations build on a discrete choice 

framework that has been used earlier by Honoré (2006) and Carro (2007). The FVR and 

FBVR approaches perform substantially better than both OLS and TSLS: FVR/FBVR 95% 

confidence intervals are up to 70 times smaller than the TSLS empirical standard errors and 

the empirical bias is up to 10 times smaller than the empirical OLS bias. These results are 

robust to choices of instrument distribution, endogeneity level and instrument strength. 

 In addition to their superior small sample performance, the FVR and FBVR have various 

conceptual and practical advantages. First, they can be applied in a nonlinear panel data 

setting, as the crucial idea only relies on the separability of the unobserved idiosyncratic error 

term. Second, both approaches are easy to implement, intuitive and therefore readily 

accessible to practitioners. Third, in comparison to first differencing, where only the last 

untreated and first treated observations are used, no observations are ignored. We demonstrate 

the importance of the last point in a simulation study.  

Lastly, we use the FVR/FBVR approaches to evaluate the effect of public utility 

divestiture on nuclear reactor production availability in the U.S. To the best of our 

knowledge, this is the first empirical study that takes both the persistence and endogeneity of 
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the treatment into consideration. We find that divestiture of U.S. nuclear reactors causes a 

significant increase in their production availability by at least 7%.    

Section 2 formally describes the problem of persistent treatment and relates it to the 

relevant literature. Section 3 defines the FVR and FBVR approaches and explains how they 

strengthen a weak instrument in the case of a persistent treatment. Section 4 evaluates the 

small sample properties of the FVR/FBVR and alternative estimators that are common in the 

literature using Monte Carlo simulations. Section 5 applies the methods to evaluate the effect 

of divestiture on U.S. nuclear reactors’ operating performance. Section 6 concludes. 

 

2. The problem of persistent treatment 

Suppose there are panel observations on a binary random variable ��� (treatment) and on 

an outcome variable ���. Index � indicates the cross sectional unit, where � = 1, . . . , 
, and 

index � = 1,… ,  indicates the time period. As motivating examples, ��� might be an 

indicator variable for market deregulation or for obtaining a college degree. ��� might be a 

measure of firm production efficiency or individual wages. In many cases, the treatment 

variable ��� 	is potentially endogenous due to unobserved selection of units into (or out of) 

treatment. We consider a period-specific instrument ���, for ���. Using the exogenous 

variation of the ���, it is often possible to identify the causal effect of ��� on ���, see e.g. 

Angrist and Krueger (2001). The persistent treatment problem arises when the variation of the 

instrument over time is much higher than the variation of the treatment variable. In particular, 

the following features lead to a persistent treatment problem:  

� The treatment is endogenous, 
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� The treatment is persistent, i.e. once a unit is treated, the treatment variable does not 

change its value for many, or all, subsequent periods, 

� There is an instrument whose values vary from period to period. 

These features are common when policies are evaluated. Instruments often vary more than 

policy-state variables over time since instruments are frequently based on economic shocks. 

Examples of such instruments are source-weighted exchange rates (Revenga, 1990, 1992; 

Bertrand, 2004) and exposure to oil shocks (Raphael and Winter-Ebner, 2001). As a result, 

the greater the number of periods, the weaker the instrument.  

To formalize the problem, we assume the standard fixed effects linear model, 

��� = ���� + ���� + �� + ��� ,       (1) 
where ��� is a 1 × � dimensional random vector of observed individual characteristics, �� is 

unobserved and time-constant, ��� is the unobserved error term and � is the coefficient of 

primary interest.  

We allow for two types of endogeneity. First, ����(���, ��) is not necessary zero. Typical 

examples of �� are firm culture and management quality. Firm culture might be correlated 

with observable expenditure for maintenance, which is captured by ���. Second, 

����(��� , ���) is not necessarily zero. ��� might capture an anticipation of a tax reduction so 

that it correlates with firm performance. Similarly, ��� might capture unobserved work effort 

exerted by individual i that correlates with the intention/effort to obtain specialized education. 

Due to the endogeneity of the treatment variable, the standard fixed effects (FE) estimator is 

potentially biased. Assume further, that there is an observable M-dimensional random vector 

ℒ�� = �ℒ��,�, ℒ��,�, . . ., ℒ��, ! that is exogenous and can be used as an instrument for the 

endogenous treatment. We write "�� ≔ (��� , ���) and ��� ≔ (��� ,ℒ��). Furthermore, we 
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define �$� ≔ �%∑ ����'�  and �(�� ≔ ��� − �$� (and with analogous notation for all other random 

variables). The demeaned model is 

�(�� = ��*�� + �(��� + �*�� ,       (2)	
or, equivalently, 

�(�� = "*��, + �*�� ,	 	 	 	 	 	 	 	 (3)	
where , = (�, �′)′. Finally, using matrix notation, model (3) can be written as  

�(� = "*�, + �*�,	 	 	 	 	 	 	 	 (4)	
where �(� = ��(��, �(��, . . ., �(�%! and analogously for "*� and �*�. The standard approach is to use 

a pooled TSLS method to estimate ,. The standard assumptions are: 

1: 01���|���, ���, . . . , ��% , ��3 = 0 for � = 1, . . . , . 
2: �5
6�01�(′���(�3! = rank�∑ 01�(′���(�3%�'� ! = ;, where ; is the dimension of ��� , ; = � +< 

3: �5
6�01�(′���(�3! = rank�∑ 01�(′���(�3%�'� ! = �. 
The important assumptions in this study are assumptions 1 and 3. Assumption 1 states the 

strict exogeneity assumption. Assumption 3 is a rank condition that states that the instrument 

and the endogenous regressor are sufficiently related. 

 In this context, persistence of the treatment may cause the following problems. First, it 

might lead to a violation of the second rank condition (assumption 3). As a result, the causal 

effect would not be identified. Intuitively, if ��� and ��� are not related, then variation in ��� 
cannot be used to reveal the causal parameter, even with an infinitely large sample of 

observations (��, ��, ��). Second, even if the parameter is identified, persistence of the 

treatment could lead to estimation problems due to the weak instrument. These problems are 

well known in the literature on weak instruments in a TSLS context (Stock et. al., 2002). In 

the just-identified case, the asymptotic variance is potentially very high, implying that the 



7 
 

confidence intervals are uninformative. Moreover, the confidence intervals may not have the 

correct nominal coverage (Staiger and Stock, 1997). The general literature on weak 

instruments has focused mainly on achieving the correct confidence intervals, starting with 

Anderson and Rubin’s pioneering paper in 1949. One study that considers strengthening the 

instrument is Ratkovic and Shirato (2014). This study considers that the instrument is weak 

because some agents are not influenced by the instrument (non-compliers). The authors tackle 

the problem by down-weighting those observations. In our case, however, the weakness of the 

instrument evolves over time due to the persistence of the treatment and this method is not 

applicable.  

In the over-identification case with weak instruments, TSLS might be severely biased and 

inconsistent, and normal approximations may lead to a dramatic understatement of the width 

of confidence intervals, (Staiger and Stock, 1997; Hahn and Hausman, 2003). These problems 

can occur in situations that are highly relevant to empirical work, see e.g. Bound et al. (1995). 

In such cases, the limited information maximum likelihood (LIML) is substantially less 

biased than the TSLS and can be adapted to produce confidence intervals with the correct 

nominal coverage (Bekker, 1994; Flores-Lagunes, 2007). In applications, however, many 

instruments might not be available, or, as in the case of instruments interacting with other 

exogenous variables, the information from additional instruments might be so limited that the 

confidence intervals remain very wide and highly uninformative about the sign of the effect. 

The focus of this paper is on the just-identified (or slightly over-identified) case: we consider 

a binary, endogenous treatment variable and a single (or a few) instrument(s).  

 A distinctive characteristic of the persistent treatment problem is that the instrument 

becomes weak over time. Conditional on treatment in some period �= the variables ��� and the 

instrument ℒ�� are independent for all � > �= Thus, even if the instrument is strong on a cross-
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sectional level, it becomes weak on a panel level due to the persistence of the treatment. The 

higher the number of time periods, the more severe the problem. Note that the persistent 

treatment problem does not rely on linearity of model (1). Any model possessing the three 

features listed above will induce a weak instrument problem. 

Based on these considerations, potential solutions are: (i) transform the instrument to 

obtain less variation, (ii) change the structure of the panel, or (iii) redefine the treatment 

and/or the model. One possibility for (i) is to set the values of the instrument after the 

treatment so as to be equal to its value in the first treated period. One possibility for (ii) is to 

restrict the sample of observations by considering a smaller number of periods. Excluding 

observations before and after the treatment for each cross-sectional unit potentially ensures 

the rank condition in the new data set. There are several possibilities for (iii). First, it might be 

possible to set the research question in a dynamic framework by defining a dynamic treatment 

effect. Often the effect of a policy reform does not occur directly after its implementation but 

over a longer period of time. In such cases � would be a function of time, �(�). Then, the 

object of interest could be the treatment effect for a given period of time, � ≔ �(�=) for a 

fixed �=. This kind of dynamic matching estimators has been proposed by Sianesi (2004) and 

Fredriksson and Johansson (2008). Typically, these papers rely on the strong assumption that 

dynamic selection is driven solely by unobservables. This assumption is easily violated in 

many applications if the data is not rich enough. In addition, inference with these models is 

often not possible because the asymptotic theory is very demanding and still not fully 

developed, as for example in Fredriksson and Johansson (2008). Second, there is the literature 

on dynamic discrete choice models, e.g. Taber (2000) and Heckman and Navarro (2007). In 

each of finitely many consecutive periods, an agent can choose to take or refuse the treatment. 

Identification relies on the (semi-)parametric structure, period-specific exclusion restriction 
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and the so called identification-at-the-limit assumption, typical in discrete choice models. In 

particular, the selection in each period is modeled and the reduced form parameters are 

identified by conditioning them on the very high values of the instrument in the preceding 

choices, where the treatment is almost always chosen. However, the large support condition is 

often not satisfied in applications, for example when the instrument is discrete or hard to 

justify. In addition, due to their complexity, these approaches are often not accessible to 

practitioners.  

In this paper, we approach the problem by reducing the variation of the instrument. It is 

accessible to practitioners and its asymptotic properties are technically easy to analyze.  

 

3. Two ways of reducing instrument variation 

In this section we first describe the two approaches for strengthing the instrument. Next, 

we discuss identification and finally, we analyze the finite sample and asymptotic properties. 

 

3.1. The FVR approach 

The FVR approach consists of two steps. First, the instrument is transformed in the 

following way. For each cross-sectional unit, the values of the instrument for all treatment 

periods are set equal to the value of the instrument in the first treatment period. In the second 

step, TSLS is performed with the transformed instrument. The simple example in Table 1 

illustrates this procedure. The second column contains the dependent variable, for example 

the percentage of operating hours of a nuclear reactor during. The third column contains the 

values of the treatment variable, e.g. a dummy variable representing market deregulation. The 

fourth column contains the instrument, e.g. the number of lobby group members. The last 
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column contains the values of the transformed instrument. The treatment is received in period 

3, and the value of the instrument in this period is copied to all subsequent periods (here only 

to period 4) to create the transformed instrument. 

 

Table 1. FVR, data example 
Period Y D Z ?@AB 

1 65% 0 14,295 14,295 
2 64% 0 13,700 13,700 
3 70% 1 15,487 15,487 
4 72% 1 12,001 15,487 

 

 

The intuition behind this procedure is the following. Once the treatment is implemented, 

the variation of the instrument becomes uninformative. The FVR approach removes this 

variation and the instrument becomes stronger.  

 For a formal definition, we introduce the following additional notation. Let � be the 

period at which the agent � is treated for the first time, i=1,..., n and let � > 1 for all �. Let 

C� = C(�) denote the random  ×  transformation matrix that is defined in the following 

way. Its first � − 1 columns are equal to the first � − 1 columns of the  × -identity matrix 

D%. Its � column has 1 as elements EFG for which 6 ≥ I and 0 elsewhere. The columns 

� + 1,… ,  consist entirely of zeros. For units with � > , we set C� = D%. That is, the values 

of the instrument in these cases remain unchanged. For such units, the values of ���, "��, ��� 
for � >  and the value of � are not observed. In this case, � might be either finite (censored 

�) or infinite (non-treated). For simplicity, we focus on the first case, that is, we assume that 

� can be at most equal to $ < ∞. This restriction can easily be relaxed and has no influence 
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on the main intuition and results. As an example for C�, suppose that  = 4 and that for some 

�, � = 3. Then C� = C�(3) is equal to  

L1 0				0 00 1				0 00 0				1 00 0				1 0M 

Multiplication by C(�) transforms the vector (5�, … , 5%)′ into the vector 

(5�, …	5%NO�, 5% , 5% , … , 5%N)′. Furthermore, define the (deterministic) time-demeaned matrix 

P% as  

P% = D% − Q%(Q%′Q%)O�Q%′, 
where Q% is a  × 1-vector with all elements equal to 1. Multiplication by P% transforms the 

vector (5�, … , 5%)’ into the vector (5� − O� ∑ 5�%�'� , … , 5% − O�∑ 5�%�'� )′.  
 The forward variation reduction estimation approach can now be described in the 

following way.  

