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Abstract

When evaluating policy treatments that are persisiad endogenous, available instrumental
variables often exhibit more variation over timariithe treatment variable. This leads to a
weak instrumental variable problem, resulting imghhibias or uninformative confidence
intervals. We propose two new estimation approadhas strengthen the instrument. We
derive their theoretical properties and show in MoBarlo simulations that they outperform
standard IV-estimators. We use our procedures tona® the effect of public utility
divestiture in the U.S. nuclear energy sector. @sults show that divestiture significantly

increases production efficiency.
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1. Introduction

We consider a situation where analysts have adcepanel observations of a binary
policy variable (treatment) and a dependent vagidpblicy outcome). It is assumed that the
treatment is endogenous and that an instrumentiabla is available. Moreover, in a context
of a policy evaluation, the treatment is sometinpessistent, i.e. once the policy is
implemented it remains in place for several orrathaining periods.Leading examples of
such policies are legal and regulatory changesfrastructure sectors where assets have long
lifetimes. Moreover, typical instruments are basedeconomic shocks and exhibit much
higher variation over time than the treatment \#&& As a result, the instrument becomes
weak and, furthermore, it weakens over time eveenwit is strong on the cross sectional
level. We refer to this phenomenon as the pergigteatment problem. In this paper, we
propose two methods that strengthen the instrutmeekcluding unnecessary variation.

The first method, which we denote as the Forwarda#dan Reduction (FVR) approach,
takes the value of the instrument in the firsttedgoeriod and copies it to all future periods.
This transformation is carried out for each uniexlj a standard Two Stage Least Squares
(TSLS) is performed using the transformed instrumérhe intuition behind the FVR
approach is that variation in the instrumental afale is uninformative in periods after the
implementation of the treatment due to the penscaef the treatment.

The second method, the Forward and Backward Vandeduction (FBVR) approach,

is an extension of the FVR approach. As its nand&ates, the instrument variation is also

! Policy persistence can occur because: 1) it téikes to evaluate a policy change since, for exarmpidicy
shifts obstruct information about true market ctinds (Warren and Wilkening, 2012); 2) it might nog¢
possible to implement another change quickly sim@ket agents may lobby for the protection of sunk
investments (Coate and Morris, 1999); 3) uncernyaittout future gains and losses alters voters’epeeices in
favor of the status quo (Fernandez and Rodrik, 1991

2 Examples and references are provided in Section 2.
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restricted backwards: all instrument values durnpegiods prior to the period when the
treatment is first implemented are set equal tovtiee of the instrument in the last untreated
period. In this way, we only retain the variatidmat triggers a change in the treatment
variable. For both approaches, we prove identificeand derive asymptotic properties.

In Monte Carlo simulations, we study the small gEnproperties of the FVR and FBVR
approaches and compare them to OLS and standar8.TWE construct a data generation
process that allows us to compare the resultsmadadaat different instrument strength, holding
the endogeneity level constant, and vice versa. siimelations build on a discrete choice
framework that has been used earlier by Honoré @@dd Carro (2007). The FVR and
FBVR approaches perform substantially better thath IOLS and TSLS: FVR/FBVR 95%
confidence intervals are up to 70 times smallen thee TSLS empirical standard errors and
the empirical bias is up to 10 times smaller thaam émpirical OLS bias. These results are
robust to choices of instrument distribution, enelogjty level and instrument strength.

In addition to their superior small sample perfance, the FVR and FBVR have various
conceptual and practical advantages. First, they bma applied in a nonlinear panel data
setting, as the crucial idea only relies on theasality of the unobserved idiosyncratic error
term. Second, both approaches are easy to implenmewitive and therefore readily
accessible to practitioners. Third, in comparisorfitst differencing, where only the last
untreated and first treated observations are usedbservations are ignored. We demonstrate
the importance of the last point in a simulaticumgt

Lastly, we use the FVR/FBVR approaches to evalubee effect of public utility
divestiture on nuclear reactor production availgbiin the U.S. To the best of our

knowledge, this is the first empirical study thaltés both the persistence and endogeneity of



the treatment into consideration. We find that diitare of U.S. nuclear reactors causes a
significant increase in their production availdyilby at least 7%.

Section 2 formally describes the problem of peesistreatment and relates it to the
relevant literature. Section 3 defines the FVR BBYR approaches and explains how they
strengthen a weak instrument in the case of agterditreatment. Section 4 evaluates the
small sample properties of the FVR/FBVR and altéveaestimators that are common in the
literature using Monte Carlo simulations. Sectioagplies the methods to evaluate the effect

of divestiture on U.S. nuclear reactors’ operapegormance. Section 6 concludes.

2. The problem of pergstent treatment

Suppose there are panel observations on a binadpmavariableD;, (treatment) and on
an outcome variabl&;. Indexi indicates the cross sectional unit, whére 1,...,n, and
index t =1,...,T indicates the time period. As motivating exampl®g, might be an
indicator variable for market deregulation or fdataining a college degre&; might be a
measure of firm production efficiency or individuaiages. In many cases, the treatment
variable D;; is potentially endogenous due to unobserved setedf units into (or out of)
treatment. We consider a period-specific instrum&nt for D;;. Using the exogenous
variation of theZ;;, it is often possible to identify the causal effe€ D;; onY;;, see e.g.
Angrist and Krueger (2001). The persistent treatrpesblem arises when the variation of the
instrument over time is much higher than the vammbf the treatment variable. In particular,
the following features lead to a persistent treatnpeoblem:

= The treatment is endogenous,



» The treatment is persistent, i.e. once a unitaatéd, the treatment variable does not

change its value for many, or all, subsequent dsrio

» There is an instrument whose values vary from petogeriod.

These features are common when policies are eealuistruments often vary more than

policy-state variables over time since instruments frequently based on economic shocks.
Examples of such instruments are source-weightetiagge rates (Revenga, 1990, 1992;
Bertrand, 2004) and exposure to oil shocks (RapaadlWinter-Ebner, 2001). As a result,

the greater the number of periods, the weakemteuiment.

To formalize the problem, we assume the standaedi feffects linear model,

Yie = aDy + Xy + Ci + Uy, €Y
whereX;; is al X K dimensional random vector of observed individdaracteristics(; is
unobserved and time-constabt, is the unobserved error term aads the coefficient of
primary interest.

We allow for two types of endogeneity. Firstyr(X;, C;) is not necessary zero. Typical
examples ofC; are firm culture and management quality. Firm watmight be correlated
with observable expenditure for maintenance, whish captured by X;,. Second,
corr(D;, U;;) is not necessarily zerd,;; might capture an anticipation of a tax reduction s
that it correlates with firm performance. Similarlj;; might capture unobserved work effort
exerted by individual that correlates with the intention/effort to obtapecialized education.
Due to the endogeneity of the treatment varialhle ,standard fixed effects (FE) estimator is
potentially biased. Assume further, that therenobservabléM-dimensional random vector
Ly = (Ligr, Litar--» L) that is exogenous and can be used as an instruoretite

endogenous treatment. We wri;, := (D;;, X;;) and Z;; = (X;;,-£;). Furthermore, we



definey; := %thlYit andY¥;; ==Y, — ¥; (and with analogous notation for all other random
variables). The demeaned model is
Y = aﬁit + Xitﬁ + ﬁit; (2)
or, equivalently,
Y, = Witq’ + Uit' 3)
whereg = (a, 8')'. Finally, using matrix notation, model (3) canvagtten as
Y, =W+, 4)
whereY; = (Y1, ¥,,..., ¥i;) and analogously fo; andT;. The standard approach is to use
a pooled TSLS method to estimateThe standard assumptions are:
1: E[U;¢|Zi1, Ziz, -, Zip, C;] = O fort = 1,...,T.
2:rank(E[Z';Z;)) = rank(X1-, E[Z';;Z;]) = L, whereL is the dimension of;;, L = K + M
3:rank(E[Z';;X;]) = rank(X1-, E[Z' ;. X;]) = K.

The important assumptions in this study are assompfl and 3. Assumption 1 states the
strict exogeneity assumption. Assumption 3 is & i@ndition that states that the instrument
and the endogenous regressor are sufficientlyectlat

In this context, persistence of the treatment weyse the following problems. First, it
might lead to a violation of the second rank cdnditlassumption 3). As a result, the causal
effect would not be identified. Intuitively, &#;; andX;; are not related, then variation 4
cannot be used to reveal the causal parameter, withnan infinitely large sample of
observations(Y;, X;, Z;). Second, even if the parameter is identified, iptesce of the
treatment could lead to estimation problems dughéoweak instrument. These problems are
well known in the literature on weak instrumentsaifSLS context (Stock et. al., 2002). In

the just-identified case, the asymptotic variaregatentially very high, implying that the



confidence intervals are uninformative. Moreovig tonfidence intervals may not have the
correct nominal coverage (Staiger and Stock, 199He general literature on weak
instruments has focused mainly on achieving theecorconfidence intervals, starting with
Anderson and Rubin’s pioneering paper in 1949. €indy that considers strengthening the
instrument is Ratkovic and Shirato (2014). Thidgtaonsiders that the instrument is weak
because some agents are not influenced by themmsitit (non-compliers). The authors tackle
the problem by down-weighting those observationsr case, however, the weakness of the
instrument evolves over time due to the persisteridhe treatment and this method is not
applicable.

In the over-identification case with weak instrunsem SLS might be severely biased and
inconsistent, and normal approximations may lead tlhamatic understatement of the width
of confidence intervals, (Staiger and Stock, 1398hn and Hausman, 2003). These problems
can occur in situations that are highly relevargnapirical work, see e.g. Bound et al. (1995).
In such cases, the limited information maximum lllk@od (LIML) is substantially less
biased than the TSLS and can be adapted to prashrdeence intervals with the correct
nominal coverage (Bekker, 1994; Flores-Lagunes,7R0h applications, however, many
instruments might not be available, or, as in thsecof instruments interacting with other
exogenous variables, the information from additionstruments might be so limited that the
confidence intervals remain very wide and highlynformative about the sign of the effect.
The focus of this paper is on the just-identified glightly over-identified) case: we consider
a binary, endogenous treatment variable and aes{ogla few) instrument(s).

A distinctive characteristic of the persistentatreent problem is that the instrument
becomes weak over time. Conditional on treatmesbme period, the variable®d,, and the

instrumentL;; are independent for all> t, Thus, even if the instrument is strong on a cross-
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sectional level, it becomes weak on a panel leuel td the persistence of the treatment. The
higher the number of time periods, the more setleeeproblem. Note that the persistent
treatment problem does not rely on linearity of elo@). Any model possessing the three
features listed above will induce a weak instrunproblem.

Based on these considerations, potential solutesas () transform the instrument to
obtain less variation,iij change the structure of the panel, o) (fedefine the treatment
and/or the model. One possibility for) (s to set the values of the instrument after the
treatment so as to be equal to its value in tls fieated period. One possibility for)(is to
restrict the sample of observations by consideangmaller number of periods. Excluding
observations before and after the treatment foh &agss-sectional unit potentially ensures
the rank condition in the new data set. There everal possibilities foriif). First, it might be
possible to set the research question in a dynaameework by defining a dynamic treatment
effect. Often the effect of a policy reform doeg aocur directly after its implementation but
over a longer period of time. In such casewould be a function of timez(t). Then, the
object of interest could be the treatment effectdagiven period of timeg := a(t,) for a
fixed t,. This kind of dynamic matching estimators has he@posed by Sianesi (2004) and
Fredriksson and Johansson (2008). Typically, tipagers rely on the strong assumption that
dynamic selection is driven solely by unobservabldss assumption is easily violated in
many applications if the data is not rich enoughadidition, inference with these models is
often not possible because the asymptotic theoryery demanding and still not fully
developed, as for example in Fredriksson and Jaloan@008). Second, there is the literature
on dynamic discrete choice models, e.g. Taber (@68 Heckman and Navarro (2007). In
each of finitely many consecutive periods, an agantchoose to take or refuse the treatment.

Identification relies on the (semi-)parametric stune, period-specific exclusion restriction
8



and the so called identification-at-the-limit asqtion, typical in discrete choice models. In
particular, the selection in each period is modeded the reduced form parameters are
identified by conditioning them on the very highlues of the instrument in the preceding
choices, where the treatment is almost always chdsewever, the large support condition is
often not satisfied in applications, for exampleewhthe instrument is discrete or hard to
justify. In addition, due to their complexity, tleespproaches are often not accessible to
practitioners.

In this paper, we approach the problem by reduttiegvariation of the instrument. It is

accessible to practitioners and its asymptotic @riogs are technically easy to analyze.

3. Two ways of reducing instrument variation

In this section we first describe the two approaduoe strengthing the instrument. Next,

we discuss identification and finally, we analylze finite sample and asymptotic properties.

