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Abstract 

Most papers that study the recharging of electric vehicles focus on charging 

the batteries at home and at the work-place. The alternative is for owners to 

exchange the battery at a specially equipped battery switch station (BSS). 

This paper studies strategies for the BSS to buy and sell the electricity 

through the day-ahead market. We determine what the optimal strategies 

would have been for a large fleet of EVs in 2010 and 2011, for the V2G and 

the G2V cases. These give the amount that the BSS should offer to buy or 

sell each hour of the day. Given the size of the fleet, the quantities of 

electricity bought and sold will displace the market equilibrium. Using the 

aggregate offers to buy and the bids to sell on the day-ahead market, we 

compute what the new prices and volumes transacted would be. While 

buying electricity for the G2V case incurs a cost, it is possible to generate 

revenue in the V2G case, if the arrivals of the EVs are evenly spaced during 

the day. We compare the total cost of implementing the strategies proposed 

with the cost of buying the same quantity of electricity from EDF.  

 

Keywords: day-ahead auction market, vehicle-to-grid, grid-to-vehicle 



 2 

Introduction 
 

Over the next 10-15 years most European countries are planning to introduce 

electric vehicles (EV) in order to reduce greenhouse gas emissions and to 

cut pollution levels in urban areas. According to Hacker et al (2009), the 

German government plans to have 1 million EVs by 2020 and 5 million by 

2025; the Irish government aims for 10% of the national fleet to be electric by 

2020 while the Spanish government has committed to having 1 million 

electric or hybrid cars on Spanish roads by 2014. The French grid operator 

has developed two scenarios for the introduction of EVs (RTE, 2009). In the 

reference scenario there will be 1 million EVS in 2020 and 2.7 million in 2025; 

the second scenario is more ambitious: it envisages 3.5 million EVs in 2020 

and 6.7 million in 2025. In both cases the demand for electricity will increase 

considerably. The impact on the system will depend on when the batteries 

are recharged. Schneider et al (2011) studied three scenarios for recharging 

the batteries of one million EVs in the Washington-Baltimore Metropolitan 

Area:  

• unmanaged charging, 

• consumer-price incentivized recharging where price differentials 

in electricity tariffs are designed to dissuade car owners from 

recharging their batteries during peak periods, 

• getting a central network operator (CNO) to coordinate the 

charging of a large number of batteries in response to real-time 

prices. 

They concluded that the third option would lead to lower wholesale electricity 

prices as well as reducing load peaks. So in this paper we only consider the 

case where the charging of the batteries is coordinated.  

Broadly speaking there are two ways of charging batteries: by 

plugging the EVs into a smart plug at the owner’s home or workplace, or by 

exchanging the depleted battery for a fully charged one at a battery switch 

station (BSS). The impact of the first option has been studied by many 

authors including Rousselle (2009) for France, and Hadley and Tsvetkova 

(2009) and Lyon et al (2012) for the USA. In a study sponsored by the 

French grid operator RTE, Rousselle (2009) simulated the recharge times 
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and the state of charge in the battery, in order to estimate the total load 

curve. Her analysis highlighted the impact of unmanaged charging on the 

load curves. She did not study the impact on electricity prices. Hadley & 

Tsvetkova (2009) determined the marginal generation type in 12 regions in 

the USA, and hence the impact on wholesale prices for different recharging 

scenarios.  

A recent study of the economic impact of smart meters by Lyon et al 

(2012) was motivated by a decision by the Colorado Public Utility 

Commission to disallow part of the costs of the “Smart Grid City” project in 

Boulder, Co, on the grounds that the benefits of the smart meters had not 

been adequately established. Using data from two different independent 

system operators, MISO in the Midwest and PJM on the east coast, they 

demonstrated that shifting charging from daytime to off-peak periods could 

lead to billions of dollars of savings. They concluded that while “time-of-use” 

pricing is worthwhile in both systems, the economic benefits of optimal 

charging of EVs did not appear to justify the costs of investing in the smart 

grid infrastructure required to implement real time pricing. To take advantage 

of the “time-of-use” pricing homeowners only need an appliance timer costing 

between $12 and $60 whereas they need a smart meter worth $150 to 

respond to the real-time pricing. 

As the option to recharge batteries at home or at the workplace has 

already been studied thoroughly, this paper focuses on the battery exchange 

option, and uses France to illustrate how the strategies could work. Initially 

we assumed that the BSS operator captured 10% of a fleet of 3 million EVs 

as its clients and that these 300,000 vehicles were recharged twice per week, 

giving 85,700 batteries to recharge per day on average. This corresponds to 

the usage pattern for the second family car in urban areas. But it rapidly 

became clear that the economics of the BSS depends on the number of 

batteries to be recharged per day and the number of spare batteries held by 

the BSS but not on the total number of EVs. For example, if 10,000 taxis sign 

up for a battery exchange contract, they would require an exchange battery 

at the end of each driver’s shift (and possibly another while waiting for a fare 

at the airport). This alone would account for 20,000 to 30,000 batteries per 

day.  
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The number of spare batteries held by the BSS has a marked 

influence on when the batteries are recharged. If the BSS has only a small 

number of batteries, it would be obliged to recharge them as soon as they 

arrive in order to have fully charge batteries available as clients arrive. As this 

would put a strain on the power supply at peak periods, we assume that the 

BSS has enough spare batteries to recharge them in off-peak periods.  