Step 1: Replace ℒ� with ℒR � ≔ C�ℒ�. Write �R� ≔ (��,ℒR �) and let the rows of the matrix �R� 
be denoted by �R�� = (���,ℒR ��), � = 1,… , .  

Step 2: Estimate the equation 

	P%�� = P%"�S + P%��	 	 	 	 	 	 	 (5)	
via (pooled) TSLS using P%�R� as an instrument for P%"�. The estimator is defined as 

SUVWX ≔ YZ∑ "*�′�R(�[�'� \ Z∑ �R(�′[�'� �R(�\O� Z∑ �R(�′"*�[�'� \]O� Z∑ "*�′�R(�[�'� \ Z∑ �R(�′�R(�[�'� \O� Z∑ �R(�′[�'� �(�\,	(6)	
where �(� = P%�� and analogously for all other variables. 
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3.2. The FBVR approach 

In a similar way to FVR, the FBVR transforms the instrument and then performs a 

standard TSLS estimation with the transformed instrument. The instrument is transformed in 

the following way. For all treatment periods (��� = 1), FBVR and FVR are equivalent. For all 

periods prior to the treatment, the values of the instrument are set equal to the value of the 

instrument in the last untreated period (� − 1). As in the case of FVR, the instrument values 

for non-treated units remain unchanged. The data example in Table 2 illustrates this 

procedure. Thus, the FBVR approach additionally restricts the variation of the instrument 

backwards. Intuitively, the periods prior to period � − 1 are considered uninformative. Only 

the last untreated and first treated values of the instrument are used, as they are the ones that 

"trigger" the treatment. Thus, the FBVR is closely related to a static approach. Note that the 

instrument and the treatment are not perfectly correlated. The instrument might have different 

patterns for different units. It is transformed to follow the (potentially endogenous) pattern of 

the treatment, but relies on the exogenous values around the implementation of the treatment. 

 

Table 2. FBVR, data example 
Period Y D Z ?@_AB 

1 65% 0 14,295 13,700 
2 64% 0 13,700 13,700 
3 70% 1 15,487 15,487 
4 72% 1 12,001 15,487 

 

 

Formally, let the random matrix P� have its � − 1-th column equal to �%NO� up to the 

� − 1-th row and eventually zero, and its �-th column equal to zero up to the � − 1-th row 

and then equal to �%N (all other columns are equal to zero). Then define ℒ̀� ≔ P�ℒ� for 
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� ≤  and ℒ̀� ≔ ℒ� for � > , and write �̀� ≔ ���, ℒ̀�!. The FBVR estimator is then 

defined as  

SUVWX ≔ YZ∑ "*�′�̀(�	[�'� \ Z∑ �̀(�′[�'� �̀(�\O� Z∑ �̀(�′"*�[�'� \]O� Z∑ "*�′�̀(�[�'� \ Z∑ �̀(� ′�̀(�[�'� \O� Z∑ �̀(�′[�'� �(�\,	 (7)	
 

Remark. There is a subtle but important difference between the FBVR approach and first 

differencing with instruments. In the latter approach, only observations that exhibit a 

treatment in the observational period can be used. All other observations are excluded. With 

the FBVR approach, all observations are used. The point in time of the treatment � depends 

on the vector ��, as shown below in a discrete choice context. Therefore, excluding 

observations with � >  potentially creates endogeneity. We demonstrate with a simulation 

that first differencing can in fact produce results that are severely misleading in an empirically 

relevant example. 

 

3.3. Identification 

We adopt the following assumptions to achieve identification: 

R1 01��|���, ���, … ��% , �� , � = 63 = 0 for � = 1,… ,  and 6 = 1,… , . 

R2 a) �5
6 Z0 c�′R* ��R(�d\ = �5
6(∑ 01�′R* ��%�'� �R(��3) = ;. 
R2 b) �5
6 Z0 c�′̀* ��̀(�d\ = �5
6(∑ 01�̀(′��%�'� �̀(��3) = ;. 
R3 a) �5
6 Z0 c�′R* ��(�d\ = �5
6(∑ 01�′R* ��%�'� �(��3) = ;. 
R3 b) �5
6 Z0 c�′̀* ��(�d\ = �5
6(∑ 01�̀(′��%�'� �(��3) = ;. 

These assumptions are very similar to those used in the standard TSLS approach. This is 

not surprising as both the FVR and the FBVR approaches rely on the TSLS estimator. 
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However, we note two important differences. First, as both the FVR and FBVR approaches 

rely on the potentially endogenous time of treatment �, a stronger version of the exclusion 

restriction is needed. Assumption R1 is stronger than the strict exogeneity assumption 1 stated 

in Section 2. In particular, R1 implies assumption 1. It requires that the extra information in 

the period the unit was first treated does not lead to a violation of the exogeneity of the 

instrument. It precludes the possibility that, conditional on �, ��F and ��e are correlated. The 

need for a stronger condition arises due to the potentially endogenous adjustment of the 

instrument.  

 It is difficult to find lower level conditions that imply R1, because the relations between 

� and the elements of �� and �� are highly nonlinear. Nevertheless, we provide extensive 

direct and indirect simulation evidence that the assumption is not violated in a variety of 

empirically relevant cases (see section 4.3). In a setting where the first stage is a discrete 

choice, we test assumption R1 under different degrees of endogeneity and instrument 

strength. The data generation process is adopted from established studies and is related to 

theoretical economic models. 

 Second, the rank condition R3 is weaker than assumption 3. Thus, there is a trade-off 

between the strength of the instrument and the validity of the exclusion restriction. 

 

Proposition. Suppose that either assumptions R1, R2 a), R3 a) or R1, R2 b), R3 b) hold. Then 

S is identified. 

The proof is provided in Appendix A.  
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3.4. Asymptotic properties 

The asymptotic properties of the FVR and FBVR approaches can be derived analogously 

to the TSLS approach.  

 

Asymptotic variance. For expositional simplicity, we assume homoscedasticity of the error 

term, 01���f�|�� , ��3 = gh�D%, where gh� is a positive constant and D% is the  × -identity 

matrix. In addition, assume that "�� and ��� are one-dimensional (no covariates other than the 

treatment). Under the respective set of assumptions, the asymptotic variances of √
(SU%jkj −
S), √
(SUVWX − S) and √
(SUVlWX − S) are gh��0m"* ′��(�n01�(′��(�3O�01�(′�"*�3!O�, 
gh� Z0 c"* ′��R(�d 01�R(′��R(�3O�01�R(′�"*�3\O� and gh� Z0 c"* ′��̀(�d 01�̀(′��̀(�3O�01�̀(′�"*�3\O�, 
respectively. Due to the persistence of the treatment, 01"* ′��(�3 is much closer to zero in 

absolute value than its counterparts 01"* ′��R(�3 and 01"* ′��̀(�3. Thus, the asymptotic variance of 

the standard TSLS approach should be much larger. In addition, the asymptotic variance of 

the FBVR approach should be smaller than that of the FVR approach, as the instrument is 

stronger in the former approach. Since the instrument values are equal for the non-treated 

units in all three approaches, the gains of the restrictions depend on the number of treated 

units. These theoretical predictions are confirmed by the simulation results in the next section. 

 

Remark: the FBVR approach imposes a restriction on the maximum number of instruments 

that can be used. To see this, suppose we have three instruments, �� = ���,�… , ��,%!f, 
o� = (o�,�… ,o�,%)′ and "� = ("�,�… ,"�,%)′. Let �� be an arbitrary constant and define 

�� = o�,%N"�,%NO� − o�,%NO�"�,%N��,%NO�"�,%N − ��,%N"�,%NO� 
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and 

�p = qrsN,tNurvqwWN,tNurxN,tNur . 

It holds for the transformed instruments 

���̀� + ��ò� + �p"̀� = 0. 
Although �� and �p are random variables, for each realization of (�� , o�,"�) there is a linear 

dependence between the three instruments. In other words, cases with more than two 

instruments involve a data-induced perfect multicolinearity problem. Note that this is not a 

real drawback to the FBVR approach, since multiple instruments are only used in IV-models 

to enhance their strength and the FBVR achieves high strength in a different way.   

 

Consistency and Asymptotic normality. Both the FVR and the FBVR estimators are 

consistent under assumptions R1-R3. In addition, under weak moment conditions, √
(SUVWX −
S) and √
(SUVlWX − S) are asymptotically normally distributed. The proofs follow exactly the 

same steps as for the TSLS estimator and are therefore omitted.  

 

4. Monte Carlo Simulations 

In this section, we perform Monte Carlo Simulations to investigate the small sample 

properties of the FVR and FBVR estimators. 

 

4.1. Data Generating Process 

Our data generating process builds on previous work estimating dynamic binary choice 

models with unobserved heterogeneity (Honoré, 2006; Carro, 2007). It consists of a structural 

model (8) and a discrete choice model (9):  
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��� = ���� + ���� + �� + ���       (8) 

��� = 11y + z���O� + Sℒ�� + {��� + |o�� > 03    (9) 

 The sole exogenous regressor is ��� = 5}�� where }�� is an �. �. ~.	random variable drawn 

from a continuous uniform distribution �(0,1). �� equals 
�%∑ ����  to ensure that unobserved 

heterogeneity is correlated with ���. The error term of the structural equation is 

���~�. �. ~. �(0,1). 
 The first term of the discrete choice equation y is the intercept. Other things equal, its 

value influences the share of units that gets treated. The lagged treatment variable ���O� is 

included to create persistence in the treatment. Setting z sufficiently high ensures that treated 

units remain treated for all subsequent (observed) periods. A strictly exogenous variable 

ℒ��~�. �. ~. �(0,1) may be used as an instrumental variable for the endogenous treatment ���. 
The strength of ℒ�� is controlled by the size of the parameter S. The error term of the 

structural equation ��� is included to ensure that ��� is endogenous. The higher the value of {, 

the higher the level of endogeneity. Finally, o��~�. �. ~. �(0,1)  is a random noise. 

 The � and the � parameters are set equal to 1. In the next section, we compute the 

percentage empirical bias and the 95% confidence interval for the different estimators at 

different values of S and {. To ensure that the level of endogeneity (instrumental strength) 

does not change when the value of S ({) is modified, the parameter | is set equal to 

�1 − S� − {�. This allows us to keep o5�1Sℒ�� + {��� + |o��3 equal to 1 when the value of 

S or { changes. In our baseline simulation, we generate data for 100 units (� = 100) over 15 

time periods ( = 15) in line with our application dataset. We choose the value for y so that 

approximately half of the units receive treatment during the observation period.  
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4.2. Simulation Results 

We draw 1000 samples for each of twelve different empirical settings. Table 3 shows the 

percentage empirical bias and the 95% confidence interval of the simulated � coefficient 

estimated by five different fixed-effect estimators: OLS, TSLS, TSLS-probit, FVR, and 

FBVR.3 The level of endogeneity { equals 0.4 in panel A of Table 3 and 0.6 in panel B. The 

strength of the instrumental variable, captured by S, varies within each panel.  

 Before looking at the relative performance of the four IV-estimators, we perform some 

consistency checks. The bias of the OLS estimate �U�kj is higher in panel B (26%) than in 

panel A (18%). This is consistent with the fact that we set a lower level of endogeneity in 

panel A. As expected, the distribution of �U�kj does not change as the strength of the 

instrument varies. As the level of endogeneity decreases and the strength of the instrument 

increases, the percentage bias of the four IV-estimators declines and their distributions tighten 

around the true value of �.  

 In almost every empirical setting, the percentage bias of �UVWX and �UVlWX is lower than 

the percentage bias of �U%jkj and �U%jkjOe�����. In every setting, �UVWX and �UVlWX are clearly 

more efficient than �U%jkj and �U%jkjOe�����. In addition, Table 3 shows that �UVlWX performs 

slightly better than �UVWX in terms of bias while both estimators are equivalently efficient. All 

estimators are relatively inefficient when the instrumental variable is relatively weak (S = 

0.1). However, when the instrumental variable is somewhat stronger (S = 0.3) the 95% 

confidence interval of TSLS is 30 to 70 times larger than the 95% confidence interval of the 

FVR and FVBR. This difference decreases as the strength of the instrument increases but 

remains high even when the instrument is relatively strong. For instance, the 95% confidence 

                                                 
3 TSLS-probit uses the predictions of a probit model as an instrument for the treatment in a TSLS. See 
Wooldridge (2002, pp. 623-625) for further details.  