3.1. The FVR approach

The FVR approach consists of two steps. First, itis¢rument is transformed in the
following way. For each cross-sectional unit, tredues of the instrument for all treatment
periods are set equal to the value of the instranmetie first treatment period. In the second
step, TSLS is performed with the transformed imagnt. The simple example in Table 1
illustrates this procedure. The second column d¢ostthe dependent variable, for example
the percentage of operating hours of a nucleataoedaring. The third column contains the
values of the treatment variable, e.g. a dummyatbdeirepresenting market deregulation. The

fourth column contains the instrument, e.g. the lpemnof lobby group members. The last



column contains the values of the transformed umsént. The treatment is received in period
3, and the value of the instrument in this perodapied to all subsequent periods (here only

to period 4) to create the transformed instrument.

Table 1. FVR, data example

Period Y D z Zryr
1 65% 0 14,29t 14,29t
2 64% 0 13,70C 13,70C
3 70% 1 15,487 15,487
4 72% 1 12,001 15,487

The intuition behind this procedure is the follogirOnce the treatment is implemented,
the variation of the instrument becomes uninforueatiThe FVR approach removes this
variation and the instrument becomes stronger.

For a formal definition, we introduce the followiradditional notation. Lef; be the
period at which the ageitis treated for the first times=1,...,n and letT; > 1 for all i. Let
P; = P(T;) denote the randofi X T transformation matrix that is defined in the faliog
way. Its firstT; — 1 columns are equal to the fifBt— 1 columns of thd" x T-identity matrix
Ir. ts T; column has 1 as elementg; for which k > 1 and O elsewhere. The columns
T; + 1, ..., T consist entirely of zeros. For units with> T, we setP; = I. That is, the values
of the instrument in these cases remain uncharig@dsuch units, the values Bf;, W;;, Y;
for t > T and the value df; are not observed. In this cagemight be either finite (censored
T;) or infinite (non-treated). For simplicity, we fog on the first case, that is, we assume that

T; can be at most equal To< . This restriction can easily be relaxed and hamfioence

10



on the main intuition and results. As an examptePfpsuppose thdt = 4 and that for some

i, T; = 3. ThenP; = P;(3) is equal to

cocoRr
cor o
N =)
ococ oo

Multiplication by P(T;) transforms the vector (aq,..,ar)’ into the vector

(a4, - ar,—1,ar,ar, ..., ar,)". Furthermore, define the (deterministic) time-danes matrix

Qr as
Qr = Ir — jrGr'ir) "Hr's
wherej; is aT x 1-vector with all elements equal to 1. Multiplicatiby Q; transforms the
vector(ay, ..., ar)’ into the vecton(la; — T 1Y ar, .., ar =T Y1_ 1 a.).
The forward variation reduction estimation apptoamn now be described in the

following way.

Step 1: Replacet; with £; == P,;. Write Z; == (X;, £;) and let the rows of the matr¥
be denoted b¥;, = (X1, £i1), t =1, ..., T.

Step 2: Estimate the equation

QrY; = QrWiy + Q7 U; (5)

via (pooled) TSLS usin@,Z; as an instrument fa@;W;. The estimator is defined as

-1

e = (B W) (S0 22 (S 20,)| (S W) (S0 20) ™ (51027, (6)

whereY; = Q;Y; and analogously for all other variables.

11



3.2. The FBVR approach

In a similar way to FVR, the FBVR transforms thestmmment and then performs a
standard TSLS estimation with the transformed umsént. The instrument is transformed in
the following way. For all treatment period3;{ = 1), FBVR and FVR are equivalent. For all
periods prior to the treatment, the values of tierument are set equal to the value of the
instrument in the last untreated perigd £ 1). As in the case of FVR, the instrument values
for non-treated units remain unchanged. The da@mple in Table 2 illustrates this
procedure. Thus, the FBVR approach additionallyricts the variation of the instrument
backwards. Intuitively, the periods prior to perid- 1 are considered uninformative. Only
the last untreated and first treated values ofiriteBument are used, as they are the ones that
"trigger"” the treatment. Thus, the FBVR is closediated to a static approach. Note that the
instrument and the treatment are not perfectlyetated. The instrument might have different
patterns for different units. It is transformedfétlow the (potentially endogenous) pattern of

the treatment, but relies on the exogenous valiemd the implementation of the treatment.

Table 2. FBVR, data example

Period Y D Z ZrpyR
1 65% 0 14,29t 13,70C
2 64% 0 13,70C 13,70C
3 70% 1 15,487 15,487
4 72% 1 12,001 15,487

Formally, let the random matri@; have itsT; — 1-th column equal t&,,_, up to the
T; — 1-th row and eventually zero, and fisth column equal to zero up to tlig— 1-th row

and then equal t@y, (all other columns are equal to zero). Then defthe= Q,£; for

12



T, <T and £; == £; for T; > T, and write Z; == (X;,£;). The FBVR estimator is then

defined as

v = (St W7 ) (S 2 ) (S 20)| (S W) (B0 B2) (B0 7)) @)

Remark. There is a subtle but important difference betwten FBVR approach and first
differencing with instruments. In the latter approa only observations that exhibit a
treatment in the observational period can be ualdther observations are excluded. With
the FBVR approach, all observations are used. T jin time of the treatmerft; depends
on the vectorU;, as shown below in a discrete choice context. dfoee, excluding
observations witlf; > T potentially creates endogeneity. We demonstratle svisimulation
that first differencing can in fact produce restittat are severely misleading in an empirically

relevant example.

3.3. Identification
We adopt the following assumptions to achieve idieation:

R1 IE[UL-|ZL-1,ZL-2, Wi, G, Ty = kl]=0fort=1,..,Tandk=1,...,T.

R2 a)rank (E Z~’jl) =rank(XI-1 E[Z it Z]) = L.

R2 byrank (B |2'Z]) = rank (Sl B2 Zl) = L.
R3 a)rank (IE _Z'~"iXi_) = rank(Xf-, E[Z?:'it Xite]) = L.

R3 byrank (E[Z %)) = rank (8], E[Z", %)) = L.
These assumptions are very similar to those us#tkistandard TSLS approach. This is
not surprising as both the FVR and the FBVR apgreacrely on the TSLS estimator.

13



However, we note two important differences. Fiest,both the FVR and FBVR approaches
rely on the potentially endogenous time of treatinigna stronger version of the exclusion
restriction is needed. Assumption R1 is stronganftine strict exogeneity assumption 1 stated
in Section 2. In particular, R1 implies assumptiorit requires that the extra information in
the period the unit was first treated does not Iead violation of the exogeneity of the
instrument. It precludes the possibility that, dtiodal onT;, U;, andZ;, are correlated. The
need for a stronger condition arises due to themally endogenous adjustment of the
instrument.

It is difficult to find lower level conditions tlhamply R1, because the relations between
T; and the elements df; andZ; are highly nonlinear. Nevertheless, we providesesive
direct and indirect simulation evidence that theuagption is not violated in a variety of
empirically relevant cases (see section 4.3). Beiting where the first stage is a discrete
choice, we test assumption R1 under different degref endogeneity and instrument
strength. The data generation process is adopted &stablished studies and is related to
theoretical economic models.

Second, the rank condition R3 is weaker than agam 3. Thus, there is a trade-off

between the strength of the instrument and thelialof the exclusion restriction.

Proposition. Suppose that either assumptions R1, R2 a), R3 a) or R1, R2 b), R3 b) hold. Then

y isidentified.

The proof is provided in Appendix A.

14



3.4. Asymptotic properties
The asymptotic properties of the FVR and FBVR apphes can be derived analogously

to the TSLS approach.

Asymptotic variance. For expositional simplicity, we assume homoscecias of the error
term, E[U;U’;|Z;, C;] = o1y, whereg? is a positive constant ang is the T x T-identity
matrix. In addition, assume th#ét, andZ;, are one-dimensional (no covariates other than the
treatment). Under the respective set of assumptibesasymptotic variances ¢h(Prs.s —

V), Vn@er—v) and Vn(Pegyr—y) are Ui(IE[W'iZi]E[Z'iZi]_lE[Z'iWi] '

oy (E [W'ifi] E[E'ifi]_lE[g'iVVi])—l and of (E [W'iz}] E[Z",Z] E[Z", ~i])_1’
respectively. Due to the persistence of the treatn®{W’;Z;] is much closer to zero in
absolute value than its counterpai{$’ ’ifi] andIE[I/T/’iZ]. Thus, the asymptotic variance of
the standard TSLS approach should be much largeaddition, the asymptotic variance of
the FBVR approach should be smaller than that efRWR approach, as the instrument is
stronger in the former approach. Since the instnim@lues are equal for the non-treated

units in all three approaches, the gains of th&ictisns depend on the number of treated

units. These theoretical predictions are confirfmgthe simulation results in the next section.

Remark: the FBVR approach imposes a restriction on the mawi number of instruments
that can be used. To see this, suppose we have thstrumentsz; = (Z;; ..., Z;r) ,

Vi=Viq...,Vir) andW; = (W; 1 ..., W;r)". Let B, be an arbitrary constant and define

_ Vi,Ti Wi,Ti—l - Vi,Ti— 1 Wi,Ti
1=
Zi,Ti—l Wi,Ti - Zi,Ti Wi,Ti—l

15



and

_ BiZiri—atB2ViT;—1

Bs =

Wir;—1
It holds for the transformed instruments
ﬁ1Z1 + ,82Vz + .Bswi =0.
Although 8; andp; are random variables, for each realizationZfI;, W;) there is a linear
dependence between the three instruments. In aotloeds, cases with more than two
instruments involve a data-induced perfect muliredrity problem. Note that this is not a
real drawback to the FBVR approach, since multipiéruments are only used in IV-models

to enhance their strength and the FBVR achievds ¢tigngth in a different way.

Consistency and Asymptotic normality. Both the FVR and the FBVR estimators are
consistent under assumptions R1-R3. In additiodeumweak moment conditiongn (Pgyr —

y) andvn(Pzgyr — ¥) are asymptotically normally distributed. The pédllow exactly the

same steps as for the TSLS estimator and are tneremitted.

4. Monte Carlo Simulations

In this section, we perform Monte Carlo Simulatidwsinvestigate the small sample

properties of the FVR and FBVR estimators.

4.1. Data Generating Process

Our data generating process builds on previous wstknating dynamic binary choice
models with unobserved heterogeneity (Honoré, 2Qaéro, 2007). It consists of a structural
model (8) and a discrete choice model (9):
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Yie = aDy + Xy + C; + Uy (8)
Dyt = 1{u + 6Dy—1 + v L + pUie + AVye > 0] ()]
The sole exogenous regressoKjs= 5G;; wheregG;; is ani.i.d.random variable drawn

from a continuous uniform distributioti(0,1). C; equals%ZtXit to ensure that unobserved

heterogeneity is correlated witlX;;. The error term of the structural equation is
Uj~i.i.d.N(0,1).

The first term of the discrete choice equatiorms the intercept. Other things equal, its
value influences the share of units that gets eckathe lagged treatment varialidg_, is
included to create persistence in the treatmertitin§& sufficiently high ensures that treated
units remain treated for all subsequent (obseryjods. A strictly exogenous variable
L:~i.i.d.N(0,1) may be used as an instrumental variable for thlegenous treatmemt;;.
The strength ofZ; is controlled by the size of the parameterThe error term of the
structural equatio;; is included to ensure that; is endogenous. The higher the value of
the higher the level of endogeneity. Finalfy,~i.i.d.N(0,1) is a random noise.

The ¢ and thef parameters are set equal to 1. In the next sectencompute the
percentage empirical bias and the 95% confidentervial for the different estimators at
different values ofy andp. To ensure that the level of endogeneity (instmtaestrength)

does not change when the valueyof(p) is modified, the parametet is set equal to

J1—y?% — p?. This allows us to keepar[y.£;; + pU;; + AV;:] equal to 1 when the value of
y or p changes. In our baseline simulation, we generatie for 100 unitsN = 100) over 15
time periods T = 15) in line with our application dataset. We chodse value foru so that

approximately half of the units receive treatmantg the observation period.

17



4.2. Simulation Results

We draw 1000 samples for each of twelve differenpigical settings. Table 3 shows the
percentage empirical bias and the 95% confidentarvial of the simulated coefficient
estimated by five different fixed-effect estimato@GLS, TSLS, TSLS-probit, FVR, and
FBVR.? The level of endogeneity equals 0.4 in panel A of Table 3 and 0.6 in p&heThe
strength of the instrumental variable, capturegr byaries within each panel.

Before looking at the relative performance of fber IV-estimators, we perform some
consistency checks. The bias of the OLS estinigig is higher in panel B (26%) than in
panel A (18%). This is consistent with the factttihe set a lower level of endogeneity in
panel A. As expected, the distribution @f,; does not change as the strength of the
instrument varies. As the level of endogeneity dases and the strength of the instrument
increases, the percentage bias of the four IV-estira declines and their distributions tighten
around the true value of.