19 
 

interval of TSLS is 6 to 10 times larger than the 95% confidence interval of the FVR and 

FVBR when S = 0.6. 

 In summary, we draw three conclusions based on our Monte Carlo Simulation results. 

First, when an endogenous treatment is highly persistent, standard approaches such as TSLS 

and TSLS-probit give uninformative confidence intervals, and this is consistent with 

theoretical predictions. Second, the FVR and the FBVR estimators prove to be substantially 

more efficient in a wide range of empirical settings. Third, FVR and FBVR generate 

estimates that are substantially less biased than OLS given that � is sufficiently related to �.  

 We perform several robustness checks to verify the sensitivity of our results. First, we 

compare the results in Table 3 with a first differencing approach. These results are provided in 

Appendix B and it is clear that the first differencing approach gives inferior results. When 

observations are endogenously excluded in a first-difference approach, the bias is 2 to 30 

times greater than when using the FBVR. Second, we allow the instrumental variable ℒ�� to 

be drawn from a non-normal distribution. Third, we generate samples where the share of units 

treated varies from 30% to 90%. Fourth, we generate samples with different numbers of 

periods, ranging from T=4 to T=24. When varying the distribution of the instrument, share of 

units treated and number of time periods, the results are very similar to those presented in 

Table 3. Details of how these robustness tests were performed, as well as the results, are 

presented in Appendix C. 
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Table 3. Simulation results for different values of � and �. 
 Panel A: ρ = 0.4 Panel B: ρ = 0.6 
Estimator % bias LB UB % bias LB UB 
Empirical setting: S = 0.1   
OLS 17.5 1.0 1.3 26.2 1.1 1.4 
TSLS 347.5 -529.0 538.0 8.9 -52.4 54.5 
TSLS-probit 81.4 -193.8 194.1 40.9 -58.6 61.4 
FVR 314.0 -319.0 314.7 18.2 -17.4 19.0 
FBVR 68.7 -32.2 35.5 13.5 -20.3 22.0 
           
Empirical setting: S = 0.2   
OLS 17.5 1.0 1.3 26.1 1.1 1.4 
TSLS 179.9 -75.1 73.5 91.8 -48.6 52.4 
TSLS-probit 1029.4 -661.3 683.9 132.5 -79.5 84.1 
FVR 0.5 -9.7 11.7 31.1 -8.4 9.8 
FBVR 50.5 -34.1 35.1 11.3 -5.9 7.7 
           

Empirical setting: S = 0.3   
OLS 17.4 1.0 1.3 26.2 1.1 1.4 
TSLS 44.5 -32.9 35.8 9.9 -61.5 63.7 
TSLS-probit 105.6 -46.5 50.6 180.4 -144.3 150.0 
FVR 11.2 0.0 1.8 15.6 0.0 1.7 
FBVR 3.4 -0.2 2.1 8.3 -0.2 2.1 
           

Empirical setting: S = 0.4   
OLS 17.6 1.0 1.3 26.3 1.1 1.4 
TSLS 7.2 -24.6 26.7 53.0 -38.3 41.4 
TSLS-probit 62.0 -44.9 45.6 17.1 -24.1 26.5 
FVR 9.5 0.3 1.6 14.2 0.2 1.5 
FBVR 3.0 0.3 1.6 4.8 0.3 1.6 
       
Empirical setting: S = 0.5   
OLS 17.5 1.0 1.3 26.4 1.1 1.4 
TSLS 60.2 -24.0 24.8 19.6 -5.4 7.0 
TSLS-probit 78.2 -35.9 36.3 19.4 -4.8 6.4 
FVR 9.3 0.4 1.4 14.0 0.4 1.4 
FBVR 2.8 0.5 1.4 4.4 0.5 1.4 
       
Empirical setting: S = 0.6   
OLS 17.6 1.0 1.3 26.4 1.1 1.4 
TSLS 6.0 -2.0 3.9 8.1 -3.0 4.9 
TSLS-probit 6.0 -1.9 3.8 7.6 -3.5 5.4 
FVR 9.3 0.4 1.4 13.8 0.4 1.3 
FBVR 2.6 0.6 1.4 3.9 0.6 1.4 

Notes. 
(i) � = 100,  = 15, 1000 Monte Carlo replications. 
(ii)  LB denotes 95% lower bound and UB denotes 95% upper bound. 
(iii)  ℒ��~�. �. ~. �(0,1).  
(iv) y = −1.662 to obtain 50% of unit treated. 
(v) � = 1. 

 

 

 



21 
 

4.3. Empirical test of the identifying assumption 

In section 3.3, we show that assumption R1 is crucial for identification and that it 

guarantees consistent estimation when using the FVR and FBVR approaches. Similar to the 

standard strict exogeneity assumption, assumption R1 is non-testable in an empirical context 

since the error term is unobserved. In this section, we provide evidence that R1 holds under 

(8) and (9).    

 Note that R1 implies the following assumption: 

 R1’ 0m�����e|	� = 6n = 0 for � = 1,… , ; E = 1, … ,  and 6 = 1,… ,  

 We generate 100 samples of 1,000 units for 11 periods. The data generating process is the 

same as in previous sections. We set { = 0.4, S = 0.4, and 	y = −1.662. For each �, 6, E we 

calculate the sample average C$F�e = �[�∑ �����e�∈�  and the sample standard deviation 

�F�e = � �[�O�∑ ������e − C$F�e!��∈�  where 
F is the number of units treated in period 6. 

Under R1’, the statistic �F�e = �$������� �[�⁄  has a Student(
F − 1) distribution. Appendix D 

reports the number of rejections together with sample means and variances of the test 

statistics for some values of �, 6, E. For each combination of �, 6, E, we fail to reject R1’. 

Thus, in this setting, additional conditioning on the point in time of treatment does not lead to 

a violation of the exclusion restriction. This is a novel result.  
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5. Empirical investigation: the effect of utility divestiture on nuclear 

reactor unavailability 

In this section, we evaluate the effect of electricity utility divestiture on nuclear reactors’ 

unavailability factor in the U.S.4 Such an ex-post evaluation is valuable to reactor 

stakeholders since it gives information about the effect of asset divestiture on reactor 

performance. The results can also be used to inform policy-makers about the treatment’s 

welfare and environmental effects.5 None of the divestiture actions are reversed during the 

sample period we consider and this treatment is therefore persistent.  

 Economic theory predicts that divestiture increases competition, which improves 

economic performance. Green (1996) employs a supply function equilibrium model and finds 

that partial divestiture leads to a reduction of deadweight loss. Borenstein and Bushnell 

(1999) model the California electricity market after deregulation as a static Cournot market 

with a competitive fringe and they find that divestiture can reduce market power. More 

recently, Zhang (2007) explains that restructured U.S. reactors are no longer able to simply 

pass on the costs of repair and maintenance performed during outages, and that this has 

increased incentives to reduce outages.  

 Two studies have previously investigated the effect of divestiture, and closely related 

reforms, on nuclear reactor performance in the U.S.. Zhang (2007) investigates how the 

reactor availability factor is affected by the intended and actual implementation of retail 

competition and she relaxes the assumption that the deregulatory reform is exogenous. Her 

results, based on standard TSLS models, indicate that increased retail competition increases 

                                                 
4 Detailed descriptions of this market transformation process have been presented by several authors, e.g. 
Delmas and Tokat (2005), Zhang (2007), Davis and Wolfram (2012), and references therein.  
5 See Davis and Wolfram (2012) for a quantification of the effects of nuclear reactor divestiture on electricity 
prices and CO2 emissions.  
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reactor availability but the coefficient of the endogenous reform variable is never significant. 

Davis and Wolfram (2012) focus solely on utility divestiture and they assume that divestiture 

is exogenous. Their OLS results suggest that divestiture increases the availability factor by 10 

percentage points, and the effect is statistically significant.6 Thus, these two studies illustrate 

two empirical traps: first that the instrument is weak, and second that the endogeneity 

problem is ignored. 

 

5.1. Data 

We use a balanced sample with annual data that represents all U.S. nuclear reactors from 

1994 to 2011. The first utility to divest its assets did so in 1999, and the last one divested in 

2007. Of a total 103 U.S. nuclear reactors, 47% were subject to divestiture during this time 

period. Data is collected from different sources. We use annual data about nuclear reactors’ 

outage duration, location and technical characteristics from the IAEA PRIS database. This 

includes the state where the reactors are located, the year they were first connected to the grid, 

and technical characteristics in terms of technology (PWR versus BWR), containment 

structure, and steam generator type. Data on the year of divestiture is collected from Davis 

and Wolfram (2012).7 Finally, data about state level political majority comes from the US 

census bureau.  

 Table 4 presents descriptive statistics and information about relevant variables. The 

maximum value of UF is 100, indicating no production during a whole year. A closer 

examination of the data reveals 20 such observations. In the subsequent estimations we either 

                                                 
6 Studies have also been made on the effect of divestiture in other industries. Soetevent et al. (2014) analyze the 
impact of divestiture on Dutch highway gasoline stations and find that divestiture lowers the price of divested 
stations and neighboring stations. 
7 These data have been cross-checked using the Nuclear Energy Institute website for divestiture.  
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include a dummy variable to control for these observations or exclude them as a test of 

robustness. It should also be emphasized that as the minimum value for Age is 1, no reactor 

has entered the market during the sample period.  

 

Table 4. Descriptive statistics 

Variable Description 
Level of 

aggregation 
No. obs. Mean Std. Dev. Min Max 

�� 
100-(Actual operating 
hours / Potential 
operating hours)×100 

Reactor 1851 12.397 15.132 0 100 

������ Equals 1 if the reactor is 
divested. 0 otherwise 

Reactor 2369 0.204 0.403 0 1 

��� Age of the reactor (in 
years) 

Reactor 1851 23.733 8.299 1 43 

D
~ 
Share of state level 
electricity consumption 
from industrial consumers 

State 2266 21.770 7.707 4.974 48.250 

��E 

Equals 1 if both state 
senate and house of 
representatives have a 
Republican majority 

State 2266 0.299 0.458 0 1 

 
 

 

5.2. Model and main results 

Our structural equation uses the reactor unavailability factor (UF) as dependent variable 

and utility divestiture (Divest) as an independent variable. We control for reactor age and 

include both ��� and ����. This is because a newly built reactor may have to be calibrated 

to site-specific conditions at the beginning of its life. After the calibration period, the 

probability of disruption declines. As the reactor gets older, disruptions may increase again 

due to greater demand for repairs and maintenance. A further control (S) is an indicator that 

takes the value 1 when UF=100, i.e. when reactors have not produced any electricity during a 

given year. 
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 Moreover, we include year fixed effects �� and reactor fixed effects |�. Year fixed effects 

capture all regulatory and economic variations at federal level. Reactor fixed effects capture 

stable conditions, such as technology choices, firm culture and geographical characteristics. 

This specification is flexible in the sense that it allows analysts to include regressors that are 

correlated with |�, such as maintenance costs/procedures that are influenced by technology, 

but that are unobserved in our data.   

 The equation of interest can then be written as: 

���� = �=11��������3 + ������� + �������� + �p��� + ��S� + |� + ��� ,	 (10)	
where i is the reactor, t is the year and ��� are the random errors. In this model, �������� is 

potentially correlated with ���. This is because �������� is a function of the state-level 

electricity price in year t (Ando and Palmer, 1998; Delmas and Tokat, 2005; Fabrizio et al., 

2007; Damsgaard, 2003), but state-level electricity price in year t is also a function of ���� 
(Zhang, 2007). The reason why a high electricity price increases the likelihood of divestiture 

is that it tends to be interpreted as a sign of market failure that triggers policy action. The 

positive impact of ���� on the electricity price in year t is explained by the fact that nuclear 

power is a baseload component in the electricity generation mix. More expensive sources of 

energy have to be used whenever reactor operations are disrupted. A similar type of 

simultaneity applies to the nuclear sector’s lobby group activity: more intense lobby activity 

in year t reduces regulatory pressure on the industry and, thus, increases ����. At the same 

time, increased lobby group activity reduces the likelihood of divestiture. Since both state-

level electricity and lobby group activity are unobserved in our data set, �������� becomes 

endogenous.  
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 In our base specification, we take the share of state level electricity consumption by 

industrial customers in the previous period (D
~�O�) as our only instrumental variable. The 

choice of instrument is based on the political economy of the electricity market restructuring 

process. In particular, Joskow (1997) stresses the importance of interest groups that supported 

electricity market reforms in the U.S. during the 1990s. At this time, the expectation was that 

large industrial consumers would benefit from stronger competition and thus more actively 

support electricity market restructuring. This instrument is also used by Zhang (2007).  

 The estimations of (10) using the FVR and FBVR approaches are compared to the 

following alternative approaches: 1) OLS, which is used by Davis and Wolfram (2012), i.e. 

where endogeneity is ignored, 2) TSLS, which is used by Zhang (2007), i.e. where treatment 

persistence is ignored, and 3) TSLS-probit, which also ignores treatment persistence, but is 

potentially more efficient than the TSLS.  

 The main results are presented in Table 5. If we assume that FBVR provides the least 

biased estimate, then the OLS estimate appears to be slightly upward-biased. This may be 

because the nuclear industry’s lobby group activity is unobserved and is negatively related to 

�������� and positively related to ����. The second  noteworthy observation is that the 

��(�=) for the TSLS is about twice as large as for the TSLS-probit and FVR approaches, and 

��(�=) is about six times as large as for the FBVR approach. The SEs of the TSLS, TSLS-

probit and the FVR approaches are so large we cannot statistically distinguish the divestiture 

effect from zero. The conclusion based on the FBVR is that the divestiture of electricity 

utilities reduces the unavailability factor of the nuclear reactors by 7.6%. 
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Table 5. Estimation output of model (10) 
Variable OLS TSLS TSLS-probit FVR FBVR ������� -7.143*** 

(1.452) 
7.095 

(13.460) 
5.762 

(6.976) 
-6.771 
(5.594) 

-7.624*** 
(2.202) ���� 0.150 

(0.218) 
-0.216 
(0.419) 

-0.182 
(0.243) 

0.141 
(0.252) 

0.162 
(0.210) ����� -0.010** 

(0.005) 
-0.010** 
(0.004) 

-0.010** 
(0.004) 

-0.010** 
(0.004) 

-0.010** 
(0.004) 

Year dummies Yes Yes Yes Yes Yes 

Treatment of obs. where ��=100 
Dum. Var. Dum. Var. Dum. Var. Dum. Var. Dum. Var. 

R2 0.39 0.37 0.38 0.44 0.44 

No. obs. 1851   1851   1851 1851 1851 

Notes: Dependent variable is UF. UF represents total number of outage hours divided by maximum 

potential generation hours. * p < 0.10, ** p < 0.05, *** p < 0.01. SE in brackets are robust to 

heteroskedasticity and autocorrelation with a Bartlett bandwidth = 2. 

 

 

Finally, we check the robustness of our empirical findings. One first robustness test is to use 

an alternative instrumental variable. Thus, we replace D
~�O� with a dummy variable that 

indicates whether the state has a Republican majority (��E�O�). The results are similar to our 

base estimation. The coefficient estimated by FBVR, which equals -11, is lower but not 

statistically different from the coefficient obtained in Table 5. The methodology and detailed 

results are given in Appendix E. 

 The results presented so far rely on the assumption that untreated units are completely 

unaffected by reactors that are treated. As an additional test of robustness, we evaluate the 

reasonableness of this assumption. A detailed description of the methodology and results is 

given in Appendix F. The results indicate that we cannot reject the null hypothesis that there 

are no spillover effects from the divestiture of other reactors.  

 



28 
 

6. Conclusions 

Policies are often endogenous and persistent. This leads to a weak instrumental variable 

problem when the values of available instrument(s) change from period to period. In this 

paper, we develop two approaches to strengthen the instrument in this context by removing 

unnecessary instrument variation. In the FVR approach, we first set the values of the 

instrument in all treated periods equal to the value of the instrument in the first treated period. 

Next, TSLS is performed with the transformed instrument. In the FBVR approach, the 

instrument is also transformed backward by taking the instrumental value in the last untreated 

period and copy it to all previous periods.  

 We theoretically prove identification and derive asymptotic properties. The main 

intuition of the approaches does not depend on linearity, suggesting that similar techniques 

can be used for a variety of models. Moreover, our approaches could be used to evaluate 

structural models. 

 We also evaluate small sample properties for the FVR/FBVR approaches through Monte 

Carlo simulations. FVR/FBVR empirical standard errors are up to 70 times smaller than for 

TSLS, and FVR/FBVR empirical bias is up to 10 times smaller than for OLS. These results 

are largely robust to the instrument distribution, endogeneity level and instrument strength.  

 We use the FVR/FBVR approaches to evaluate the effect of the divestiture of nuclear 

reactors in the U.S. implemented in the 1990s and 2000s. Studies that have previously 

evaluated this policy reform have either ignored treatment endogeneity or produced 

uninformative confidence intervals. We find that divestiture has reduced the reactor 

unavailability factor by approximately 7.6% and the effect is statistically significant. 
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8. Appendices 

Appendix A. Proof of Proposition in Section 3.3.  

We provide proof for the case of a single (endogenous) covariate and a single instrument. The 

generalization to the case of additional covariates and multiple instruments follows the same 

steps and is omitted. Assume first that $ = . It holds  

0m1�� = 6 ��G��en = 0       (A.1) 

for all 6, I, E	 ∈ �1,2, … ,  . This follows from 

0m1�� = 6 ��G��en = 0 c0 Y1 ¡�� = 6 ��G��e¢�d] = ∑ 011�� = 6 %�'� ��G��e¢� = �d C�� =�  = 0 + 0m��G��e£� = 6nC�� = 6  = 0. 
The last equality holds due to assumption R1 and 

0m��G��e£� = 6n = 0101��G��e|��G, � = 63|� = 63 = 01��G01��e|��G, � = 63|� = 63. 
Due to analogical arguments, it holds that 

 0m���G��en = 0	 	 	 	 	 	 	 	 (A.2)	
for all I, E	 ∈ �1, 2, … ,  .  
 

Identification of FVR: Multiply model (4) by �R(� to obtain 

�R ′* ��(� = �′R* �"*�S + �R′* ��*�.	 	 	 	 	 	 	 (A.3)	
 The identification proof follows the same steps as the proof for the standard TSLS model. 

We now show that 0 c�R ′* ��*�d = 0. The k-th element of the vector �R(� is equal to 

��F1�� ≥ 6  + ��%N1�� < 6  − O�∑ ��G%NG'� − O�( − �)��%N .	 	 (A.4)	
 We now prove that the expectation of the product of any of these four terms with ��e is 

equal to zero for any E. For the first term, it holds because of (A.3) and because 1�� ≥ 6  =∑ 1�� = I %G'F . For the second term, observe that ��%N = ∑ 1�� = I ��G%G'�  and 1�� =
I 1�� = ¥  = 0 whenever I ≠ ¥ and then analogous argument as for the first term applies. 
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For the third term, observe that ∑ ��G%NG'� = ∑ 1�� = 6 %F'� ∑ ��GFG'�  and hence 

0m∑ ��G%NG'� ��en = ∑ ∑ 0m1�� = 6 ��G��en = 0FG'�%F'� . Finally, 0m��G��en = 0 and with (A.4) 

we obtain 0mO�( − �)��%N��G��en = 0. Therefore, all summands in the sum �R′* ��*� have an 

expectation of zero. Thus 0 c�R(′��*�d = 0. Using assumptions R2 a) and R3 a), we finally 

obtain  

S = 01§�R ′* �"*�3O�01§�R ′* ��(�3,	 	 	 	 	 	 	 (A.5)	
with Π ≔ 01�R ′* ��R(�3O�01�R(′�"*�3.  
 

Identification of FBVR: The proof follows exactly the same steps as the FVR approach. 

Observe that the k-th element of �̀(� is equal to 

�©�F − �% Z(� − 1)��%NO� + ( − (� − 1))��%N\, 
where �©�F = 1�� > 6 ��%NO� + 1�� ≤ 6 ��%N. Therefore, showing that 0 c�̀′* ��*�d = 0 
amounts to showing that 

0m1�� > 6 ��%NO����n − 0m1�� > 6 ��%N���n + 0m���%NO����n − 0m���%N���n = 0,	 (A.6)	
which has been established above. 

 The arguments are analogous when $ > . This can be shown by introducing 1�� >   
and 1�� ≤  . In the first case, all expressions are the same as in the standard TSLS case, and 

the second case is as above. 

▀ 
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Appendix B. Monte Carlo simulations using first difference approach 

Table B.1. Simulation results with different � and � values 

 Panel A: ρ = 0.4 Panel B: ρ = 0.6 
Estimator % bias LB UB % bias LB UB 
Empirical setting: S = 0.1   
OLS 87.4 1.8 2.0 130.0 2.2 2.4 
TSLS 61.0 0.6 2.6 71.4 0.9 2.6 
TSLS-probit 44.8 -71.8 72.9 174.0 -21.0 26.5 
FVR 61.0 0.6 2.6 71.4 0.9 2.6 
FBVR 61.0 0.6 2.6 71.4 0.9 2.6 
           
Empirical setting: S = 0.2   
OLS 87.3 1.8 2.0 130.1 2.2 2.4 
TSLS 57.6 1.1 2.0 73.1 1.3 2.2 
TSLS-probit 68.9 0.2 3.2 101.4 0.4 3.6 

FVR 57.6 1.1 2.0 73.1 1.3 2.2 
FBVR 57.6 1.1 2.0 73.1 1.3 2.2 
           

Empirical setting: S = 0.3   
OLS 87.7 1.8 2.0 129.8 2.2 2.4 
TSLS 54.3 1.2 1.9 73.5 1.4 2.1 
TSLS-probit 61.2 0.9 2.3 83.5 1.2 2.5 
FVR 54.3 1.2 1.9 73.5 1.4 2.1 
FBVR 54.3 1.2 1.9 73.5 1.4 2.1 
           
Empirical setting: S = 0.4   
OLS 87.3 1.8 2.0 130.6 2.2 2.4 
TSLS 53.7 1.3 1.8 75.4 1.5 2.0 
TSLS-probit 53.8 1.1 2.0 78.3 1.3 2.2 
FVR 53.7 1.3 1.8 75.4 1.5 2.0 
FBVR 53.7 1.3 1.8 75.4 1.5 2.0 
       
Empirical setting: S = 0.5   
OLS 87.4 1.8 2.0 130.2 2.2 2.4 
TSLS 51.7 1.3 1.7 74.2 1.5 2.0 
TSLS-probit 49.7 1.2 1.8 72.2 1.4 2.0 
FVR 51.7 1.3 1.7 74.2 1.5 2.0 
FBVR 51.7 1.3 1.7 74.2 1.5 2.0 
       
Empirical setting: S = 0.6   
OLS 87.3 1.8 2.0 130.2 2.2 2.4 
TSLS 50.7 1.3 1.7 72.8 1.5 1.9 
TSLS-probit 47.4 1.2 1.7 71.3 1.5 2.0 
FVR 51.7 1.3 1.7 72.8 1.5 1.9 
FBVR 50.7 1.3 1.7 72.8 1.5 1.9 

Notes. 
(i) � = 100,  = 15. 1000 Monte Carlo replications.  
(ii)  LB denotes 95% lower bound and UB denotes 95% upper bound.  
(iii)  ℒ��~�. �. ~. �(0,1). (iv) y = −1.662	to	obtain	50%	of	unit	treated.	
(v) � = 1.  
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Appendix C. Monte Carlo Simulations: robustness checks 

To check the robustness of our results, we run the simulations under different conditions. 

Honoré and Kyriazidou (2000) suggest that normally distributed explanatory variables 

produce smaller bias than non-normally distributed variables. In Table C.1, we report 

simulations where ℒ�� is drawn from a ́ �-distribution, which is skewed. Like Akay (2012), 

we standardize this distribution by calculating  
µ(r)w O�√�  to facilitate comparison with the N(0,1) 

distribution. These results are similar to those shown in Table 3. The only significant 

difference is that the variances of TSLS and TSLS-probit are smaller than when ℒ�� is drawn 

from a normal distribution.  

 

In our baseline results, the share of treated units equals 50%.  As the share of treated units 

reduces, the dataset used for F(V)BR and the dataset used for TSLS become more similar. 

This is because the transformed instrument is applied to a lower proportion of units. In Table 

C.2, we perform simulations in which the share of treated units varies from 30% to 90%. We 

start at 30% because estimations with TSLS and TSLS-probit do not converge at lower 

shares. Table 8 shows that the efficiency of FVR and FBVR does not vary significantly 

between 50% and 90%. At 30%, the confidence intervals of the FVR and FBVR estimators 

are slightly wider, whereas the TSLS and TSLS-probit intervals are uninformative in all 

empirical settings. 