In almost every empirical setting, the percentages of@p,r andaggyr is lower than
the percentage bias @frs;s and@rs,s—_propic- IN €very setting@p,r and@ggyg are clearly
more efficient thamtrg,s and@rg;s—propic- IN addition, Table 3 shows thatg,, performs
slightly better thar&tz,; in terms of bias while both estimators are eqenty efficient. All
estimators are relatively inefficient when the iostental variable is relatively wealk €
0.1). However, when the instrumental variable isneahat strongery( = 0.3) the 95%
confidence interval of TSLS is 30 to 70 times larti@n the 95% confidence interval of the
FVR and FVBR. This difference decreases as thengtineof the instrument increases but

remains high even when the instrument is relatigélgng. For instance, the 95% confidence

% TSLS-probit uses the predictions of a probit madehn instrument for the treatment in a TSLS. See
Wooldridge (2002, pp. 623-625) for further details.

18



interval of TSLS is 6 to 10 times larger than tf&®confidence interval of the FVR and
FVBR wheny = 0.6.

In summary, we draw three conclusions based onMmmnte Carlo Simulation results.
First, when an endogenous treatment is highly geensi, standard approaches such as TSLS
and TSLS-probit give uninformative confidence intds, and this is consistent with
theoretical predictions. Second, the FVR and th¥REstimators prove to be substantially
more efficient in a wide range of empirical setingrhird, FVR and FBVR generate
estimates that are substantially less biased th&hdven thatZ is sufficiently related t®.

We perform several robustness checks to verifyseesitivity of our results. First, we
compare the results in Table 3 with a first differiag approach. These results are provided in
Appendix B and it is clear that the first differemg approach gives inferior results. When
observations are endogenously excluded in a fifferdnce approach, the bias is 2 to 30
times greater than when using the FBVR. Secondallegs the instrumental variabl&; to
be drawn from a non-normal distribution. Third, generate samples where the share of units
treated varies from 30% to 90%. Fourth, we genesataples with different numbers of
periods, ranging froni=4 to T=24. When varying the distribution of the instrujesihare of
units treated and number of time periods, the tesare very similar to those presented in
Table 3. Details of how these robustness tests werformed, as well as the results, are

presented in Appendix C.
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Table 3. Simulation results for different valuesof y and p.

Panel A: p=0.4 Panel B: p = 0.6

Estimator % bias LB UB % bias LB UB
Empirical setting: y = 0.1
OLS 17.5 1.0 1.3 26.2 11 1.4
TSLS 347.5 -529.0 538.0 8.9 -52.4 54.5
TSLS-probit 814 -193.8 194.1 40.9 -58.6 61.4
FVR 314.0 -319.0 314.7 18.2 -17.4 19.0
FBVR 68.7 -32.2 355 135 -20.3 22.0
Empirical setting: y = 0.2
OLS 175 1.0 1.3 26.1 11 1.4
TSLS 179.9 -75.1 73.5 91.8 -48.6 52.4
TSLS-probit 1029.4 -661.3 683.9 132.5 -79.5 84.1
FVR 0.5 -9.7 11.7 311 -8.4 9.8
FBVR 50.5 -34.1 35.1 11.3 -5.9 7.7
Empirical setting: y = 0.3
OLS 17.4 1.0 1.3 26.2 11 1.4
TSLS 44.5 -32.9 35.8 9.9 -61.5 63.7
TSLS-probit 105.6 -46.5 50.6 180.4 -144.3 150.0
FVR 11.2 0.0 1.8 15.6 0.0 1.7
FBVR 3.4 -0.2 2.1 8.3 -0.2 2.1
Empirical setting: y = 0.4
OLS 17.6 1.0 1.3 26.3 11 1.4
TSLS 7.2 -24.6 26.7 53.0 -38.3 41.4
TSLS-probit 62.0 -44.9 45.6 171 -24.1 26.5
FVR 9.5 0.3 1.6 14.2 0.2 15
FBVR 3.0 0.3 1.6 4.8 0.3 1.6
Empirical setting: y = 0.5
OLS 175 1.0 1.3 26.4 11 1.4
TSLS 60.2 -24.0 24.8 19.6 -5.4 7.0
TSLS-probit 78.2 -35.9 36.3 194 -4.8 6.4
FVR 9.3 0.4 1.4 14.0 0.4 14
FBVR 2.8 0.5 1.4 4.4 0.5 1.4
Empirical setting: y = 0.6
OoLS 17.6 1.0 13 26.4 11 14
TSLS 6.0 -2.0 3.9 8.1 -3.0 4.9
TSLS-probit 6.0 -1.9 3.8 7.6 -3.5 5.4
FVR 9.3 0.4 1.4 13.8 0.4 1.3
FBVR 2.6 0.6 1.4 3.9 0.6 1.4

Notes.
0] N =100, T = 15, 1000 Monte Carlo replications.

(ii) LB denotes 95% lower bound and UB denotes 95% upmend.

(iii)
(iv)
v)

Li~i.i.d.N(0,1).

a=1.

u = —1.662 to obtain 50% of unit treated.
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4.3. Empirical test of the identifying assumption

In section 3.3, we show that assumption R1 is efufdr identification and that it
guarantees consistent estimation when using the &WRFBVR approaches. Similar to the
standard strict exogeneity assumption, assumptibis Rion-testable in an empirical context
since the error term is unobserved. In this section provide evidence that R1 holds under
(8) and (9).

Note that R1 implies the following assumption:

RY E[Z,Uy| T;=k]=0fort=1,..,T;p=1,..,Tandk = 1,..,T
We generate 100 samples of 1,000 units for 1ogsriThe data generating process is the

same as in previous sections. Weset 0.4, y = 0.4, and u = —1.662. For each, k,p we

calculate the sample averadg®., =niZiEKZitUip and the sample standard deviation
k

Sktp = \/ﬁ_lzie,{(zitum —Pktp)z wheren, is the number of units treated in periéd

Under R1', the statisti®,, = - P";?n_ has a Student{ — 1) distribution. Appendix D
ktp k

reports the number of rejections together with dampeans and variances of the test
statistics for some values ofk,p. For each combination af k,p, we fail to reject R1'.
Thus, in this setting, additional conditioning & fpoint in time of treatment does not lead to

a violation of the exclusion restriction. This is@vel result.
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5. Empirical investigation: the effect of utility divestiture on nuclear

reactor unavailability

In this section, we evaluate the effect of elettiriatility divestiture on nuclear reactors’
unavailability factor in the U.$.Such an ex-post evaluation is valuable to reactor
stakeholders since it gives information about tlfilecé of asset divestiture on reactor
performance. The results can also be used to infashicy-makers about the treatment’s
welfare and environmental effectdlone of the divestiture actions are reversed dutire
sample period we consider and this treatment iefbee persistent.

Economic theory predicts that divestiture increasmmpetition, which improves
economic performance. Green (1996) employs a suppltion equilibrium model and finds
that partial divestiture leads to a reduction ohdlgeight loss. Borenstein and Bushnell
(1999) model the California electricity market afteregulation as a static Cournot market
with a competitive fringe and they find that divese can reduce market power. More
recently, Zhang (2007) explains that restructurefl. Weactors are no longer able to simply
pass on the costs of repair and maintenance pestbrtoring outages, and that this has
increased incentives to reduce outages.

Two studies have previously investigated the ¢ftd@cdivestiture, and closely related
reforms, on nuclear reactor performance in the .UZBang (2007) investigates how the
reactor availability factor is affected by the imed and actual implementation of retail
competition and she relaxes the assumption thatiéiegulatory reform is exogenous. Her

results, based on standard TSLS models, indicateinbreased retail competition increases

* Detailed descriptions of this market transformatiorocess have been presented by several authgrs, e
Delmas and Tokat (2005), Zhang (2007), Davis andffaf (2012), and references therein.

® See Davis and Wolfram (2012) for a quantificatafrthe effects of nuclear reactor divestiture oecticity
prices and C@emissions.
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reactor availability but the coefficient of the eggnous reform variable is never significant.
Davis and Wolfram (2012) focus solely on utilitywestiture and they assume that divestiture
is exogenous. Their OLS results suggest that divestincreases the availability factor by 10
percentage points, and the effect is statisticgitipificant® Thus, these two studies illustrate
two empirical traps: first that the instrument i®ak, and second that the endogeneity

problem is ignored.

5.1. Data

We use a balanced sample with annual data thaggepts all U.S. nuclear reactors from
1994 to 2011. The first utility to divest its asséid so in 1999, and the last one divested in
2007. Of a total 103 U.S. nuclear reactors, 47%eveeibject to divestiture during this time
period. Data is collected from different sourcee Wse annual data about nuclear reactors’
outage duration, location and technical charadtesisrom the IAEA PRIS database. This
includes the state where the reactors are loctitedjear they were first connected to the grid,
and technical characteristics in terms of technplggWR versus BWR), containment
structure, and steam generator type. Data on the gfedivestiture is collected from Davis
and Wolfram (2012).Finally, data about state level political majordtgmes from the US
census bureau.

Table 4 presents descriptive statistics and inftion about relevant variables. The
maximum value ofUF is 100, indicating no production during a wholealyeA closer

examination of the data reveals 20 such obsenationthe subsequent estimations we either

® Studies have also been made on the effect oftitivesin other industries. Soetevent et al. (20d#glyze the
impact of divestiture on Dutch highway gasolindistes and find that divestiture lowers the pricalivested
stations and neighboring stations.

" These data have been cross-checked using thedxEtergy Institute website for divestiture.
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include a dummy variable to control for these obatons or exclude them as a test of
robustness. It should also be emphasized thateasiitimum value for Age is 1, no reactor

has entered the market during the sample period.

Table 4. Descriptive statistics

Variable Description Level O.f No.obs. Mean  Std. Dev. Min Max
aggregation

100-(Actual operating
UF hours / Potential Reactor 1851 12.397 15.132 0 100
operating hours)x100
Equals 1 if the reactor is

, | 3
Divest divested. 0 otherwise Reactor 2369 0.204 0.4023 0 1
Age Age of the reactor (in- gty 1851 23733  8.299 1 43
years)
Share of state level
Ind electricity consumption State 2266 21.770 7.707 4974 48.250
from industrial consumers
Equals 1 if both state
Rep senate and house of State 2266 0299  0.458 0 1

representatives have a
Republican majority

5.2. Modd and main results

Our structural equation uses the reactor unavéthalactor (UF) as dependent variable
and utility divestiture Divest) as an independent variable. We control for reaatge and
include bothdge andAge?. This is because a newly built reactor may haveetcalibrated
to site-specific conditions at the beginning of ife. After the calibration period, the
probability of disruption declines. As the reactmts older, disruptions may increase again
due to greater demand for repairs and maintenaaderther control §) is an indicator that
takes the value 1 whesF=100, i.e. when reactors have not produced anyriiég during a

given year.
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Moreover, we include year fixed effeajs and reactor fixed effects. Year fixed effects
capture all regulatory and economic variationsedefal level. Reactor fixed effects capture
stable conditions, such as technology choices, @alture and geographical characteristics.
This specification is flexible in the sense thallbws analysts to include regressors that are
correlated withd;, such as maintenance costs/procedures that dwennéd by technology,
but that are unobserved in our data.

The equation of interest can then be written as:

UFy = Bol[Divest;] + B1Age; + BrAgef + BsSic + Meve + A + &4, (10)
wherei is the reactort is the year and;; are the random errors. In this modelpest;; is
potentially correlated witke;,. This is becausedivest;, is a function of the state-level
electricity price in yeat (Ando and Palmer, 1998; Delmas and Tokat, 200briFa et al.,
2007; Damsgaard, 2003), but state-level electrigiige in yeart is also a function ot/ F;;
(Zhang, 2007). The reason why a high electriciiggpincreases the likelihood of divestiture
is that it tends to be interpreted as a sign ofketafailure that triggers policy action. The
positive impact ofUF;; on the electricity price in yedris explained by the fact that nuclear
power is a baseload component in the electricityegation mix. More expensive sources of
energy have to be used whenever reactor operatoasdisrupted. A similar type of
simultaneity applies to the nuclear sector’s lolgbgup activity: more intense lobby activity
in yeart reduces regulatory pressure on the industry dnd, increase§'F;;. At the same
time, increased lobby group activity reduces thkelilhood of divestiture. Since both state-
level electricity and lobby group activity are usebved in our data sedivest;; becomes

endogenous.
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In our base specification, we take the share afieskevel electricity consumption by
industrial customers in the previous periddd;_,) as our only instrumental variable. The
choice of instrument is based on the political @roy of the electricity market restructuring
process. In particular, Joskow (1997) stressesipertance of interest groups that supported
electricity market reforms in the U.S. during tf#9@s. At this time, the expectation was that
large industrial consumers would benefit from sggemcompetition and thus more actively
support electricity market restructuring. This mstent is also used by Zhang (2007).

The estimations of (10) using the FVR and FBVRrapphes are compared to the
following alternative approaches: 1) OLS, whichuged by Davis and Wolfram (2012), i.e.
where endogeneity is ignored, 2) TSLS, which idusg Zhang (2007), i.e. where treatment
persistence is ignored, and 3) TSLS-probit, whilso égnores treatment persistence, but is
potentially more efficient than the TSLS.

The main results are presented in Table 5. If ssume that FBVR provides the least
biased estimate, then the OLS estimate appeare ®idghtly upward-biased. This may be
because the nuclear industry’s lobby group actigtynobserved and is negatively related to
Divest;; and positively related td&/F;,. The second noteworthy observation is that the
SE(B,) for the TSLS is about twice as large as for theS-8robit and FVR approaches, and
SE(B,) is about six times as large as for the FBVR apgtodhe SEs of the TSLS, TSLS-
probit and the FVR approaches are so large we tatatistically distinguish the divestiture
effect from zero. The conclusion based on the FBYRhat the divestiture of electricity

utilities reduces the unavailability factor of theclear reactors by 7.6%.
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Table 5. Estimation output of model (10)

Variable OoLS TSLS TSL S-probit FVR FBVR
Divest, -7.143%** 7.095 5.762 -6.771 -7.624%***
(1.452) (13.460) (6.976) (5.594) (2.202)
Age; 0.150 -0.216 -0.182 0.141 0.162
(0.218) (0.419) (0.243) (0.252) (0.210)
Age? -0.010** -0.010** -0.010** -0.010** -0.010**
(0.005) (0.004) (0.004) (0.004) (0.004)
Year dummies Yes Yes Yes Yes Yes
Treatment of obs. where Dum. Var. Dum. Var. Dum. Var. Dum. Var. Dum. Var.
UF=100
R? 0.39 0.37 0.38 0.44 0.44
No. obs. 1851 1851 1851 1851 1851

Notes: Dependent variablels=. UF represents total number of outage hours divideghyimum
potential generation hours. * p < 0.10, ** p < Q.85 p < 0.01. SE in brackets are robust to

heteroskedasticity and autocorrelation with a Bérthandwidth = 2.

Finally, we check the robustness of our empirigadihgs. One first robustness test is to use
an alternative instrumental variable. Thus, we aepind,_, with a dummy variable that
indicates whether the state has a Republican maj&ep;_,). The results are similar to our
base estimation. The coefficient estimated by FBMRjch equals -11, is lower but not
statistically different from the coefficient obtauhin Table 5. The methodology and detailed
results are given in Appendix E.

The results presented so far rely on the assumpltiat untreated units are completely
unaffected by reactors that are treated. As antiaddl test of robustness, we evaluate the
reasonableness of this assumption. A detailed igpiser of the methodology and results is
given in Appendix F. The results indicate that warwt reject the null hypothesis that there

are no spillover effects from the divestiture dietreactors.
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6. Conclusions

Policies are often endogenous and persistent. [€ads to a weak instrumental variable
problem when the values of available instrument{gnge from period to period. In this
paper, we develop two approaches to strengthems#tieiment in this context by removing
unnecessary instrument variation. In the FVR apgrpave first set the values of the
instrument in all treated periods equal to the @altithe instrument in the first treated period.
Next, TSLS is performed with the transformed instemt. In the FBVR approach, the
instrument is also transformed backward by takirginstrumental value in the last untreated
period and copy it to all previous periods.

We theoretically prove identification and deriveymptotic properties. The main
intuition of the approaches does not depend oratitye suggesting that similar techniques
can be used for a variety of models. Moreover, apgproaches could be used to evaluate
structural models.

We also evaluate small sample properties for MiR/FBVR approaches through Monte
Carlo simulations. FVR/FBVR empirical standard esrare up to 70 times smaller than for
TSLS, and FVR/FBVR empirical bias is up to 10 tinsesaller than for OLS. These results
are largely robust to the instrument distributiendogeneity level and instrument strength.

We use the FVR/FBVR approaches to evaluate trextetif the divestiture of nuclear
reactors in the U.S. implemented in the 1990s add02 Studies that have previously
evaluated this policy reform have either ignoredatment endogeneity or produced
uninformative confidence intervals. We find thatvedfititure has reduced the reactor

unavailability factor by approximately 7.6% and #féect is statistically significant.

28



7. References

Akay, A., (2012), Finite-Sample comparison of alive methods for estimating dynamic panel data
models, Journal of Applied Econometrics, Vol. 27¢f). 1189?1204,

Anderson, T.W. and Rubin, H., (1949), Estimationtiof Parameters of a Single Equation in a
Complete System of Stochastic Equations, The Anofaldathematical Statistics, Vol. 20(1), pp. 46-
63.

Ando, AW. and Palmer, K.L., (1998), Getting on timap: the political economy of state-level
electricity restructuring, Discussion Paper 98-1MRResources for the future: Washington.

Angrist, J.D. and Krueger, A.B., (2001), Instrunaniariables and the search for identificationnfro
supply and demand to natural experiments, Joufriat@anomic Perspectives, Vol. 15(4), pp. 69-85.

Bekker, P.A., (1994), Alternative approximations tiee distributions of instrumental variable
estimators, Econometrica, Vol. 62(3), pp. 657-681.

Bertrand, M., (2004), From the invisible handsh&kehe invisible hand? How import competition
changes the employment relationship, Journal obuaEconomics, Vol. 22(4), pp. 723-765.

Borenstein, S. and Bushnell, J. (1999). An Emplirfsaalysis of the Potential for Market Power in
California’s Electricity Industry. The Journal afdustrial Economics, 47 (3): 285-323

Bound, J., Jaeger, D.A. and Baker, R.M., (1995pbRms with Instrumental Variables Estimation
When the Correlation Between the Instruments andeithdogeneous Explanatory Variable is Weak,
Journal of the American Statistical Association].\8®(430), pp. 443-450.

Carro, J. M. (2007), Estimating dynamic panel dhisarete choice models with fixed effects, Journal
of Econometrics, 140 (2): 503-528.

Coate, S. and Morris, S., (1999), Policy persisteranerican Economic Review, Vol. 89, pp. 1327-
1336.

Craig and Savage (2013), Market restructuring, csitipn and the efficiency of electricity
generation: Plant-level evidence from the Uniteatedt 1996 to 2006, The Energy Journal, 34 (1): 1-
30.

Damsgaard, N., (2003), Why deregulation? Economrickpolitics in retail electricity markets, mimeo
Stockholm School of Economics.

Davis, L. and Wolfram, C. (2012), Deregulation, solidation, and efficiency: Evidence from US
nuclear power, American Economic Journal: Appli@domics, 4 (4): 194-225.

Delmas, M. and Tokat, Y., (2005), Deregulation, ggmance structures, and efficiency: the electric
utility sector, Strategic Management journal, \@8, pp. 441-460.

Fabrizio, K.R., Rose,N.L and Wolfram C.D. (2007) BDarkets reduce costs? Assessing the impact of

regulatory restructuring on us electric generatifiiciency, American Economic Review, 97 (4):
1250-1277.

29



Fernandez, R. and Rodrik, D., (1991), Policy pégrise and rent extraction: status quo bias in the
persistence of individual-specific uncertainty. Ainan Economic Review, Vol 81, pp. 1146-1155.

Flores-Lagunes, A., (2007), Finite sample evidesfck/ estimators under weak instruments, Journal
of Applied Econometrics, Vol. 22(3), pp. 677-694.

Fredriksson, P. and Johansson, P., (2008), Dynare&tment Assignment. Journal of Business &
Economic Statistics, 26, pp. 435—-445.

Green, R. (1996), Increasing Competition in thetigi Electricity Spot Market. The Journal of
Industrial Economics, 44 (2): 205-216

Hahn, J. and Hausman, J., (2003), Weak InstrumBidgnosis and Cures in Empirical Econometrics,
The American Economic Review, Papers and Procegdifn). 93(2), pp. 118-125.

Heckman, J.J. and Navarro, S., (2007), Dynamicreiscchoice and dynamic treatment effects,
Journal of Econometrics, Vol. 136, pp. 341-396.

Honoré, B. E. and Tamer, E., (2006), Bounds onrpatars in panel dynamic discrete choice models,
Econometrica, 74 (3): 611-629

Honore, B.E. and Kyriazidou, E., (2000), Panel diitzrete choice models with lagged dependent
variables, Econometrica, Vol. 74, pp. 611-629.

Joskow, P.L. (1997), Restructuring, competition amdulatory reform in the U.S. electricity
sector,Journal of Economic Perspectives, 11 ($+138.

Raphael, S. and Winter-Ebmer, R., (2001), Idemigythe Effect of Unemployment on Crime, Journal
of Law and Economics, Vol. 44(1), pp. 259-283.

Ratkovic, M. and Shiraito, Y., (2014), Strengthenweak instruments by modelling compliance,
mimeo, Princeton University.

Revenga, A., (1990), Essays on labor market adprstrand open economics. PhD dissertation
Harvard University, Economics Department.

Revenga, A., (1992), Exporting jobs? The impadtmgdort competition on employment and wages in
U.S. manufacturing, Quarterly Journal of Economi¢d, 107(1), pp. 255-284.

Sianesi, B. (2004). An Evaluation of the Swediskt&n of Active Labor Market Programs in the
1990s. The Review of Economics and Statistics, )J8@fl. 133—-155.

Soetevent, A.R., Haan, M.A. and Heijnen, P. (20D%).Auctions and Forced Divestitures Increase
Competition? Evidence for Retail Gasoline Mark@&tse Journal of Industrial Economics, 62 (3): 467-
502

Staiger, D. and Stock, J.H., (1997), Instrumentatiable regression with weak instruments,
Econometrica, Vol. 65(3), pp. 557-586.

30



Stock, J.H., Wright, J.H. and Yogo, M., (2002), Airg&y of Weak Instruments and Weak
Identification in Generalized Method of Momentsuriwal of Business & Economic Statistics, Vol.
20(4), pp. 518-529.

Taber, C. R., (2000), Semiparametric identificatamal heterogeneity in discrete choice dynamic
programming models, Journal of Econometrics, 96(2),201-229.

Zhang, F. (2007), Does electricity restructuringk@Evidence from the US nuclear energy industry,
Journal of Industrial Economics, 55 (3): 397-418.

Warren, P.L. and Wilkening, T.S., (2012), Regulatfwg: the role of information in regulatory
persistence, Journal of Economic Behavior & Orgation, Vol. 84, pp. 840-856.

Wooldridge. J.M.. 2002. Econometric analysis ofssreection and panel data. Cambridge. MA: MIT
Press.

31



8. Appendices
Appendix A. Proof of Proposition in Section 3.3.

We provide proof for the case of a single (endogshcovariate and a single instrument. The
generalization to the case of additional covariated multiple instruments follows the same
steps and is omitted. Assume first tfiat T. It holds

E[1{T; = k}Z,U;,| = 0 (A.1)
forallk,l,p €{1,2,...,T}. This follows from

E[1{T; = k}Z,U;p| = E []E [1 {{Ti = k}Z; Uy,

Ti” = YT E[1{t = k} ZilUl-p|Ti = t] P{T, =
t} =0+ E[Z,U;,|T; = k|P{T; = k} = 0.
The last equality holds due to assumption R1 and
E[ZyUp|T; = k] = E[E[ZyUp|Zu, Ti = K]IT; = k] = E[Z4E[U;p|Z, Ti = K]IT; = k].
Due to analogical arguments, it holds that

]E[TiZilUip] = 0 (AZ)
foralll,p €{1,2,..,T}

Identification of FVR: Multiply model (4) byZ~'i to obtain

2'Y, = Z'\Wyy + Z',U,. (A3)
The identification proof follows the same stepghesproof for the standard TSLS model.

We now show thakE [f’iﬁi] = 0. Thek-th element of the vectdi- is equal to

Zu Ty 2 K} + Zig UT; < K} =T 8L, Zyg = T7H(T = T Zig,- (A4)
We now prove that the expectation of the proddi@ny of these four terms witti;, is
equal to zero for any. For the first term, it holds because of (A.3) detausd {T; > k} =
l=x 1{T; = 1}. For the second term, observe thg}, = X[_, 1{T; = [}Z; and 1{T; =
[}1{T; = m} = 0 whenever # m and then analogous argument as for the first egupiies.
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For the third term, observe thaﬁ]lT;'l Zy=YF 1T, =k}¥¥,Z; and hence
E[S7%, Zy Up] = ST, Sk E[U{T; = k}Z,U,] = 0. Finally, E[Z,U,] = 0 and with (A.4)
we obtainE[T (T — T;)Z;r,Z;U;,| = 0. Therefore, all summands in the séfl; have an
expectation of zero. ThuE[f’iUi] = 0. Using assumptions R2 a) and R3 a), we finally
obtain

y = E[I1Z ;W] "E[1Z'¥}], (A5)

with IT == E[Z’ifi]_lE[E'iWi].

Identification of FBVR: The proof follows exactly the same steps as tM& Rpproach.

Observe that thie-th element of} is equal to

v

Zye =7 (T = D Zigoy + (T = (T, = D)Zir,),

where Zy, = 1{T; > k}Z;r,_1 + 1{T; < k}Z;r,. Therefore, showing thatE [f’iﬁi] =0
amounts to showing that

E[1{T; > k}Zip,—1Use| — E[1{T; > k}Zi7, Uit + E[TiZi7,-1Use| — E[TiZi, Uy = 0, (A.6)
which has been established above.