 

As a final robustness test, we run the simulations for different numbers of periods, covering 

the range from  T=4 to T=24. The results are given in Table C.3. For every empirical setting, 

FVR and FBVR are substantially more efficient than TSLS and TSLS-probit.  
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Table C.1. Simulation results with different � and � values, ¶·-distribution 

 Panel A: ρ = 0.4 Panel B: ρ = 0.6 
Estimator % bias LB UB % bias LB UB 
Empirical setting: γ = 0.1   
OLS 17.3 1.0 1.3 26.0 1.1 1.4 
TSLS 45.4 -82.2 85.1 1027.1 -604.2 626.7 
TSLS-probit 164.5 -214.7 213.4 360.9 -503.6 512.8 
FVR 213.5 -98.2 96.0 66.3 -54.6 55.3 
FBVR 84.6 -33.5 37.2 4.3 -11.5 13.5 
        

Empirical setting: γ = 0.2   
OLS 16.9 1.0 1.3 25.8 1.1 1.4 
TSLS 81.0 -73.7 74.1 70.8 -39.4 40.0 
TSLS-probit 76.8 -63.9 67.4 85.4 -50.8 54.5 

FVR 8.5 -1.8 3.7 15.2 -1.2 2.9 
FBVR 5.7 -0.9 2.8 9.6 -7.3 9.1 
        

Empirical setting: γ = 0.3   

OLS 16.2 1.0 1.3 24.6 1.1 1.4 
TSLS 11.8 -5.6 7.3 79.0 -55.8 59.4 
TSLS-probit 140.2 -89.1 93.9 1.6 -7.1 9.1 
FVR 6.6 0.4 1.5 10.5 0.3 1.5 
FBVR 2.3 0.4 1.6 3.6 0.4 1.6 
        

Empirical setting: γ = 0.4   
OLS 15.3 1.0 1.3 23.0 1.1 1.4 
TSLS 4.1 -1.4 3.3 9.4 -2.1 4.0 
TSLS-probit 4.6 -1.2 3.1 8.6 -1.9 3.7 
FVR 4.7 0.6 1.3 7.1 0.5 1.3 
FBVR 1.2 0.6 1.4 1.7 0.6 1.4 
       
Empirical setting: γ = 0.5   
OLS 14.1 1.0 1.3 21.2 1.0 1.4 
TSLS 2.1 -0.5 2.4 3.6 -0.5 2.4 
TSLS-probit 1.8 -0.4 2.4 3.1 -0.5 2.4 
FVR 3.8 0.7 1.3 5.8 0.6 1.3 
FBVR 0.6 0.7 1.3 0.9 0.7 1.3 
       
Empirical setting: γ = 0.6   
OLS 12.5 1.0 1.3 18.9 1.0 1.4 
TSLS 1.3 -0.1 2.1 1.8 -0.2 2.1 
TSLS-probit 1.1 -0.1 2.1 1.5 -0.1 2.1 
FVR 3.8 0.7 1.3 5.0 0.7 1.2 
FBVR 0.3 0.7 1.2 0.5 0.8 1.2 

1000 Monte Carlo replications. LB denotes 95% lower bound and UB denotes 95% upper bound. 

ℒ��~�. �. ~.		 µ(r)w O�√�  . � = 1. 
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 Table C.2. Simulation results with different shares of units treated 

 Panel A: ρ = 0.4, γ = 0.4 Panel B: ρ = 0.6, γ = 0.4 
Estimator % bias LB UB % bias LB UB 
Empirical setting: 30 % treated   
OLS 18.5 1.0 1.4 31.3 27.4 1.0 
TSLS 24.2 -32.0 34.5 815.5 -418.8 404.5 
TSLS-probit 189.7 -104.1 102.3 206.5 -55.9 53.7 
FVR 13.3 -0.2 1.9 20.7 -0.2 1.8 
FBVR 11.5 -0.6 2.3 16.3 -0.4 2.1 
        

Empirical setting: 50 % treated   
OLS 17.6 1.0 1.3 26.4 1.1 1.4 
TSLS 6.0 -2.0 3.9 8.1 -3.0 4.9 
TSLS-probit 6.0 -1.9 3.8 7.6 -3.5 5.4 

FVR 9.3 0.4 1.4 13.8 0.4 1.3 
FBVR 2.6 0.6 1.4 3.9 0.6 1.4 
        

Empirical setting: 60 % treated   

OLS 17.1 1.0 1.3 25.8 1.1 1.4 
TSLS 39.0 -12.9 14.1 4.8 -13.0 15.1 
TSLS-probit 41.1 -13.2 14.4 26.6 -12.8 14.3 
FVR 8.7 0.4 1.5 12.7 0.3 1.4 
FBVR 0.7 0.5 1.5 1.3 0.5 1.5 
        

Empirical setting: 75 % treated   
OLS 16.7 1.0 1.3 24.8 1.1 1.4 
TSLS 9.0 -9.6 11.8 6.6 -6.1 8.0 
TSLS-probit 9.5 -9.4 11.6 6.3 -6.1 8.0 
FVR 5.9 0.5 1.4 9.0 0.5 1.4 
FBVR 3.8 0.6 1.4 5.4 0.7 1.4 
       
Empirical setting: 90 % treated   
OLS 16.6 1.0 1.3 24.8 1.1 1.4 
TSLS 88.1 -65.2 69.0 9.9 -2.5 4.3 
TSLS-probit 16.4 -6.8 8.5 9.9 -2.4 4.2 
FVR 2.2 0.6 1.4 3.5 0.6 1.3 
FBVR 9.3 0.8 1.4 13.3 0.8 1.4 
1000 Monte Carlo replications. LB denotes 95% lower bound and UB denotes 95% upper bound. ℒ��~�. �. ~.		�(0,1). We change the value of y to obtain the desired shares of units treated. 
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Table C.3. Simulation results with different T. 

 Panel A: ρ = 0.6, γ = 0.6 Panel B: ρ = 0.6, γ = 0.6 
Estimator % bias LB UB % bias LB UB 
Empirical setting: T=4   
OLS 51.3 0.9 2.1 77.8 1.2 2.3 
TSLS 18.0 -34.5 36.1 47.6 -17.6 18.6 
TSLS-probit 51.1 -52.6 55.7 63.3 -14.4 15.1 
FVR 29.5 -2.3 3.7 46.4 -2.7 3.8 
FBVR 34.5 -3.0 4.4 38.5 -9.1 10.3 
        

Empirical setting: T=8   
OLS 28.8 1.0 1.6 43.3 1.1 1.7 
TSLS 17.4 -5.7 8.1 7.6 -5.5 7.3 
TSLS-probit 1920.6 -1160.0 1200.4 1.7 -4.0 6.0 

FVR 13.0 -0.1 1.8 22.3 -0.2 1.8 
FBVR 8.8 -0.1 1.9 15.0 -0.1 1.8 
        

Empirical setting: T=12   

OLS 20.8 1.0 1.4 31.6 1.1 1.5 
TSLS 4.4 -2.2 4.1 8.0 -2.1 4.0 
TSLS-probit 5.7 -2.3 4.2 9.3 -2.4 4.3 
FVR 11.8 0.3 1.4 18.0 0.3 1.4 
FBVR 6.8 0.4 1.5 9.4 0.4 1.4 
        

Empirical setting: T=16   
OLS 16.5 1.0 1.3 24.1 1.1 1.4 
TSLS 0.2 -2.7 4.7 14.0 -6.7 9.0 
TSLS-probit 1.8 -3.5 5.5 18.8 -8.7 11.1 
FVR 8.4 0.5 1.3 13.6 0.5 1.3 
FBVR 2.2 0.6 1.3 4.2 0.6 1.3 
       
Empirical setting: T=20   
OLS 13.6 1.0 1.3 20.4 1.1 1.3 
TSLS 5.7 -1.9 4.0 7.7 -6.3 8.2 
TSLS-probit 6.8 -2.0 4.1 14.7 -12.0 13.7 
FVR 7.0 0.6 1.2 10.6 0.6 1.2 
FBVR 0.6 0.7 1.3 1.0 0.7 1.3 
       
Empirical setting: T=24   
OLS 11.8 1.0 1.2 17.8 1.1 1.3 
TSLS 0.5 -6.4 8.4 7.9 -2.2 4.0 
TSLS-probit 1.6 -4.6 6.6 7.8 -2.1 4.0 
FVR 7.0 0.6 1.2 9.6 0.7 1.2 
FBVR 0.1 0.8 1.2 0.8 0.8 1.2 

1000 Monte Carlo replications. LB denotes 95% lower bound and UB denotes 95% upper bound. ℒ��~�. �. ~.		�(0,1). We set y = −1.662 to obtain 50% of unit treated. 
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Appendix D. Test of identifying assumption 

Table D.1. Size of the Test Statistics, Number of rejections out of 100 cases 

k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10 k = 11 

t = 1 p = 1 Mean 0.090 0.121 -0.084 0.014 0.129 -0.130 -0.035 -0.133 -0.035 0.017 
Variance 0.826 1.136 1.159 1.018 1.195 0.795 0.830 1.347 0.996 0.970 
10% 0 0 0 0 0 0 0 0 0 0 

p = 2 Mean 0.033 0.037 0.045 0.299 -0.038 -0.037 0.074 -0.171 0.069 -0.025 
Variance 1.381 1.142 1.115 0.944 1.144 1.125 1.272 0.991 1.071 1.217 
10% 0 0 0 0 0 0 0 0 0 0 

p = 3 Mean 0.049 0.131 0.083 0.089 0.086 -0.088 0.044 0.121 -0.083 -0.178 
Variance 1.069 1.125 0.941 0.731 1.135 1.397 0.806 1.082 1.022 1.432 
10% 0 0 0 0 0 0 0 0 0 0 

p = 4 Mean -0.114 0.037 0.106 -0.128 0.152 0.057 -0.207 -0.119 -0.038 -0.047 
Variance 1.016 1.083 1.110 0.953 1.024 0.762 0.965 1.066 0.979 1.042 
10% 0 0 0 0 0 0 0 0 0 0 

p = 5 Mean -0.006 0.003 0.082 0.113 -0.089 0.023 -0.066 0.196 -0.166 0.004 
Variance 0.803 0.979 0.809 1.052 1.107 0.971 1.160 0.830 1.075 1.324 
10% 0 0 0 0 0 0 0 0 0 0 

p = 6 Mean -0.150 0.045 -0.028 -0.014 -0.154 -0.078 0.050 0.090 0.032 0.016 
Variance 1.249 1.136 0.889 0.980 1.121 0.803 1.154 1.161 1.263 1.189 
10% 0 0 0 0 0 0 0 0 0 0 

p = 7 Mean 0.141 -0.031 0.058 -0.058 -0.016 -0.002 -0.068 -0.046 -0.045 0.091 
Variance 0.779 0.899 1.063 1.244 0.897 1.089 0.882 1.118 1.210 1.063 
10% 0 0 0 0 0 0 0 0 0 0 

p = 8 Mean 0.102 0.022 -0.071 0.149 0.103 -0.043 0.130 -0.078 0.081 0.097 
Variance 0.979 0.921 0.994 0.974 1.049 0.963 0.979 1.037 1.170 1.116 
10% 0 0 0 0 0 0 0 0 0 0 

p = 9 Mean 0.174 0.047 0.125 -0.205 0.000 -0.011 0.085 0.027 0.025 -0.007 
Variance 1.064 1.002 1.012 1.119 0.996 1.216 1.017 1.113 0.918 1.198 
10% 0 0 0 0 0 0 0 0 0 0 

p = 10 Mean -0.057 0.013 -0.037 -0.018 -0.122 -0.077 0.022 0.072 0.132 0.117 
Variance 0.733 0.905 1.093 0.992 1.193 1.028 1.279 0.942 0.786 1.002 
10% 0 0 0 0 0 0 0 0 0 0 

p = 11 Mean 0.073 0.006 -0.063 -0.243 0.162 -0.059 0.023 0.016 -0.099 0.336 
Variance 0.968 1.223 1.052 1.024 0.966 1.008 1.142 1.059 1.042 1.125 
10% 0 0 0 0 0 0 0 0 0 0 

t = 2 p = 1 Mean 0.057 -0.130 -0.106 0.149 0.078 0.069 0.081 0.013 0.042 -0.120 
Variance 1.147 1.174 1.058 1.017 0.852 0.966 1.064 1.032 0.783 0.968 
10% 0 0 0 0 0 0 0 0 0 0 

p = 2 Mean 3.023 -0.115 -0.111 -0.208 -0.201 -0.037 -0.212 -0.141 -0.133 -0.159 
Variance 1.278 0.821 0.989 1.219 0.989 0.987 0.819 1.293 1.147 1.142 
10% 0 0 0 0 0 0 0 0 0 0 
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p = 3 Mean -0.088 -0.009 -0.050 -0.024 0.033 -0.189 -0.048 0.126 -0.041 0.085 
Variance 0.811 0.945 1.418 1.272 1.329 1.078 0.946 1.136 1.129 0.900 
10% 0 0 0 0 0 0 0 0 0 0 

p = 4 Mean -0.047 -0.131 -0.237 -0.160 0.077 -0.013 0.028 0.014 -0.041 -0.015 
Variance 1.043 0.950 1.101 1.316 1.453 0.808 0.923 0.948 0.980 1.020 
10% 0 0 0 0 0 0 0 0 0 0 