The arguments are analogous wher T. This can be shown by introducingT; > T}

and1{T; < T}. In the first case, all expressions are the same the standard TSLS case, and

the second case is as above.
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Appendix B. Monte Carlo simulations using fir st difference approach

Table B.1. Simulation results with different y and p values

Panel A: p=0.4 Panel B: p = 0.6
Estimator % bias LB UB % bias LB UB
Empirical setting: y = 0.1
oLS 87.4 1.8 2.0 130.0 2.2 2.4
TSLS 61.0 0.6 2.6 71.4 0.9 2.6
TSLS-probit 44.8 -71.8 72.9 174.0 -21.0 26.5
FVR 61.0 0.6 2.6 714 0.9 2.6
FBVR 61.0 0.6 2.6 714 0.9 2.6
Empirical setting: y = 0.2
OoLS 87.3 1.8 2.0 130.1 2.2 2.4
TSLS 57.6 11 2.0 73.1 1.3 2.2
TSLS-probit 68.9 0.2 3.2 101.4 0.4 3.6
FVR 57.6 1.1 2.0 73.1 1.3 2.2
FBVR 57.6 11 2.0 73.1 13 2.2
Empirical setting: y = 0.3
oLS 87.7 1.8 2.0 129.8 2.2 2.4
TSLS 54.3 1.2 1.9 73.5 14 2.1
TSLS-probit 61.2 0.9 2.3 83.5 1.2 25
FVR 54.3 1.2 1.9 73.5 14 2.1
FBVR 54.3 1.2 1.9 73.5 14 2.1
Empirical setting: y = 0.4
OoLS 87.3 1.8 2.0 130.6 2.2 2.4
TSLS 53.7 1.3 1.8 75.4 15 2.0
TSLS-probit 53.8 1.1 2.0 78.3 13 2.2
FVR 53.7 1.3 1.8 75.4 15 2.0
FBVR 53.7 1.3 1.8 75.4 15 2.0
Empirical setting: y = 0.5
oLS 87.4 1.8 2.0 130.2 2.2 2.4
TSLS 51.7 1.3 1.7 74.2 15 2.0
TSLS-probit 49.7 1.2 1.8 72.2 14 2.0
FVR 51.7 1.3 1.7 74.2 15 2.0
FBVR 51.7 1.3 1.7 74.2 15 2.0
Empirical setting: y = 0.6
oLS 87.3 1.8 2.0 130.2 2.2 2.4
TSLS 50.7 1.3 1.7 72.8 15 1.9
TSLS-probit 47.4 1.2 1.7 713 15 2.0
FVR 51.7 1.3 1.7 72.8 15 1.9
FBVR 50.7 1.3 1.7 72.8 15 1.9

Notes.
(i) N =100,T = 15. 1000 Monte Carlo replications.
(i) LB denotes 95% lower bound and UB denotes 95% upmend.
(i) Ljz~i.i.d.N(0,1).
(iv) 4 = —1.662 to obtain 50% of unit treated.
V) a=1.
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Appendix C. Monte Carlo Simulations: robustness checks

To check the robustness of our results, we runsthmilations under different conditions.

Honoré and Kyriazidou (2000) suggest that normaligtributed explanatory variables

produce smaller bias than non-normally distributediables. In Table C.1, we report

simulations whereg;, is drawn from gy2-distribution, which is skewed. Like Akay (2012),
2

we standardize this distribution by calculatilg-%\/);—1 to facilitate comparison with the N(0,1)

distribution. These results are similar to thosewsh in Table 3. The only significant
difference is that the variances of TSLS and TSL&sp are smaller than whefy, is drawn

from a normal distribution.

In our baseline results, the share of treated wytsls 50%. As the share of treated units
reduces, the dataset used for F(V)BR and the datasel for TSLS become more similar.
This is because the transformed instrument is egppb a lower proportion of units. In Table
C.2, we perform simulations in which the sharere&ted units varies from 30% to 90%. We
start at 30% because estimations with TSLS and f8bBit do not converge at lower
shares. Table 8 shows that the efficiency of FVR &BVR does not vary significantly
between 50% and 90%. At 30%, the confidence interofithe FVR and FBVR estimators
are slightly wider, whereas the TSLS and TSLS-grafiiervals are uninformative in all

empirical settings.
As a final robustness test, we run the simulationglifferent numbers of periods, covering

the range fromT=4 to T=24. The results are given in Table C.3. For ewnpirical setting,
FVR and FBVR are substantially more efficient ti&8LS and TSLS-probit.
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Table C.1. Simulation results with different y and p values, y?-distribution

Panel A: p=0.4 Panel B: p = 0.6
Estimator % bias LB UB % bias LB UB
Empirical setting: y=0.1
OoLS 17.3 1.0 1.3 26.0 11 1.4
TSLS 45.4 -82.2 85.1 1027.1 -604.2 626.7
TSLS-probit 164.5 -214.7 2134 360.9 -503.6 512.8
FVR 2135 -98.2 96.0 66.3 -54.6 55.3
FBVR 84.6 -33.5 37.2 4.3 -11.5 135
Empirical setting: y=0.2
OoLS 16.9 1.0 1.3 25.8 11 14
TSLS 81.0 -73.7 74.1 70.8 -39.4 40.0
TSLS-probit 76.8 -63.9 67.4 85.4 -50.8 54.5
FVR 8.5 -1.8 3.7 15.2 -1.2 2.9
FBVR 5.7 -0.9 2.8 9.6 -7.3 9.1
Empirical setting: y = 0.3
oLS 16.2 1.0 13 24.6 11 14
TSLS 11.8 -5.6 7.3 79.0 -55.8 59.4
TSLS-probit 140.2 -89.1 93.9 1.6 -7.1 9.1
FVR 6.6 0.4 15 10.5 0.3 15
FBVR 2.3 0.4 1.6 3.6 0.4 1.6
Empirical setting: y=0.4
oLS 15.3 1.0 1.3 23.0 11 14
TSLS 4.1 -1.4 3.3 9.4 2.1 4.0
TSLS-probit 4.6 -1.2 3.1 8.6 -1.9 3.7
FVR 4.7 0.6 1.3 7.1 0.5 1.3
FBVR 1.2 0.6 1.4 1.7 0.6 1.4
Empirical setting: y=0.5
oLS 141 1.0 13 21.2 1.0 14
TSLS 2.1 -0.5 2.4 3.6 -0.5 2.4
TSLS-probit 1.8 -0.4 2.4 3.1 -0.5 2.4
FVR 3.8 0.7 1.3 5.8 0.6 1.3
FBVR 0.6 0.7 1.3 0.9 0.7 1.3
Empirical setting: y = 0.6
OoLS 125 1.0 1.3 18.9 1.0 14
TSLS 1.3 -0.1 2.1 1.8 -0.2 2.1
TSLS-probit 1.1 -0.1 2.1 15 -0.1 21
FVR 3.8 0.7 1.3 5.0 0.7 1.2
FBVR 0.3 0.7 1.2 0.5 0.8 1.2
1000 Monte Carlo replications. LB denotes 95% lowssund and UB denotes 95% upper bound.
2
Liy~iiod, " 1.
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Table C.2. Smulation results with different shares of units treated

Pand A: p=0.4,y=0.4

Panel B: p=0.6,y = 0.4

Estimator % bias LB UB % bias LB UB
Empirical setting: 30 % treated

oLS 18.5 1.0 14 313 27.4 1.0
TSLS 24.2 -32.0 34.5 8155 -418.8 404.5
TSLS-probit 189.7 -104.1 102.3 206.5 -55.9 53.7
FVR 13.3 -0.2 1.9 20.7 -0.2 1.8
FBVR 115 -0.6 2.3 16.3 -0.4 2.1
Empirical setting: 50 % treated

OoLS 17.6 1.0 1.3 26.4 11 14
TSLS 6.0 -2.0 3.9 8.1 -3.0 4.9
TSLS-probit 6.0 -1.9 3.8 7.6 -3.5 54
FVR 9.3 0.4 14 13.8 0.4 1.3
FBVR 2.6 0.6 14 3.9 0.6 1.4
Empirical setting: 60 % treated

oLS 17.1 1.0 1.3 25.8 11 14
TSLS 39.0 -12.9 14.1 4.8 -13.0 15.1
TSLS-probit 41.1 -13.2 14.4 26.6 -12.8 14.3
FVR 8.7 0.4 15 12.7 0.3 14
FBVR 0.7 0.5 15 1.3 0.5 15
Empirical setting: 75 % treated

OoLS 16.7 1.0 1.3 24.8 11 14
TSLS 9.0 -9.6 11.8 6.6 -6.1 8.0
TSLS-probit 9.5 -9.4 11.6 6.3 -6.1 8.0
FVR 5.9 0.5 14 9.0 0.5 1.4
FBVR 3.8 0.6 14 5.4 0.7 1.4
Empirical setting: 90 % treated

oLS 16.6 1.0 1.3 24.8 11 14
TSLS 88.1 -65.2 69.0 9.9 -2.5 4.3
TSLS-probit 16.4 -6.8 8.5 9.9 -2.4 4.2
FVR 2.2 0.6 14 3.5 0.6 1.3
FBVR 9.3 0.8 1.4 13.3 0.8 14

1000 Monte Carlo replications. LB denotes 95% lowssund and UB denotes 95% upper bound.

L;.~i.i.d. N(0,1). We change the value pfto obtain the desired shares of units treated.
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Table C.3. Smulation resultswith different T.

Panel A: p=0.6,y=0.6 Panel B: p=0.6,y =0.6
Estimator % bias LB UB % bias LB uUB
Empirical setting: T=4
oLS 51.3 0.9 2.1 77.8 1.2 2.3
TSLS 18.0 -34.5 36.1 47.6 -17.6 18.6
TSLS-probit 51.1 -52.6 55.7 63.3 -14.4 151
FVR 295 -2.3 3.7 46.4 -2.7 3.8
FBVR 345 -3.0 4.4 38.5 -9.1 10.3
Empirical setting: T=8
OoLS 28.8 1.0 1.6 43.3 11 1.7
TSLS 17.4 -5.7 8.1 7.6 -5.5 7.3
TSLS-probit 1920.6 -1160.0 1200.4 1.7 -4.0 6.0
FVR 13.0 -0.1 1.8 22.3 -0.2 1.8
FBVR 8.8 -0.1 1.9 15.0 -0.1 1.8
Empirical setting: T=12
oLS 20.8 1.0 14 31.6 11 15
TSLS 4.4 -2.2 4.1 8.0 2.1 4.0
TSLS-probit 5.7 -2.3 4.2 9.3 -2.4 4.3
FVR 11.8 0.3 1.4 18.0 0.3 1.4
FBVR 6.8 0.4 15 9.4 0.4 14
Empirical setting: T=16
oLS 16.5 1.0 1.3 24.1 11 14
TSLS 0.2 -2.7 4.7 14.0 -6.7 9.0
TSLS-probit 1.8 -3.5 55 18.8 -8.7 111
FVR 8.4 0.5 1.3 13.6 0.5 1.3
FBVR 2.2 0.6 1.3 4.2 0.6 1.3
Empirical setting: T=20
oLS 13.6 1.0 1.3 20.4 11 1.3
TSLS 5.7 -1.9 4.0 7.7 -6.3 8.2
TSLS-probit 6.8 -2.0 4.1 14.7 -12.0 13.7
FVR 7.0 0.6 1.2 10.6 0.6 1.2
FBVR 0.6 0.7 1.3 1.0 0.7 1.3
Empirical setting: T=24
oLS 11.8 1.0 1.2 17.8 11 1.3
TSLS 0.5 -6.4 8.4 7.9 -2.2 4.0
TSLS-probit 1.6 -4.6 6.6 7.8 2.1 4.0
FVR 7.0 0.6 1.2 9.6 0.7 1.2
FBVR 0.1 0.8 1.2 0.8 0.8 1.2

1000 Monte Carlo replications. LB denotes 95% lowssund and UB denotes 95% upper bound.
Li~i.i.d. N(0,1). We sefu = —1.662 to obtain 50% of unit treated.
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Appendix D. Test of identifying assumption
TableD.1. Size of the Test Statistics, Number of rejections out of 100 cases

k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 Kl k=11
t=1 p=1 Mean 0.090 0.121  -0.084 0.014 0.129 -0.130 -0.085 -0.133.035 0.017
Variance  0.826 1.136 1.159 1.018 1.195 0.795 0.830 1.347 960.9 0.970
10% 0 0 0 0 0 0 0 0 0 0
p=2 Mean 0.033 0.037 0.045 0.299 -0.038 -0.037 0.074 -0.170.069 -0.025
Variance  1.381 1.142 1.115 0.944 1.144 1.125 1.272 0.991 711.0 1.217
10% 0 0 0 0 0 0 0 0 0 0
p=3 Mean 0.049 0.131 0.083 0.089 0.086 -0.088 0.044 0.121 .08 -0.178
Variance 1,069 1.125 0.941 0.731 1.135 1.397 0.806 1.082 221.0 1.432
10% 0 0 0 0 0 0 0 0 0 0
p=4 Mean -0.114  0.037 0.106  -0.128 0.152 0.057 -0.207 -0.119.038 -0.047
Variance 1,016 1.083 1.110 0.953 1.024 0.762 0.965 1.066 790.9 1.042
10% 0 0 0 0 0 0 0 0 0 0
p=5 Mean -0.006  0.003 0.082 0.113 -0.089 0.023 -0.066 0.1960.166  0.004
Variance  0.803 0.979 0.809 1.052 1.107 0.971 1.160 0.830 751.0 1.324
10% 0 0 0 0 0 0 0 0 0 0
p=6 Mean -0.150 0.045 -0.028 -0.014 -0.154 -0.078 0.050 ®.09 0.032 0.016
Variance  1.249 1.136 0.889 0.980 1121 0.803 1.154 1.161 631.2 1.189
10% 0 0 0 0 0 0 0 0 0 0
p=7 Mean 0.141 -0.031 0.058 -0.058 -0.016 -0.002 -0.068 46.0 -0.045 0.091
Variance  0.779 0.899 1.063 1.244 0.897 1.089 0.882 1.118 101.2 1.063
10% 0 0 0 0 0 0 0 0 0 0
p=8 Mean 0.102 0.022 -0.071 0.149 0.103 -0.043 0.130 -0.078.081 0.097
Variance  0.979 0.921 0.994 0.974 1.049 0.963 0.979 1.037 701.1 1.116
10% 0 0 0 0 0 0 0 0 0 0
p=9 Mean 0.174 0.047 0.125 -0.205 0.000 -0.011 0.085 0.027.02% -0.007
Variance  1.064 1.002 1.012 1.119 0.996 1.216 1.017 1.113 180.9 1.198
10% 0 0 0 0 0 0 0 0 0 0
p=10 Mean -0.057 0.013 -0.037 -0.018 -0.122 -0.077 0.022 ®.07 0.132 0.117
Variance  0.733 0.905 1.093 0.992 1.193 1.028 1.279 0.942 860.7 1.002
10% 0 0 0 0 0 0 0 0 0 0
p=11 Mean 0.073 0.006 -0.063 -0.243 0.162 -0.059 0.023 0.0160.099  0.336
Variance  0.968 1.223 1.052 1.024 0.966 1.008 1.142 1.059 421.0 1.125
10% 0 0 0 0 0 0 0 0 0 0
t=2 p=1 Mean 0.057 -0.130 -0.106 0.149 0.078 0.069 0.081 0.013.04D -0.120
Variance 1,147 1.174 1.058 1.017 0.852 0.966 1.064 1.032 830.7 0.968
10% 0 0 0 0 0 0 0 0 0 0
p=2 Mean 3.023 -0.115 -0.111 -0.208 -0.201 -0.037 -0.212 140. -0.133 -0.159
Variance  1.278 0.821 0.989 1.219 0.989 0.987 0.819 1.293 471.1 1.142
10% 0 0 0 0 0 0 0 0 0 0
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Mean -0.088 -0.009 -0.050 -0.024 0.083 -0.189 -0.048 26.1 -0.041 0.085
Variance  0.811 0.945 1.418 1.272 1.329 1.078 0.946 1.136 291.1 0.900

10% 0 0 0 0 0 0 0 0 0 0
Mean -0.047 -0.131 -0.237 -0.160 0.077 -0.013 0.028 4.01-0.041 -0.015
Variance  1.043 0.950 1.101 1.316 1.453 0.808 0.923  0.948 800.9 1.020
10% 0 0 0 0 0 0 0 0 0 0
Mean 0.136 0.025 -0.073 -0.144 0.101 0.021 -0.016 0.0720.070 -0.019
Variance  1.178 1.078 1.164 1.047 1.006 0.921  0.917 1.024 851.3 1.238
10% 0 0 0 0 0 0 0 0 0 0
Mean -0.066 0.034 0.076 0152 -0.361 0.075 0.036 -0.149.053 0.076
Variance  0.938 0.926 1.009 1.131 1173 1.071 1.147 0.985 791.1 1.280
10% 0 0 0 0 0 0 0 0 0 0
Mean 0.042 0.022 0.083 0.013 0.138 -0.223 -0.059 0.096.1560 0.087
Variance  0.914 0.976  1.147 1.118 1.078 1.023  1.177 0.801 560.9 0.839
10% 0 0 0 0 0 0 0 0 0 0
Mean -0.041 -0.003 -0.014 0.047 0.119 -0.033 -0.199 58.0 -0.090 0.123
Variance 1162  1.045 0939 1.189 1.014 0.942 0.891  1.198 221.0 1.090
10% 0 0 0 0 0 0 0 0 0 0
Mean -0.015 0.002 0.004 -0.205 0.065 0.105 0.068 -0.04D.119 0.284
Variance  1.188  1.134 0.964 1.158 0.957 0.973 0.924 1.063 851.0 1.148
10% 0 0 0 0 0 0 0 0 0 0
Mean 0.130 -0.226 -0.153 -0.135 0.022 -0.060 0.142 0.159.020 -0.016
Variance  1.055 0.887 1.229 1.294 0.754 1.232 1.080 1.066 181.2 1.013
10% 0 0 0 0 0 0 0 0 0 0
Mean 0.041 0.262 0.030 0.145 -0.045 -0.172 -0.049 -0.004€.057 0.156
Variance  0.845 1.076 0.990 1.079 1.258 1.332  1.061  1.224 211.3 1.245
10% 0 0 0 0 0 0 0 0 0 0
Mean -0.088 -0.125 -0.027 0.070 -0.008 -0.074 -0.007 28.0 0.021 -0.056
Variance  0.914 1.192 0926 1.154 1.068 1.122 0.967 1.383 041.1 0.811
10% 0 0 0 0 0 0 0 0 0 0
Mean 0.128 -0.433 -0.079 0.064 -0.098 0.136  0.022 -0.09@®.127 -0.052
Variance 0.859 1.088 1.022 1.338 0.996 1.236 1.144  0.979 68.9 0.998
10% 0 0 0 0 0 0 0 0 0 0
Mean 0.027 2.956 -0.264 -0.323 -0.198 0.024 -0.265 4.09-0.198 -0.238
Variance  0.942 1.167 1.021 0.812 0946 1.190 1.293  0.895 021.1 0.969
10% 0 0 0 0 0 0 0 0 0 0
Mean 0.080 0.037 -0.048 -0.241 -0.012 0.053 -0.064 0.0620.169  0.056
Variance  1.262 0.767 1.109 1.102 1.052 0.762 0.958  0.988 001.0 0.832
10% 0 0 0 0 0 0 0 0 0 0
Mean -0.096 -0.013 0.094 -0.166 -0.072 -0.042 -0.034 50.0 0.110  0.042
Variance  0.897 1.237 1.277 0982 1.061 0.905 1.157 1.051 970.9 1.088
10% 0 0 0 0 0 0 0 0 0 0
Mean -0.018 -0.039 -0.061 0.016 -0.215 -0.104 -0.086 286. 0.052 -0.134
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Variance  0.882 1.161 1.160 0.862 0.954 0.994 0.851 1.042 370.7 0.955
10% 0 0 0 0 0 0 0 0 0 0
p=7 Mean -0.175 -0.130 0.247 -0.025 -0.035 -0.465 -0.080 30.1 0.135 -0.122
Variance 1,162 1.249 0.925 1.270 0.942 0.936 0.967 1.000 710.9 1.247
10% 0 0 0 0 0 0 0 0 0 0
p=8 Mean 0.045 0.016 0.041 -0.138 -0.155 -0.015 -0.190 -».080.110 -0.135
Variance  1.101 1.172 1.189 0.929 1.101 0.850 1.078 1.042 231.0 1.413
10% 0 0 0 0 0 0 0 0 0 0
p=9 Mean -0.130 0.025 -0.056 -0.192 0.064 0.040 0.105 -0.179.054  -0.009
Variance  0.683 1.124 1.193 0.946 0.972 1.001 1.019 0.821 230.9 0.972
10% 0 0 0 0 0 0 0 0 0 0
p=10 Mean -0.029 0.030 -0.068 0.025 0.026 0.098 0.059 0.0490.145 0.104
Variance  0.927 1.421 1.000 0.911 0.999 1.434 0.752 1.178 151.0 0.930
10% 0 0 0 0 0 0 0 0 0 0
p=11 Mean 0.061 -0.083 0.045 0.151 -0.145 -0.061 -0.148 0.019.110 -0.091
Variance  0.888 1.068 0.984 0.896 0.978 1.293 1.122 0.989 97.9 1.315
10% 0 0 0 0 0 0 0 0 0 0
t=4 p=1 Mean 0.084 0.207 0.083 -0.063 -0.114 -0.006  0.190 0.01®.061  -0.159
Variance  1.014 1.127 1.169 0.997 1.109 1.080 0.981 1.097 421.0 0.840
10% 0 0 0 0 0 0 0 0 0 0
p=2 Mean -0.038 -0.160 -0.268 0.026 0.103 0.007 0.196 0.029.055 -0.055
Variance 1,062 1.012 1.304 1.253 1.002 1.281 1.335 1.087 150.8 1.031
10% 0 0 0 0 0 0 0 0 0 0
p=3 Mean -0.004 0.020 -0.067 0.143 0.101 -0.011 0.009 -0.048.104 -0.114
Variance  0.896 0.907 0.943 0.797 1.143 0.986 0.729 1.068 701.1 0.938
10% 0 0 0 0 0 0 0 0 0 0
p=4 Mean 0.090 0.199 2814 -0.137 -0.178 -0.087 -0.101 €©.27-0.099 -0.119
Variance  0.974 0.865 0.725 1.036 1.187 1.051 0.839 0.949 89.9 1.084
10% 0 0 0 0 0 0 0 0 0 0
p=5 Mean 0.084 -0.190 0.027 -0.231 0.068 -0.159 0.039 0.0980.052  0.118
Variance  1.035 0.986 1.513 0.722 1.247 1.033 1.328 1.116 901.1 1.041
10% 0 0 0 0 0 0 0 0 0 0
p=6 Mean 0.144 -0.079 -0.203 -0.023 -0.034 -0.005 0.008 9.210.114 0.014
Variance 1,017 1.096 1.236 1.208 0.926 1.236 0.889 0.997 681.0 1.375
10% 0 0 0 0 0 0 0 0 0 0
p=7 Mean -0.035 -0.064 0.137 -0.010 0.118 -0.205 -0.184 38.0 0.187 -0.021
Variance  0.905 0.831 0.778 1.093 0.990 1.017 1.148 1.123 451.0 1.053
10% 0 0 0 0 0 0 0 0 0 0
p=8 Mean 0.063 0.049 -0.002 -0.001 -0.009 0.074 -0.161 0.099.123 -0.100
Variance 1,051 1.152 1.022 0.997 1.136 0.992 1.231 1.022 811.0 0.887
10% 0 0 0 0 0 0 0 0 0 0
p=9 Mean 0.174 0.098 -0.079 -0.048 -0.119 0.020 0.009 -0.070.158 0.082
Variance  0.937 0.897 1.000 1.086 1.165 0.814 0.939 1.177 711.1 1.290
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10% 0 0 0 0 0 0 0 0 0 0

p=10 Mean -0.018 -0.052 0.117 0.044 -0.036 -0.050 0.076 0.0080.172  0.196
Variance  0.780 0.962 0.957 1.070 1.240 1.034 1.214 1.355 88.9 0.916

10% 0 0 0 0 0 0 0 0 0 0
p=11 Mean 0.078 -0.087 -0.020 0.119 -0.084 -0.030 0.099 £.010.111 -0.005
Variance  0.968 1.164 0980 0923 1.096 0.872 1.146 1.029 720.7 1.356

10% 0 0 0 0 0 0 0 0 0 0
t=5 p=1 Mean 0.121  0.146 0.018 -0.169 0.068 -0.077 -0.002 0.0560.061 -0.054
Variance  1.084 1.120 1.118 0.807 0.906 1.228 1.036  1.243 041.1 1.036

10% 0 0 0 0 0 0 0 0 0 0
p=2 Mean -0.113 0.049 -0.038 -0.043 0.005 -0.126 0.032  0.0850.149 -0.080
Variance  0.777 1.001 1.240 0929 1203 1430 1.035 1.089 011.1 1.014

10% 0 0 0 0 0 0 0 0 0 0

p=3 Mean 0.128 0.210 0.014 -0.344 -0.152 0.021  0.060 0.013.020 0.047
Variance 0.889  1.110 1.139 0910 1.219 1.065 1.202  0.970 58.9 1.144

10% 0 0 0 0 0 0 0 0 0 0

p=4 Mean -0.180 -0.004 0.122 -0.325 0.066 -0.059 0.081 ©.000.140 0.093
Variance  1.226  0.905 1.152 1.257 1.040 1.197 1.075 0.974 860.8 0.981