p = 5 Mean 0.136 0.025 -0.073 -0.144 0.101 0.021 -0.016 0.073 -0.070 -0.019 
Variance 1.178 1.078 1.164 1.047 1.006 0.921 0.917 1.024 1.385 1.238 
10% 0 0 0 0 0 0 0 0 0 0 

p = 6 Mean -0.066 0.034 0.076 0.152 -0.361 0.075 0.036 -0.149 -0.053 0.076 
Variance 0.938 0.926 1.009 1.131 1.173 1.071 1.147 0.985 1.179 1.280 
10% 0 0 0 0 0 0 0 0 0 0 

p = 7 Mean 0.042 0.022 0.083 0.013 0.138 -0.223 -0.059 0.096 0.156 0.087 
Variance 0.914 0.976 1.147 1.118 1.078 1.023 1.177 0.801 0.956 0.839 
10% 0 0 0 0 0 0 0 0 0 0 

p = 8 Mean -0.041 -0.003 -0.014 0.047 0.119 -0.033 -0.199 -0.058 -0.090 0.123 
Variance 1.162 1.045 0.939 1.189 1.014 0.942 0.891 1.198 1.022 1.090 
10% 0 0 0 0 0 0 0 0 0 0 

p = 9 Mean -0.015 0.002 0.004 -0.205 0.065 0.105 0.068 -0.042 -0.119 0.284 
Variance 1.188 1.134 0.964 1.158 0.957 0.973 0.924 1.063 1.085 1.148 
10% 0 0 0 0 0 0 0 0 0 0 

p = 10 Mean 0.130 -0.226 -0.153 -0.135 0.022 -0.060 0.142 0.154 0.020 -0.016 
Variance 1.055 0.887 1.229 1.294 0.754 1.232 1.080 1.066 1.218 1.013 
10% 0 0 0 0 0 0 0 0 0 0 

p = 11 Mean 0.041 0.262 0.030 0.145 -0.045 -0.172 -0.049 -0.004 -0.057 0.156 
Variance 0.845 1.076 0.990 1.079 1.258 1.332 1.061 1.224 1.321 1.245 
10% 0 0 0 0 0 0 0 0 0 0 

t = 3 p = 1 Mean -0.088 -0.125 -0.027 0.070 -0.008 -0.074 -0.007 0.028 0.021 -0.056 
Variance 0.914 1.192 0.926 1.154 1.068 1.122 0.967 1.383 1.104 0.811 
10% 0 0 0 0 0 0 0 0 0 0 

p = 2 Mean 0.128 -0.433 -0.079 0.064 -0.098 0.136 0.022 -0.090 -0.127 -0.052 
Variance 0.859 1.088 1.022 1.338 0.996 1.236 1.144 0.979 0.968 0.998 
10% 0 0 0 0 0 0 0 0 0 0 

p = 3 Mean 0.027 2.956 -0.264 -0.323 -0.198 0.024 -0.265 -0.096 -0.198 -0.238 
Variance 0.942 1.167 1.021 0.812 0.946 1.190 1.293 0.895 1.102 0.969 
10% 0 0 0 0 0 0 0 0 0 0 

p = 4 Mean 0.080 0.037 -0.048 -0.241 -0.012 0.053 -0.064 0.062 -0.169 0.056 
Variance 1.262 0.767 1.109 1.102 1.052 0.762 0.958 0.988 1.000 0.832 
10% 0 0 0 0 0 0 0 0 0 0 

p = 5 Mean -0.096 -0.013 0.094 -0.166 -0.072 -0.042 -0.034 0.051 0.110 0.042 
Variance 0.897 1.237 1.277 0.982 1.061 0.905 1.157 1.051 0.997 1.088 
10% 0 0 0 0 0 0 0 0 0 0 

p = 6 Mean -0.018 -0.039 -0.061 0.016 -0.215 -0.104 -0.086 -0.286 0.052 -0.134 
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Variance 0.882 1.161 1.160 0.862 0.954 0.994 0.851 1.042 0.737 0.955 
10% 0 0 0 0 0 0 0 0 0 0 

p = 7 Mean -0.175 -0.130 0.247 -0.025 -0.035 -0.465 -0.080 0.130 0.135 -0.122 
Variance 1.162 1.249 0.925 1.270 0.942 0.936 0.967 1.000 0.971 1.247 
10% 0 0 0 0 0 0 0 0 0 0 

p = 8 Mean 0.045 0.016 0.041 -0.138 -0.155 -0.015 -0.190 -0.082 0.110 -0.135 
Variance 1.101 1.172 1.189 0.929 1.101 0.850 1.078 1.042 1.023 1.413 
10% 0 0 0 0 0 0 0 0 0 0 

p = 9 Mean -0.130 0.025 -0.056 -0.192 0.064 0.040 0.105 -0.174 0.054 -0.009 
Variance 0.683 1.124 1.193 0.946 0.972 1.001 1.019 0.821 0.923 0.972 
10% 0 0 0 0 0 0 0 0 0 0 

p = 10 Mean -0.029 0.030 -0.068 0.025 0.026 0.098 0.059 0.049 -0.145 0.104 
Variance 0.927 1.421 1.000 0.911 0.999 1.434 0.752 1.178 1.015 0.930 
10% 0 0 0 0 0 0 0 0 0 0 

p = 11 Mean 0.061 -0.083 0.045 0.151 -0.145 -0.061 -0.148 0.015 0.110 -0.091 
Variance 0.888 1.068 0.984 0.896 0.978 1.293 1.122 0.989 0.997 1.315 
10% 0 0 0 0 0 0 0 0 0 0 

t = 4 p = 1 Mean 0.084 0.207 0.083 -0.063 -0.114 -0.006 0.190 0.018 0.061 -0.159 
Variance 1.014 1.127 1.169 0.997 1.109 1.080 0.981 1.097 1.042 0.840 
10% 0 0 0 0 0 0 0 0 0 0 

p = 2 Mean -0.038 -0.160 -0.268 0.026 0.103 0.007 0.196 0.025 0.055 -0.055 
Variance 1.062 1.012 1.304 1.253 1.002 1.281 1.335 1.087 0.815 1.031 
10% 0 0 0 0 0 0 0 0 0 0 

p = 3 Mean -0.004 0.020 -0.067 0.143 0.101 -0.011 0.009 -0.048 -0.104 -0.114 
Variance 0.896 0.907 0.943 0.797 1.143 0.986 0.729 1.068 1.170 0.938 
10% 0 0 0 0 0 0 0 0 0 0 

p = 4 Mean 0.090 0.199 2.814 -0.137 -0.178 -0.087 -0.101 -0.274 -0.099 -0.119 
Variance 0.974 0.865 0.725 1.036 1.187 1.051 0.839 0.949 0.989 1.084 
10% 0 0 0 0 0 0 0 0 0 0 

p = 5 Mean 0.084 -0.190 0.027 -0.231 0.068 -0.159 0.039 0.098 -0.052 0.118 
Variance 1.035 0.986 1.513 0.722 1.247 1.033 1.328 1.116 1.190 1.041 
10% 0 0 0 0 0 0 0 0 0 0 

p = 6 Mean 0.144 -0.079 -0.203 -0.023 -0.034 -0.005 0.008 0.219 0.114 0.014 
Variance 1.017 1.096 1.236 1.208 0.926 1.236 0.889 0.997 1.068 1.375 
10% 0 0 0 0 0 0 0 0 0 0 

p = 7 Mean -0.035 -0.064 0.137 -0.010 0.118 -0.205 -0.184 -0.038 0.187 -0.021 
Variance 0.905 0.831 0.778 1.093 0.990 1.017 1.148 1.123 1.045 1.053 
10% 0 0 0 0 0 0 0 0 0 0 

p = 8 Mean 0.063 0.049 -0.002 -0.001 -0.009 0.074 -0.161 0.099 0.123 -0.100 
Variance 1.051 1.152 1.022 0.997 1.136 0.992 1.231 1.022 1.081 0.887 
10% 0 0 0 0 0 0 0 0 0 0 

p = 9 Mean 0.174 0.098 -0.079 -0.048 -0.119 0.020 0.009 -0.071 -0.158 0.082 
Variance 0.937 0.897 1.000 1.086 1.165 0.814 0.939 1.177 1.171 1.290 
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10% 0 0 0 0 0 0 0 0 0 0 

p = 10 Mean -0.018 -0.052 0.117 0.044 -0.036 -0.050 0.076 0.008 -0.172 0.196 
Variance 0.780 0.962 0.957 1.070 1.240 1.034 1.214 1.355 0.988 0.916 
10% 0 0 0 0 0 0 0 0 0 0 

p = 11 Mean 0.078 -0.087 -0.020 0.119 -0.084 -0.030 0.099 -0.016 0.111 -0.005 
Variance 0.968 1.164 0.980 0.923 1.096 0.872 1.146 1.029 0.772 1.356 
10% 0 0 0 0 0 0 0 0 0 0 

t = 5 p = 1 Mean 0.121 0.146 0.018 -0.169 0.068 -0.077 -0.002 0.050 -0.061 -0.054 
Variance 1.084 1.120 1.118 0.807 0.906 1.228 1.036 1.243 1.104 1.036 
10% 0 0 0 0 0 0 0 0 0 0 

p = 2 Mean -0.113 0.049 -0.038 -0.043 0.005 -0.126 0.032 0.085 -0.149 -0.080 
Variance 0.777 1.001 1.240 0.929 1.203 1.430 1.035 1.089 1.101 1.014 
10% 0 0 0 0 0 0 0 0 0 0 

p = 3 Mean 0.128 0.210 0.014 -0.344 -0.152 0.021 0.060 0.013 0.024 0.047 
Variance 0.889 1.110 1.139 0.910 1.219 1.065 1.202 0.970 0.958 1.144 
10% 0 0 0 0 0 0 0 0 0 0 

p = 4 Mean -0.180 -0.004 0.122 -0.325 0.066 -0.059 0.081 -0.006 0.140 0.093 
Variance 1.226 0.905 1.152 1.257 1.040 1.197 1.075 0.974 0.886 0.981 
10% 0 0 0 0 0 0 0 0 0 0 

p = 5 Mean 0.040 -0.058 0.009 2.589 -0.304 -0.352 -0.186 -0.273 -0.019 -0.087 
Variance 1.209 1.219 1.515 0.791 0.793 0.836 0.801 1.012 1.209 1.128 
10% 0 0 0 0 0 0 0 0 0 0 

p = 6 Mean 0.042 0.042 0.049 0.141 -0.239 0.041 0.075 0.073 -0.057 0.126 
Variance 1.227 1.140 1.038 1.006 0.965 1.278 1.007 0.874 1.002 0.998 
10% 0 0 0 0 0 0 0 0 0 0 

p = 7 Mean -0.211 0.080 0.155 0.072 0.013 0.002 0.085 0.109 0.056 0.158 
Variance 1.422 0.900 1.066 1.090 0.859 0.961 1.262 0.763 1.020 0.933 
10% 0 0 0 0 0 0 0 0 0 0 

p = 8 Mean 0.023 -0.056 -0.074 0.041 0.009 -0.010 -0.350 -0.178 -0.028 -0.063 
Variance 0.914 1.181 1.171 1.145 1.113 1.172 1.225 1.027 1.092 0.986 
10% 0 0 0 0 0 0 0 0 0 0 

p = 9 Mean -0.011 0.113 -0.110 0.096 -0.014 0.007 0.033 -0.251 -0.125 -0.177 
Variance 1.050 0.986 1.327 1.157 0.930 1.051 1.176 1.280 1.030 0.971 
10% 0 0 0 0 0 0 0 0 0 0 

p = 10 Mean 0.081 0.040 -0.092 -0.037 -0.202 0.134 -0.098 -0.123 -0.062 -0.140 
Variance 1.605 0.986 1.173 1.180 1.166 1.194 0.930 1.068 0.927 1.182 
10% 0 0 0 0 0 0 0 0 0 0 

p = 11 Mean -0.031 0.038 0.064 -0.171 -0.037 0.175 0.093 0.019 -0.020 -0.239 
Variance 1.028 1.295 0.920 0.987 1.014 0.827 0.949 0.962 0.902 1.304 
10% 0 0 0 0 0 0 0 0 0 0 

t = 6 p = 1 Mean -0.065 -0.061 0.131 0.098 -0.077 -0.009 0.030 0.069 0.022 -0.023 
Variance 0.990 0.899 1.062 1.178 0.931 0.910 0.931 1.131 1.118 0.828 
10% 0 0 0 0 0 0 0 0 0 0 
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p = 2 Mean 0.000 -0.018 0.094 -0.010 -0.132 -0.015 -0.079 -0.053 0.087 0.118 
Variance 0.909 0.968 0.987 0.973 0.835 0.871 0.941 0.939 1.123 1.020 
10% 0 0 0 0 0 0 0 0 0 0 

p = 3 Mean 0.054 0.181 -0.145 0.083 -0.091 0.000 -0.105 0.169 -0.015 0.086 
Variance 0.859 1.062 1.249 0.997 1.362 1.113 1.134 1.052 0.801 1.056 
10% 0 0 0 0 0 0 0 0 0 0 

p = 4 Mean 0.052 0.177 -0.007 -0.028 -0.117 0.067 0.188 0.081 -0.020 0.143 
Variance 1.085 0.882 1.095 1.160 0.855 1.001 0.964 1.328 0.963 0.891 
10% 0 0 0 0 0 0 0 0 0 0 

p = 5 Mean 0.199 0.052 0.053 -0.045 -0.098 0.064 0.133 -0.009 -0.075 -0.131 
Variance 1.269 1.154 1.095 1.075 1.438 1.204 1.229 0.915 0.965 1.257 
10% 0 0 0 0 0 0 0 0 0 0 

p = 6 Mean -0.060 0.023 0.093 -0.021 2.660 -0.182 -0.178 -0.083 -0.151 -0.089 
Variance 0.966 1.250 1.024 0.739 0.700 0.984 1.031 1.059 1.235 0.915 
10% 0 0 0 0 0 0 0 0 0 0 

p = 7 Mean 0.033 -0.040 0.173 0.010 0.106 -0.126 0.077 0.050 0.164 -0.003 
Variance 0.931 0.918 1.267 1.078 1.083 1.171 0.800 1.044 1.150 1.211 
10% 0 0 0 0 0 0 0 0 0 0 

p = 8 Mean -0.058 0.056 -0.112 0.179 -0.142 0.013 -0.125 0.008 -0.011 -0.041 
Variance 0.931 0.845 0.989 0.987 0.843 1.454 1.048 1.232 1.210 0.890 
10% 0 0 0 0 0 0 0 0 0 0 

p = 9 Mean -0.056 -0.031 0.203 0.089 -0.085 0.146 0.135 -0.065 0.035 -0.100 
Variance 0.874 0.939 0.917 0.978 1.084 1.164 0.897 0.975 1.036 1.146 
10% 0 0 0 0 0 0 0 0 0 0 

p = 10 Mean 0.074 -0.186 -0.112 -0.004 -0.006 0.058 -0.085 -0.083 -0.030 -0.036 
Variance 1.053 0.660 1.159 0.925 1.123 1.267 1.006 0.867 0.832 0.939 
10% 0 0 0 0 0 0 0 0 0 0 

p = 11 Mean 0.015 -0.146 0.107 -0.029 -0.098 0.200 0.201 0.034 0.157 -0.225 
Variance 0.754 1.209 0.960 0.859 1.028 0.963 1.099 0.929 1.117 0.952 
10% 0 0 0 0 0 0 0 0 0 0 

t = 7 p = 1 Mean -0.102 -0.162 -0.089 0.093 -0.130 -0.061 -0.038 -0.037 0.223 -0.027 
Variance 1.284 0.948 1.205 1.208 1.024 1.013 0.944 1.037 1.246 1.070 
10% 0 0 0 0 0 0 0 0 0 0 

p = 2 Mean 0.005 0.099 -0.174 0.032 0.062 -0.173 0.133 -0.006 0.341 -0.135 
Variance 1.234 0.693 0.897 1.025 0.960 1.169 1.063 0.855 1.186 1.486 
10% 0 0 0 0 0 0 0 0 0 0 

p = 3 Mean 0.116 -0.017 0.041 0.063 0.022 -0.168 0.186 0.024 0.052 0.125 
Variance 0.904 1.303 0.834 1.140 1.170 1.168 1.043 1.122 0.833 0.988 
10% 0 0 0 0 0 0 0 0 0 0 

p = 4 Mean 0.121 -0.117 0.002 0.034 -0.198 -0.240 -0.061 0.148 0.007 -0.103 
Variance 0.936 1.057 0.949 1.082 1.224 1.108 0.922 1.020 0.906 1.287 
10% 0 0 0 0 0 0 0 0 0 0 

p = 5 Mean -0.017 -0.062 -0.080 0.016 0.038 -0.150 -0.017 -0.051 0.122 0.041 
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Variance 1.185 1.037 1.007 1.079 1.003 0.984 1.191 0.871 0.976 1.041 
10% 0 0 0 0 0 0 0 0 0 0 

p = 6 Mean 0.205 -0.061 -0.043 -0.022 0.124 -0.139 -0.019 -0.059 -0.093 -0.103 
Variance 0.563 0.923 1.117 0.946 1.151 1.140 1.118 1.038 1.044 0.937 
10% 0 0 0 0 0 0 0 0 0 0 

p = 7 Mean 0.236 0.135 0.052 -0.021 -0.080 2.715 -0.132 0.134 -0.172 -0.213 
Variance 0.962 1.217 0.928 0.921 0.907 0.913 1.063 1.267 0.955 1.129 
10% 0 0 0 0 0 0 0 0 0 0 

p = 8 Mean 0.066 0.045 -0.198 -0.018 -0.165 -0.062 -0.174 0.018 0.143 -0.062 
Variance 0.949 1.012 1.158 1.224 0.916 1.076 1.047 1.007 1.052 1.093 
10% 0 0 0 0 0 0 0 0 0 0 

p = 9 Mean 0.081 -0.013 0.027 -0.147 -0.084 -0.188 0.098 -0.354 0.158 -0.026 
Variance 1.148 1.220 0.782 1.267 0.727 1.160 1.057 0.991 1.178 1.015 
10% 0 0 0 0 0 0 0 0 0 0 

p = 10 Mean -0.084 0.016 -0.023 0.040 0.088 0.000 -0.100 -0.099 -0.273 0.026 
Variance 1.094 0.890 1.058 0.815 0.787 0.986 1.096 1.137 0.902 0.986 
10% 0 0 0 0 0 0 0 0 0 0 

p = 11 Mean -0.003 -0.082 0.105 -0.036 -0.167 0.075 -0.200 0.040 0.007 -0.229 
Variance 1.184 1.083 1.333 1.077 1.249 1.087 0.907 1.041 1.088 0.884 
10% 0 0 0 0 0 0 0 0 0 0 

t = 8 p = 1 Mean -0.154 -0.035 -0.136 -0.158 0.093 0.075 0.029 -0.118 -0.164 -0.064 
Variance 0.838 0.997 0.989 1.112 1.176 1.050 1.040 0.996 1.090 0.885 
10% 0 0 0 0 0 0 0 0 0 0 

p = 2 Mean 0.026 -0.066 -0.026 -0.113 0.021 -0.099 -0.210 -0.142 -0.012 0.046 
Variance 1.111 0.812 0.906 0.800 0.868 0.974 0.968 1.062 1.018 1.110 
10% 0 0 0 0 0 0 0 0 0 0 

p = 3 Mean -0.039 -0.078 -0.086 -0.001 -0.026 0.067 -0.108 0.011 -0.029 -0.071 
Variance 1.401 1.087 0.964 0.918 1.055 1.097 1.180 0.895 1.116 0.906 
10% 0 0 0 0 0 0 0 0 0 0 

p = 4 Mean -0.089 0.076 0.058 -0.099 0.133 0.227 0.085 -0.178 -0.042 -0.055 
Variance 0.888 1.034 0.922 1.318 1.089 1.469 1.115 0.833 1.123 1.047 
10% 0 0 0 0 0 0 0 0 0 0 

p = 5 Mean 0.290 -0.042 -0.077 0.077 -0.028 -0.124 -0.268 -0.149 0.016 -0.096 
Variance 1.114 1.120 1.033 1.035 1.100 1.359 1.019 0.980 1.075 0.991 
10% 0 0 0 0 0 0 0 0 0 0 

p = 6 Mean -0.077 0.156 -0.028 -0.045 0.105 0.033 -0.123 0.006 -0.099 -0.001 
Variance 1.100 0.856 0.955 0.945 0.844 1.096 1.144 0.877 1.312 1.180 
10% 0 0 0 0 0 0 0 0 0 0 

p = 7 Mean -0.090 -0.056 -0.113 -0.027 0.177 0.268 -0.090 -0.082 0.145 -0.024 
Variance 1.037 1.060 1.086 1.152 1.061 1.082 1.071 1.291 1.150 0.910 
10% 0 0 0 0 0 0 0 0 0 0 

p = 8 Mean -0.024 0.150 -0.177 -0.020 0.133 0.253 2.559 -0.128 0.222 -0.039 
Variance 1.015 0.931 0.994 0.885 1.007 1.115 1.189 0.857 0.810 0.818 
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10% 0 0 0 0 0 0 0 0 0 0 

p = 9 Mean -0.069 -0.037 0.042 -0.004 0.016 -0.071 -0.067 -0.247 -0.057 -0.070 
Variance 0.958 1.008 0.914 0.924 1.196 0.996 0.934 0.983 1.226 1.144 
10% 0 0 0 0 0 0 0 0 0 0 

p = 10 Mean 0.109 -0.060 0.024 -0.114 -0.017 0.022 -0.153 0.064 -0.139 0.096 
Variance 0.871 0.986 0.707 1.081 0.977 1.065 0.989 0.820 0.931 1.023 
10% 0 0 0 0 0 0 0 0 0 0 

p = 11 Mean 0.069 -0.133 0.003 0.118 0.140 -0.099 -0.167 -0.003 -0.030 -0.177 
Variance 1.016 1.022 1.147 1.235 0.956 1.184 1.213 0.944 1.657 1.209 
10% 0 0 0 0 0 0 0 0 0 0 

t = 9 p = 1 Mean -0.118 -0.016 0.063 0.096 0.060 -0.004 -0.027 0.085 -0.025 0.243 
Variance 1.388 0.968 1.097 0.974 1.119 0.927 0.930 0.994 1.031 0.954 
10% 0 0 0 0 0 0 0 0 0 0 

p = 2 Mean -0.166 -0.149 0.180 0.204 0.102 0.132 -0.151 -0.212 -0.018 0.083 
Variance 1.135 0.878 1.249 1.006 1.092 1.266 1.032 0.965 1.229 0.918 
10% 0 0 0 0 0 0 0 0 0 0 

p = 3 Mean -0.052 0.074 0.075 -0.139 0.071 0.167 0.023 -0.133 0.172 0.087 
Variance 0.989 0.851 1.210 1.025 1.007 1.298 1.409 1.285 1.149 0.936 
10% 0 0 0 0 0 0 0 0 0 0 

p = 4 Mean -0.192 0.118 0.105 -0.059 -0.148 0.021 -0.080 -0.147 0.176 0.041 
Variance 1.055 0.891 1.137 0.993 0.819 1.174 1.240 0.833 1.049 0.886 
10% 0 0 0 0 0 0 0 0 0 0 

p = 5 Mean -0.071 0.003 -0.015 0.085 -0.008 0.073 0.124 -0.381 0.040 -0.098 
Variance 1.168 1.143 1.001 1.036 1.079 1.034 1.181 1.103 1.328 0.950 
10% 0 0 0 0 0 0 0 0 0 0 

p = 6 Mean -0.134 0.140 -0.029 -0.306 -0.068 -0.104 0.076 -0.256 0.019 0.048 
Variance 0.959 1.156 0.883 1.007 1.059 1.367 0.801 1.169 1.307 1.005 
10% 0 0 0 0 0 0 0 0 0 0 

p = 7 Mean 0.084 0.091 -0.008 0.048 0.055 0.143 0.011 -0.350 0.135 0.111 
Variance 1.276 1.005 0.901 0.887 1.040 0.987 1.160 1.211 0.951 0.964 
10% 0 0 0 0 0 0 0 0 0 0 

p = 8 Mean 0.071 -0.026 -0.064 -0.147 -0.082 0.051 -0.072 -0.075 -0.095 -0.064 
Variance 1.096 1.097 1.021 1.070 1.073 1.122 1.071 1.066 0.979 1.174 
10% 0 0 0 0 0 0 0 0 0 0 

p = 9 Mean -0.064 0.026 0.113 0.049 -0.067 0.028 0.085 2.469 -0.122 -0.086 
Variance 1.035 0.966 1.126 1.316 1.004 1.163 1.112 1.240 1.010 0.907 
10% 0 0 0 0 0 0 0 0 0 0 

p = 10 Mean 0.021 -0.082 0.170 0.158 0.003 -0.168 -0.004 0.137 -0.184 0.275 
Variance 1.110 1.058 1.345 1.122 1.075 0.984 1.091 1.204 0.850 1.015 
10% 0 0 0 0 0 0 0 0 0 0 