10% 0 0 0 0 0 0 0 0 0 0
p=5 Mean 0.040 -0.058 0.009 2589 -0.304 -0.352 -0.186 ®.27-0.019 -0.087
Variance  1.209 1.219 1515 0.791 0.793 0.836 0.801 1.012 091.2 1.128

10% 0 0 0 0 0 0 0 0 0 0

p=6 Mean 0.042 0.042 0.049 0.141 -0.239 0.041 0.075 0.073.050 0.126
Variance  1.227 1.140 1.038 1.006 0.965 1.278 1.007 0.874 021.0 0.998

10% 0 0 0 0 0 0 0 0 0 0

p=7 Mean -0.211 0.080 0.155 0.072 0.013 0.002 0.085 0.109 0560. 0.158
Variance  1.422 0.900 1.066 1.090 0.859 0.961 1.262  0.763 201.0 0.933

10% 0 0 0 0 0 0 0 0 0 0
p=8 Mean 0.023 -0.056 -0.074 0.041 0.009 -0.010 -0.350 ®.17-0.028 -0.063
Variance  0.914 1.181 1.171 1145 1113 1172 1.225 1.027 921.0 0.986

10% 0 0 0 0 0 0 0 0 0 0

p=9 Mean -0.011  0.113 -0.110 0.096 -0.014 0.007 0.033 -0.250.125 -0.177
Variance  1.050 0.986 1.327 1.157 0930 1.051 1.176  1.280 301.0 0.971

10% 0 0 0 0 0 0 0 0 0 0
p=10 Mean 0.081  0.040 -0.092 -0.037 -0.202 0.134 -0.098 ®.12-0.062 -0.140
Variance 1.605 0.986 1.173 1.180 1.166 1.194 0.930 1.068 270.9 1.182

10% 0 0 0 0 0 0 0 0 0 0

p=11 Mean -0.031 0.038 0.064 -0.171 -0.037 0.175 0.093 0.0190.020 -0.239
Variance  1.028 1.295 0.920 0987 1.014 0.827 0.949 0.962 020.9 1.304

10% 0 0 0 0 0 0 0 0 0 0

t=6 p=1 Mean -0.065 -0.061 0.131 0.098 -0.077 -0.009 0.030 0.069.022 -0.023
Variance  0.990 0.899 1.062 1.178 0931 0.910 0.931 1.131 181.1 0.828

10% 0 0 0 0 0 0 0 0 0 0
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p=2 Mean 0.000 -0.018 0.094 -0.010 -0.132 -0.015 -0.079 58.0 0.087 0.118
Variance  0.909 0.968 0.987 0973 0.835 0.871 0.941  0.939 231.1 1.020
10% 0 0 0 0 0 0 0 0 0 0
p=3 Mean 0.054 0.181 -0.145 0.083 -0.091 0.000 -0.105 0.1690.015 0.086
Variance 0.859 1.062 1.249 0997 1.362 1.113 1.134 1.052 010.8 1.056
10% 0 0 0 0 0 0 0 0 0 0
p=4 Mean 0.052 0.177 -0.007 -0.028 -0.117 0.067 0.188  0.0810.020  0.143
Variance 1.085 0.882 1.095 1.160 0.855 1.001 0.964 1.328 630.9 0.891
10% 0 0 0 0 0 0 0 0 0 0
p=5 Mean 0.199 0.052 0.053 -0.045 -0.098 0.064 0.133 -0.009.075 -0.131
Variance 1.269 1.154 1.095 1.075 1438 1.204 1.229 0.915 650.9 1.257
10% 0 0 0 0 0 0 0 0 0 0
p=6 Mean -0.060 0.023 0.093 -0.021 2.660 -0.182 -0.178 -®.08-0.151 -0.089
Variance  0.966  1.250 1.024 0.739 0.700 0.984 1.031  1.059 351.2 0.915
10% 0 0 0 0 0 0 0 0 0 0
p=7 Mean 0.033 -0.040 0.173 0.010 0.106 -0.126 0.077 0.050.1640 -0.003
Variance 0.931 0.918 1.267 1.078 1.083 1.171 0.800 1.044 501.1 1.211
10% 0 0 0 0 0 0 0 0 0 0
p=8 Mean -0.058 0.056 -0.112 0.179 -0.142 0.013 -0.125 0.0080.011 -0.041
Variance  0.931 0.845 0.989 0987 0.843 1454 1.048 1.232 101.2 0.890
10% 0 0 0 0 0 0 0 0 0 0
p=9 Mean -0.056 -0.031 0.203 0.089 -0.085 0.146 0.135 -0.065.035 -0.100
Variance 0.874 0.939 0917 0978 1.084 1164 0.897 0.975 361.0 1.146
10% 0 0 0 0 0 0 0 0 0 0
p=10 Mean 0.074 -0.186 -0.112 -0.004 -0.006 0.058 -0.085 8B®.0 -0.030 -0.036
Variance  1.053 0.660 1.159 0925 1123 1.267 1.006 0.867 320.8 0.939
10% 0 0 0 0 0 0 0 0 0 0
p=11 Mean 0.015 -0.146 0.107 -0.029 -0.098 0.200 0.201  0.03€.157 -0.225
Variance  0.754 1.209 0960 0.859 1.028 0.963  1.099 0.929 171.1 0.952
10% 0 0 0 0 0 0 0 0 0 0
p=1 Mean -0.102 -0.162 -0.089 0.093 -0.130 -0.061 -0.038 03D. 0.223 -0.027
Variance  1.284 0.948 1.205 1.208 1.024 1.013 0.944  1.037 461.2 1.070
10% 0 0 0 0 0 0 0 0 0 0
p=2 Mean 0.005 0.099 -0.174 0.032 0.062 -0.173 0.133  -0.006.341 -0.135
Variance  1.234 0.693 0.897 1.025 0960 1.169 1.063 0.855 861.1 1.486
10% 0 0 0 0 0 0 0 0 0 0
p=3 Mean 0.116 -0.017 0.041 0.063 0.022 -0.168 0.186 0.024.05D 0.125
Variance  0.904 1.303 0.834 1.140 1170 1.168 1.043  1.122 330.8 0.988
10% 0 0 0 0 0 0 0 0 0 0
p=4 Mean 0.121 -0.117 0.002 0.034 -0.198 -0.240 -0.061 0.148.007 -0.103
Variance  0.936  1.057 0.949 1.082 1224 1108 0.922 1.020 060.9 1.287
10% 0 0 0 0 0 0 0 0 0 0
p=5 Mean -0.017 -0.062 -0.080 0.016 0.038 -0.150 -0.017 5D.0 0.122  0.041
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Variance  1.185 1.037 1.007 1.079 1.003 0.984 1.191 0.871 760.9 1.041
10% 0 0 0 0 0 0 0 0 0 0
p=6 Mean 0.205 -0.061 -0.043 -0.022 0.124 -0.139 -0.019 59.0 -0.093 -0.103
Variance  0.563 0.923 1.117 0.946 1.151 1.140 1.118 1.038 441.0 0.937
10% 0 0 0 0 0 0 0 0 0 0
p=7 Mean 0.236 0.135 0.052 -0.021 -0.080 2.715 -0.132 0.1340.172 -0.213
Variance  0.962 1.217 0.928 0.921 0.907 0.913 1.063 1.267 550.9 1.129
10% 0 0 0 0 0 0 0 0 0 0
p=8 Mean 0.066 0.045 -0.198 -0.018 -0.165 -0.062 -0.174 &.010.143 -0.062
Variance  0.949 1.012 1.158 1.224 0.916 1.076 1.047 1.007 521.0 1.093
10% 0 0 0 0 0 0 0 0 0 0
p=9 Mean 0.081 -0.013 0.027 -0.147 -0.084 -0.188 0.098 4€.350.158 -0.026
Variance  1.148 1.220 0.782 1.267 0.727 1.160 1.057 0.991 781.1 1.015
10% 0 0 0 0 0 0 0 0 0 0
p=10 Mean -0.084 0.016 -0.023 0.040 0.088 0.000 -0.100 -0.099.273  0.026
Variance 1,094 0.890 1.058 0.815 0.787 0.986 1.096 1.137 020.9 0.986
10% 0 0 0 0 0 0 0 0 0 0
p=11 Mean -0.003 -0.082 0.105 -0.036 -0.167 0.075 -0.200 @®.04 0.007 -0.229
Variance  1.184 1.083 1.333 1.077 1.249 1.087 0.907 1.041 881.0 0.884
10% 0 0 0 0 0 0 0 0 0 0
p=1 Mean -0.154 -0.035 -0.136 -0.158 0.093 0.075 0.029 ®.11-0.164 -0.064
Variance  0.838 0.997 0.989 1.112 1.176 1.050 1.040 0.996 901.0 0.885
10% 0 0 0 0 0 0 0 0 0 0
p=2 Mean 0.026 -0.066 -0.026 -0.113 0.021 -0.099 -0.210 4P.1 -0.012 0.046
Variance  1.111 0.812 0.906 0.800 0.868 0.974 0.968 1.062 181.0 1.110
10% 0 0 0 0 0 0 0 0 0 0
p=3 Mean -0.039 -0.0v8 -0.086 -0.001 -0.026 0.067 -0.108 1©0.0 -0.029 -0.071
Variance  1.401 1.087 0.964 0.918 1.055 1.097 1.180 0.895 161.1 0.906
10% 0 0 0 0 0 0 0 0 0 0
p=4 Mean -0.089  0.076 0.058 -0.099 0.133 0.227 0.085 -0.178.042 -0.055
Variance  0.888 1.034 0.922 1.318 1.089 1.469 1.115 0.833 231.1 1.047
10% 0 0 0 0 0 0 0 0 0 0
p=5 Mean 0.290 -0.042 -0.077 0.077 -0.028 -0.124 -0.268 49.1 0.016 -0.096
Variance  1.114 1.120 1.033 1.035 1.100 1.359 1.019 0.980 751.0 0.991
10% 0 0 0 0 0 0 0 0 0 0
p=6 Mean -0.077 0.156  -0.028 -0.045 0.105 0.033 -0.123 0.0060.099 -0.001
Variance  1.100 0.856 0.955 0.945 0.844 1.096 1.144 0.877 121.3 1.180
10% 0 0 0 0 0 0 0 0 0 0
p=7 Mean -0.090 -0.056 -0.113 -0.027 0.177 0.268 -0.090 8.0 0.145 -0.024
Variance 1,037 1.060 1.086 1.152 1.061 1.082 1.071 1.291 501.1 0.910
10% 0 0 0 0 0 0 0 0 0 0
p=8 Mean -0.024 0.150 -0.177 -0.020 0.133 0.253 2.559 -0.128.222  -0.039
Variance  1.015 0.931 0.994 0.885 1.007 1.115 1.189 0.857 100.8 0.818
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10% 0 0 0 0 0 0 0 0 0 0
p=9 Mean -0.069 -0.037 0.042 -0.004 0.016 -0.071 -0.067 4.2 -0.057 -0.070
Variance  0.958  1.008 0.914 0924 1196 0.996 0.934 0.983 261.2 1.144

10% 0 0 0 0 0 0 0 0 0 0

p=10 Mean 0.109 -0.060 0.024 -0.114 -0.017 0.022 -0.153 0.0640.139  0.096
Variance 0.871 0.986 0.707 1.081 0.977 1.065 0.989  0.820 310.9 1.023

10% 0 0 0 0 0 0 0 0 0 0

p=11 Mean 0.069 -0.133 0.003 0.118 0.140 -0.099 -0.167 -0.009.030 -0.177
Variance  1.016  1.022  1.147 1235 0956 1.184 1.213  0.944 571.6 1.209

10% 0 0 0 0 0 0 0 0 0 0

t=9 p=1 Mean -0.118 -0.016 0.063 0.096 0.060 -0.004 -0.027 0.0850.025 0.243
Variance  1.388 0.968 1.097 0974 1119 0.927 0.930 0.994 311.0 0.954

10% 0 0 0 0 0 0 0 0 0 0

p=2 Mean -0.166 -0.149 0.180 0.204 0.102 0.132 -0.151 -0.210.018 0.083
Variance  1.135 0.878 1.249 1.006 1.092 1.266 1.032  0.965 291.2 0.918

10% 0 0 0 0 0 0 0 0 0 0

p=3 Mean -0.052 0.074 0.075 -0.139 0.071 0.167 0.023 -0.138.172  0.087
Variance 0.989 0.851 1.210 1.025 1.007 1.298  1.409 1.285 491.1 0.936

10% 0 0 0 0 0 0 0 0 0 0

p=4 Mean -0.192 0.118 0.105 -0.059 -0.148 0.021 -0.080 D.140.176  0.041
Variance  1.055 0.891 1.137 0993 0.819 1.174 1.240 0.833 491.0 0.886

10% 0 0 0 0 0 0 0 0 0 0

p=5 Mean -0.071  0.003 -0.015 0.085 -0.008 0.073 0.124 -0.38D.040 -0.098
Variance  1.168  1.143 1.001 1.036 1.079 1.034 1.181  1.103 281.3 0.950