p = 11 Mean 0.069 0.081 0.053 0.080 -0.011 0.066 -0.064 -0.020 -0.062 -0.071 
Variance 1.089 0.719 1.213 1.140 0.804 1.235 1.217 1.176 1.069 0.853 
10% 0 0 0 0 0 0 0 0 0 0 
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t = 10 p = 1 Mean 0.105 0.173 0.000 -0.032 -0.158 0.044 -0.059 -0.074 0.148 0.024 
Variance 1.395 1.108 0.998 1.186 1.061 0.988 1.173 0.783 0.873 1.296 
10% 0 0 0 0 0 0 0 0 0 0 

p = 2 Mean -0.173 0.009 0.144 0.063 -0.046 0.038 0.102 -0.086 -0.071 0.110 
Variance 1.131 1.112 0.963 1.073 1.113 1.043 1.063 1.238 1.097 1.097 
10% 0 0 0 0 0 0 0 0 0 0 

p = 3 Mean 0.074 0.027 0.106 0.063 -0.090 -0.033 -0.002 -0.201 -0.008 -0.016 
Variance 1.013 0.813 0.946 0.919 1.134 1.217 1.080 0.977 1.233 1.287 
10% 0 0 0 0 0 0 0 0 0 0 

p = 4 Mean -0.103 0.113 -0.026 -0.112 0.020 -0.133 0.146 -0.032 -0.149 0.028 
Variance 1.079 1.006 1.156 0.816 0.917 0.926 0.912 1.166 1.154 1.024 
10% 0 0 0 0 0 0 0 0 0 0 

p = 5 Mean -0.044 -0.025 0.031 -0.056 -0.043 0.041 -0.015 -0.151 -0.237 -0.200 
Variance 1.011 1.122 1.304 1.052 1.676 1.208 1.073 0.780 1.138 1.021 
10% 0 0 0 0 0 0 0 0 0 0 

p = 6 Mean -0.029 -0.017 0.068 -0.063 -0.034 0.019 0.013 0.021 -0.137 0.196 
Variance 0.883 0.955 1.139 0.857 1.043 0.880 0.881 1.057 1.032 1.387 
10% 0 0 0 0 0 0 0 0 0 0 

p = 7 Mean -0.069 0.028 -0.039 -0.155 0.112 0.053 0.097 0.118 -0.151 0.174 
Variance 1.403 1.163 1.128 1.242 1.226 0.923 0.732 1.050 0.870 0.972 
10% 0 0 0 0 0 0 0 0 0 0 

p = 8 Mean 0.084 0.055 -0.157 0.116 -0.128 -0.021 0.069 -0.083 0.034 -0.131 
Variance 1.181 0.995 0.841 1.041 1.033 0.935 0.804 0.907 0.889 0.980 
10% 0 0 0 0 0 0 0 0 0 0 

p = 9 Mean 0.218 -0.112 -0.102 0.234 -0.100 -0.014 0.064 -0.089 0.046 0.121 
Variance 1.182 0.865 0.755 1.183 1.013 0.906 1.145 0.786 0.619 1.041 
10% 0 0 0 0 0 0 0 0 0 0 

p = 10 Mean 0.158 0.034 -0.098 -0.079 0.161 -0.004 0.080 0.102 2.478 -0.074 
Variance 1.058 1.160 1.011 1.326 1.197 1.188 1.073 1.155 0.925 0.796 
10% 0 0 0 0 0 0 0 0 0 0 

p = 11 Mean 0.007 0.029 0.100 -0.190 0.152 -0.233 0.090 -0.176 -0.043 -0.327 
Variance 0.994 0.809 1.093 0.848 0.975 1.014 0.901 1.106 1.133 1.124 
10% 0 0 0 0 0 0 0 0 0 0 

t = 11 p = 1 Mean 0.069 -0.110 0.003 -0.087 0.047 -0.018 0.009 0.033 -0.020 0.035 
Variance 1.115 1.135 1.004 1.060 0.993 0.847 1.343 0.948 0.845 0.898 
10% 0 0 0 0 0 0 0 0 0 0 

p = 2 Mean 0.093 0.087 0.051 0.035 -0.088 -0.020 -0.148 0.076 -0.166 -0.344 
Variance 0.892 1.247 0.976 1.141 1.078 1.088 0.937 1.125 1.059 1.253 
10% 0 0 0 0 0 0 0 0 0 0 

p = 3 Mean -0.033 -0.082 0.104 -0.026 0.084 -0.008 0.190 0.078 0.014 -0.133 
Variance 0.889 1.116 0.875 0.896 1.020 0.943 1.072 0.950 1.148 1.134 
10% 0 0 0 0 0 0 0 0 0 0 

p = 4 Mean 0.081 0.155 -0.104 0.024 -0.179 0.006 0.046 -0.051 0.146 -0.134 
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Variance 0.978 1.188 0.962 1.056 0.994 1.082 1.235 1.098 1.074 1.160 
10% 0 0 0 0 0 0 0 0 0 0 

p = 5 Mean 0.015 0.024 0.002 0.091 0.084 0.002 0.076 0.047 0.038 -0.204 
Variance 1.143 1.189 1.249 1.206 1.053 1.054 1.209 1.118 1.093 1.134 
10% 0 0 0 0 0 0 0 0 0 0 

p = 6 Mean 0.113 0.040 0.008 0.045 0.087 -0.161 0.080 0.077 0.036 -0.121 
Variance 1.119 1.031 0.851 1.215 1.198 0.969 1.153 0.974 1.110 0.944 
10% 0 0 0 0 0 0 0 0 0 0 

p = 7 Mean -0.170 -0.079 0.059 0.135 -0.043 0.047 -0.014 0.161 -0.039 -0.125 
Variance 0.974 1.261 1.227 1.282 1.239 1.031 1.043 0.944 1.024 0.873 
10% 0 0 0 0 0 0 0 0 0 0 

p = 8 Mean -0.085 -0.127 -0.035 0.063 -0.165 -0.110 0.004 -0.088 -0.035 -0.089 
Variance 0.886 0.963 1.278 1.063 0.724 1.264 1.220 0.941 1.115 1.190 
10% 0 0 0 0 0 0 0 0 0 0 

p = 9 Mean 0.017 0.175 -0.002 -0.139 0.109 0.107 -0.025 0.155 -0.124 -0.174 
Variance 1.029 1.034 1.044 0.915 0.926 1.007 1.117 0.881 0.959 0.881 
10% 0 0 0 0 0 0 0 0 0 0 

p = 10 Mean 0.025 -0.093 -0.062 0.050 0.121 -0.081 0.068 -0.174 0.117 -0.052 
Variance 1.098 0.960 0.978 0.978 0.857 1.090 1.140 0.881 1.161 1.280 
10% 0 0 0 0 0 0 0 0 0 0 

p = 11 Mean 0.203 -0.156 -0.019 -0.045 -0.032 0.008 0.086 0.023 -0.155 2.395 
Variance 1.041 1.128 0.879 0.928 1.114 0.982 0.920 1.112 0.994 1.165 

    10% 0 0 0 0 0 0 0 0 0 0 

 

Notes. 
(i) � = 1,000, T = 11, 100 replications. (ii) ρ=0.4,	γ=0.4.	(iii) We	set	μ = −1.662	to	obtain	50%	of	unit	treated.	
(iv) ℒ¾¿~i. i. d. N(0,1). 
(v) � = 1. 
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Appendix E. Estimation with an alternative instrument 

A natural test of robustness is to use an alternative instrument. In Table E.1, we replicate the 

estimation approaches presented in Table 6 using a dummy of a state Republican majority as 

an instrumental variable. We expect this dummy variable to influence the divesture decision 

since Republican politicians are reportedly more favorable to electricity restructuring 

(Joskow, 1997). This instrumental variable is also employed by Zhang (2007). The coefficient 

estimated by TSLS-FBVR, which equals -11, is lower but not statistically different from the 

coefficient obtained in our baseline estimation, which equals -7.6. However, standard TSLS 

and TSLS-probit provide very different point estimates in comparison to the results in Table 

6. This further illustrates that TSLS and TSLS-probit are not reliable when the endogenous 

treatment is persistent. FVR appears to be more sensitive to the choice of instrumental 

variable than FBVR. 

 

Table E.1. Estimation output of model (14) when an indicator for state Republican 
majority is used as instrument 

Variable TSLS TSLS-probit FVR FBVR ������� -17.63** 
(6.338) 

-7.567 
(5.380) 

-19.125*** 
(5.540) 

-10.959** 
(4.364) ���� 0.420 

(0.277) 
0.161 

(0.229) 
0.458* 
(0.263) 

0.248 
(0.228) ����� -0.009** 

(0.004) 
-0.010** 
(0.004) 

-0.009** 
(0.004) 

-0.010** 
(0.004) 

Year dummies Yes Yes Yes Yes 

Treatment of obs. where ��=100 
Dum. Var. Dum. Var. Dum. Var. Dum. Var. 

R2 0.40 0.44 0.39 0.43 
No. obs.   1851   1851 1851 1851 

Notes: Dependent variable is UF. UF represents total number of outage hours divided by maximum potential 

generation hours. * p < 0.10, ** p < 0.05, *** p < 0.01. SE in brackets are robust to heteroskedasticity and 

autocorrelation with a Bartlett bandwidth = 2.  
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Appendix F. Spillover  

Results in Section 5 rely on the assumption that untreated units are completely unaffected by 

the treatment of other units. In this section, we evaluate the reasonableness of this assumption. 

Spillover effects, i.e. untreated units are affected by treated units, can occur since information 

can flow across units directly as a result of joint stakeholders, and indirectly through industry 

associations and labor movements. 8 If spillovers are present, we shall under-estimate the 

effect of the treatment. In this section, we base our analysis on the FBVR estimator presented 

in Table 6 using the share of industrial electricity consumption as an instrument. 

 

We present the results in Table F.1. The existence of spillover effects is tested at three 

different levels: (i) for nuclear reactors operated by the same operators (column 1), (ii) for 

nuclear reactors with similar technological characteristics (column 2)9 and (iii) for nuclear 

reactors located in the same state (column 3) or in the same and neighboring states (column 

4). We add the appropriate dummy variables to our base specification for each scenario.  

 

Since none of the coefficients of these dummy variables is found to be significantly different 

from zero, we cannot reject the null hypothesis that there are no spillover effects from 

divested to non-divested reactors. This suggests that divestiture may lead to operational or 

managerial changes that are difficult to transfer to non-divested reactors. It is worth noting 

that this result contrasts with the findings of Craig and Savage (2013) who identify significant 

spillovers for thermal power plants in the U.S. following restructuring. This may be explained 

by nuclear reactors’ complexity and specific regulations that make it difficult to transfer 

experience across reactors. 

 

 

 

                                                 
8 For example, the Institute for Nuclear Power Operation fosters exchange of knowledge and experience across 
nuclear operators. 
9 We define reactor technology classes based on reactor containment type, steam system supplier and design type 
using data for the US Nuclear Regulatory Commission Information Digest 2012–2013. Available at: 
www.nrc.gov/reading-rm/doc-collections/nuregs/staff/sr1350/appa.xls  
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Table F.1. Estimation output of model (14) and spillovers 

 Operational 
Spillovers 

 Technical 
Spillovers 

 Geographic 
Spillovers 

 

Variable (1)  (2)  (3) (4) 

 Mean 
(SE) 

 Mean 
(SE) 

 Mean 
(SE) 

Mean 
(SE) ������� -7.716*** 

(2.266) 
 

-7.189 ** 
(3.280) 

 
-8.368 ** 
(3.958) 

-9.447 
(6.596) ÁE. �E�II. ������� -1.275 

(1.596) 
     

��ℎ. �E�II. �������   
-0.720 
(2.126)    

}��. �E�II. �������      
-0.862 
(2.313) 

-1.834 
(4.700) ���� 0.169  

(0.210) 
 

0.144 
(0.344) 

 
0.200 

(0.253) 
0.259 

(0.361) ����� -0.009** 
(0.003) 

 
-0.010*** 

(0.004) 
 

-0.009** 
(0.004) 

-0.009** 
(0.004) 

Year FE 
 

Yes  Yes  Yes Yes 

Treatment of obs.  
where ��=100 
 

Dum. Var. 
 

 
Dum. Var. 

 
 

Dum. Var. 
 

Dum. Var. 
 

R2 0.435  0.435  0.397 0.434 
No. obs. 1851  1851  1851 1851 

Notes: Column (3) limits geographical spillovers to reactors within the same state, and Column (4) allows 

divested reactors to influence reactors both within the same state and in neighboring states. * p < 0.10, ** p < 

0.05, *** p < 0.01. �� represents total number of outage hours divided by potential generation and is the 

dependent variable. SE are robust to heteroskedasticity and autocorrelation with a Bartlett bandwidth = 2.  

 

 

 

 