10% 0 0 0 0 0 0 0 0 0 0

p=6 Mean -0.134  0.140 -0.029 -0.306 -0.068 -0.104 0.076 5.2 0.019 0.048
Variance 0.959 1.156 0.883  1.007 1.059 1.367 0.801  1.169 071.3 1.005

10% 0 0 0 0 0 0 0 0 0 0

p=7 Mean 0.084 0.091 -0.008 0.048 0.055 0.143 0.011 -0.350.13% 0.111
Variance  1.276  1.005 0.901 0.887 1.040 0.987 1.160 1.211 510.9 0.964

10% 0 0 0 0 0 0 0 0 0 0
p=8 Mean 0.071 -0.026 -0.064 -0.147 -0.082 0.051 -0.072 7H.0 -0.095 -0.064
Variance  1.096  1.097 1.021  1.070 1.073 1.122 1.071 1.066 790.9 1.174

10% 0 0 0 0 0 0 0 0 0 0

p=9 Mean -0.064 0.026 0.113 0.049 -0.067 0.028 0.085 2.4690.122 -0.086
Variance  1.035 0.966 1.126 1.316 1.004 1.163  1.112  1.240 101.0 0.907

10% 0 0 0 0 0 0 0 0 0 0

p=10 Mean 0.021 -0.082 0.170 0.158 0.003 -0.168 -0.004 0.1370.184 0.275
Variance  1.110 1.058 1.345 1122 1.075 0.984 1.091 1.204 500.8 1.015

10% 0 0 0 0 0 0 0 0 0 0

p=11 Mean 0.069 0.081 0.053 0.080 -0.011 0.066 -0.064 -0.02@0.062 -0.071
Variance 1.089 0.719 1.213 1.140 0.804 1.235 1.217 1.176 691.0 0.853

10% 0 0 0 0 0 0 0 0 0 0
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t=10 p=1 Mean 0.105 0.173 0.000 -0.032 -0.158 0.044 -0.059 -0.0794€.148 0.024
Variance  1.395 1.108 0.998 1.186 1.061 0.988 1.173 0.783 730.8 1.296
10% 0 0 0 0 0 0 0 0 0 0
p=2 Mean -0.173  0.009 0.144 0.063 -0.046  0.038 0.102 -0.08®.071  0.110
Variance 1,131 1.112 0.963 1.073 1.113 1.043 1.063 1.238 971.0 1.097
10% 0 0 0 0 0 0 0 0 0 0
p=3 Mean 0.074 0.027 0.106 0.063 -0.090 -0.033 -0.002 -0.2090.008 -0.016
Variance 1,013 0.813 0.946 0.919 1.134 1.217 1.080 0.977 331.2 1.287
10% 0 0 0 0 0 0 0 0 0 0
p=4 Mean -0.103 0.113 -0.026 -0.112 0.020 -0.133 0.146 ».03-0.149 0.028
Variance 1,079 1.006 1.156 0.816 0.917 0.926 0.912 1.166 541.1 1.024
10% 0 0 0 0 0 0 0 0 0 0
p=5 Mean -0.044 -0.025 0.031 -0.056 -0.043 0.041 -0.015 5D.1 -0.237 -0.200
Variance 1,011 1.122 1.304 1.052 1.676 1.208 1.073 0.780 381.1 1.021
10% 0 0 0 0 0 0 0 0 0 0
p=6 Mean -0.029 -0.017 0.068 -0.063 -0.034 0.019 0.013 0.0210.137  0.196
Variance  0.883 0.955 1.139 0.857 1.043 0.880 0.881 1.057 321.0 1.387
10% 0 0 0 0 0 0 0 0 0 0
p=7 Mean -0.069 0.028 -0.039 -0.155 0.112 0.053 0.097 0.1180.151 0.174
Variance  1.403 1.163 1.128 1.242 1.226 0.923 0.732 1.050 700.8 0.972
10% 0 0 0 0 0 0 0 0 0 0
p=8 Mean 0.084 0.055 -0.157 0.116 -0.128 -0.021 0.069 -0.088.034 -0.131
Variance 1,181 0.995 0.841 1.041 1.033 0.935 0.804 0.907 890.8 0.980
10% 0 0 0 0 0 0 0 0 0 0
p=9 Mean 0.218 -0.112 -0.102 0.234 -0.100 -0.014 0.064 9©.080.046 0.121
Variance 1,182 0.865 0.755 1.183 1.013 0.906 1.145 0.786 190.6 1.041
10% 0 0 0 0 0 0 0 0 0 0
p=10 Mean 0.158 0.034 -0.098 -0.079 0.161 -0.004 0.080 0.102.478  -0.074
Variance 1,058 1.160 1.011 1.326 1.197 1.188 1.073 1.155 250.9 0.796
10% 0 0 0 0 0 0 0 0 0 0
p=11 Mean 0.007 0.029 0.100 -0.190 0.152 -0.233 0.090 -0.17®.043 -0.327
Variance  0.994 0.809 1.093 0.848 0.975 1.014 0.901 1.106 331.1 1.124
10% 0 0 0 0 0 0 0 0 0 0
t=11 p=1 Mean 0.069 -0.110 0.003 -0.087 0.047 -0.018 0.009 0.0330.020  0.035
Variance 1,115 1.135 1.004 1.060 0.993 0.847 1.343 0.948 450.8 0.898
10% 0 0 0 0 0 0 0 0 0 0
p=2 Mean 0.093 0.087 0.051 0.035 -0.088 -0.020 -0.148 0.07€0.166 -0.344
Variance  0.892 1.247 0.976 1.141 1.078 1.088 0.937 1.125 591.0 1.253
10% 0 0 0 0 0 0 0 0 0 0
p=3 Mean -0.033 -0.082 0.104 -0.026 0.084 -0.008 0.190 0.078.014  -0.133
Variance  0.889 1.116 0.875 0.896 1.020 0.943 1.072 0.950 481.1 1.134
10% 0 0 0 0 0 0 0 0 0 0
p=4 Mean 0.081 0.155 -0.104 0.024 -0.179 0.006 0.046  -0.05D.146  -0.134
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Variance
10%
p=5 Mean
Variance
10%
p=6 Mean
Variance
10%
p=7 Mean
Variance
10%
p=8 Mean
Variance
10%
p=9 Mean
Variance
10%
p=10 Mean
Variance
10%
p=11 Mean
Variance
10%

0.978

0.015
1.143

0.113
1.119

-0.170
0.974

-0.085
0.886

0.017
1.029

0.025
1.098

0.203
1.041
0

1.188

0.024
1.189

0.040
1.031

-0.079
1.261

-0.127
0.963

0.175
1.034

-0.093
0.960

-0.156
1.128
0

0.962

0.002
1.249

0.008
0.851

0.059
1.227

-0.035
1.278

-0.002
1.044

-0.062
0.978

-0.019
0.879
0

1.056

0.091
1.206

0.045
1.215

0.135
1.282

0.063
1.063

-0.139
0.915

0.050
0.978

-0.045
0.928
0

0.994

0.084
1.053

0.087
1.198

-0.043
1.239

-0.165
0.724

0.109
0.926

0.121
0.857

-0.032
1.114
0

1.082

0.002
1.054

-0.161
0.969

0.047
1.031

-0.110
1.264

0.107
1.007

-0.081
1.090

0.008
0.982
0

1.235

0.076
1.209

0.080
1.153

-0.014
1.043

0.004
1.220

-0.025
1.117

0.068
1.140

0.086
0.920
0

1.098 741.0

0 0

0.047 380.0
1.118 931.0

0 0

0.077 036D.
0.974 1011

0 0

0

0.1610.039
0.944 241.0
0

88.0 -0.035

0

0

0.941 1511
0

0.15%0.124

0.881 59.9
0

-0.179.117

0

0

0.881 611.1
0

0.0230.155

1.112 940.9
0

1.160

-0.204
1.134

-0.121
0.944

-0.125
0.873

-0.089
1.190

-0.174
0.881

-0.052
1.280

2.395
1.165
0

Notes.

(i) N =1,000,T =11, 100 replications.

(i) p=0.4,y=0.4.

(iii) We set p = —1.662 to obtain 50% of unit treated.
(iv) Lj~i.i.d.N(0,1).

V) a=1.
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Appendix E. Estimation with an alter native instrument

A natural test of robustness is to use an alteraeatistrument. In Table E.1, we replicate the
estimation approaches presented in Table 6 usthgrany of a state Republican majority as
an instrumental variable. We expect this dummyalde to influence the divesture decision
since Republican politicians are reportedly moreofable to electricity restructuring
(Joskow, 1997). This instrumental variable is @sployed by Zhang (2007). The coefficient
estimated by TSLS-FBVR, which equals -11, is lowet not statistically different from the
coefficient obtained in our baseline estimationjohhequals -7.6. However, standard TSLS
and TSLS-probit provide very different point esttesin comparison to the results in Table
6. This further illustrates that TSLS and TSLS-pr@ve not reliable when the endogenous
treatment is persistent. FVR appears to be morsitsen to the choice of instrumental
variable than FBVR.

Table E.1. Estimation output of model (14) when an indicator for state Republican
majority isused asinstrument

Variable TSLS TSL S-probit FVR FBVR
Divest, -17.63* -7.567 -19.125%** -10.959**
(6.338) (5.380) (5.540) (4.364)
Age; 0.420 0.161 0.458* 0.248
(0.277) (0.229) (0.263) (0.228)
Age} -0.009** -0.010** -0.009** -0.010**
(0.004) (0.004) (0.004) (0.004)
Year dummies Yes Yes Yes Yes
I]r;:jirggnt of obs. where Dum. Var. Dum. Var. Dum. Var. Dum. Var.
R 0.40 0.44 0.39 0.43
No. obs. 1851 1851 1851 1851

Notes: Dependent variable i$+. UF represents total number of outage hours dividednayimum potential
generation hours. * p < 0.10, ** p < 0.05, *** p &01. SE in brackets are robust to heteroskedastcid
autocorrelation with a Bartlett bandwidth = 2.
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Appendix F. Spillover

Results in Section 5 rely on the assumption th&teated units are completely unaffected by
the treatment of other units. In this section, waleate the reasonableness of this assumption.
Spillover effects, i.e. untreated units are affddig treated units, can occur since information
can flow across units directly as a result of jatatkeholders, and indirectly through industry
associations and labor movemeritdf spillovers are present, we shall under-estintat
effect of the treatment. In this section, we baseamalysis on the FBVR estimator presented

in Table 6 using the share of industrial electyicbnsumption as an instrument

We present the results in Table F.1. The existesfcepillover effects is tested at three
different levels: i) for nuclear reactors operated by the same opsréolumn 1), if) for
nuclear reactors with similar technological chagstics (column 2)and {ii) for nuclear
reactors located in the same state (column 3) dnersame and neighboring states (column

4). We add the appropriate dummy variables to aselspecification for each scenario.

Since none of the coefficients of these dummy Wemis found to be significantly different
from zero, we cannot reject the null hypothesig tih@re are no spillover effects from
divested to non-divested reactors. This suggestisdivestiture may lead to operational or
managerial changes that are difficult to transtenon-divested reactors. It is worth noting
that this result contrasts with the findings of iGrand Savage (2013) who identify significant
spillovers for thermal power plants in the U.Sldwaling restructuring. This may be explained
by nuclear reactors’ complexity and specific retiales that make it difficult to transfer

experience across reactors.

8 For example, the Institute for Nuclear Power Opjerafosters exchange of knowledge and experienazsa
nuclear operators.

° We define reactor technology classes based otorezantainment type, steam system supplier anigjdégpe
using data for the US Nuclear Regulatory Commisslaformation Digest 2012-2013. Available at:
www.nrc.gov/reading-rm/doc-collections/nuregs/staff350/appa.xls
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Table F.1. Estimation output of model (14) and spillovers

Operational Technical Geographic
Spillovers Spillovers Spillovers
Variable 1) @) (€) ©)
Mean Mean Mean Mean
(SE) (SE) (SE) (SE)
Divest -7.716%** -7.189 ** -8.368 ** -9.447
tveste (2.266) (3.280) (3.958) (6.596)
Op. Spill. Divest, (-]:!-52565)
Tech. Spill. Divest, (_gzzzg)

R -0.862 -1.834
Geo.Spill. Divest, (2.313) (4.700)
A 0.169 0.144 0.200 0.259

geét (0.210) (0.344) (0.253) (0.361)
Age? -0.009** -0.010*** -0.009** -0.009**

geé (0.003) (0.004) (0.004) (0.004)
Year FE Yes Yes Yes Yes
Treatment of obs.
whereUF=100 Dum. Var. Dum. Var. Dum. Var. Dum. Var.
R® 0.435 0.435 0.397 0.434
No. obs. 1851 1851 1851 1851

Notes: Column (3) limits geographical spillovers reactors within the same state, and Column (4wl
divested reactors to influence reactors both within same state and in neighboring states. * pl€,G* p <
0.05, ** p < 0.01.UF represents total number of outage hours dividegdtgntial generation and is the

dependent variable. SE are robust to heteroskedgstnd autocorrelation with a Bartlett bandwidti2.
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