Another important choice for the BSS operator is whether to provide 

power to the grid during peak hours (that is, operate in vehicle-to-grid mode, 

V2G) or just to buy power (that is, grid-to-vehicle G2V mode). The positive 

effects of vehicle-to-grid power transfers (V2G) are well-known: it lowers 

wholesale electricity prices and reduces the load at peak hours (Kempton 

and Tomic, 2005; Denholm and Short, 2006; Tomic and Kempton, 2007; 

Scott et al 2007). So we develop strategies for both the V2G and G2V 

operations. 

In contrast to the PJM area which uses real-time locational marginal 

prices, few countries in Europe currently use nodal pricing, Poland being an 

exception (Sivorski, 2011), even though a recent study (Neuhoff et al, 2011) 

advocated it to reduce congestion. At present the day-ahead auction market 

is the main wholesale electricity market in western European countries. In 

some countries such as Ireland (Finn et al, 2012) and the Iberian Peninsula 

(Tomé Saraiva, 2007; Camus et al, 2011) there is a pool, but in Scandinavia 

and in the Central West Europe market (Benelux, France and Germany) only 

part of the electricity is sold through the organized market.  

To buy/sell through the day-ahead auction market interested parties 

must send firm offers specifying prices and quantities for each 1-hour period 

(30 minutes in Ireland), before 11am or 12 noon on the day prior to delivery. 

The electricity bourse compiles the aggregate curves of bids to buy electricity 

and of offers to sell for each hour and computes the intersection of the two 

curves to determine the market fixing price. This price applies to all buyers 

and sellers provided that the interconnection capacity is sufficient to allow the 

required transfers. Within France, the transmission and distribution grids are 

dense enough so that the same price applies throughout the country. 

 If a BSS were to set up business in France, the management could 

negotiate a contract to buy power directly from the historic utility, EDF, or one 
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of its competitors. Alternatively the BSS could trade through the day-ahead 

market run by the bourse, Epexspot, but in order to trade, it would need a 

strategy for deciding how much to offer for each hour of the day1. This paper 

proposes strategies for buying and selling power through bourse, which have 

been optimized assuming that the management of the BSS aims to maximize 

corporate profits in the long-term by minimizing the operating costs of 

recharging the EVs in the short-term. Finally we compare the cost of using 

these strategies to recharge the batteries of the EVs with the cost of 

purchasing the same quantity of electricity at the price specified by the new 

NOME law2:  40 € in 2011 and 42 € per MWh in 2012.  

This is not the first paper to propose algorithms for charging EVs. 

Taheri et al (2011) developed a demand response service for a fleet of 

around 10,000 PHEVs. They assume that vehicles plug in periodically over a 

given period of time (say 12 hours) and report their driving schedule for the 

next n hours. To ensure that the total amount of electricity supplied to EVs 

stays within limits that are acceptable to utilities they put an hourly cap on 

charging. Earlier on, Han et al (2011) and Wu et al (2011) had constructed 

decision-making algorithms for minimum-cost recharging schedules which 

considered the vehicles individually rather than collectively as a fleet. Ma et 

al (2010) optimised the recharging to fill up the “overnight” valley. But none of 

these papers considered buying and selling via the day-ahead auction 

market. 

The paper is structured is follows. The next section describes the 

methodology used and explains the assumptions that have been made. The 

results are presented in Section 3: firstly, the schedules for recharging the 

batteries; secondly, the cost of carrying out these schedules and thirdly their 

impact on the day-ahead market (i.e. on prices and on the volumes 

transacted). The conclusions follow in Section 4. 

                                                      
1 We assume that the BSS operator is a price-taker who offers to buy/sell a certain quantity 
whatever the price. In the future we plan to work on optimising the price at which the BSS 
offers to buy/sell power. 
2 The French government recently passed the NOME law (short for Nouvelle Organisation 
des Marchés de l’Electricité) which requires the historic utility, EDF, to provide base-load 
electricity from nuclear power plants to new entrants at a regulated tariff (40 € in 2011 and 
42 € per MWh in 2012). This price was designed to cover the full cost of nuclear energy 
including investments, production, decommissioning and the long-term storage of nuclear 
waste, as a benchmark for evaluating the cost of charging the batteries. 
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Research methodology 

The first step when optimising the schedules for recharging batteries is to 

decide what data to use. One possibility would be to use the data over a long 

period of time (e.g. several years). Three factors made us think that this is 

not appropriate. Firstly data from before the creation of the CWE market in 

November 2010 comes from a time when the market structure was different. 

Secondly, the markets are evolving gradually because of the introduction of 

renewable energy. The production mix is changing and so will the strategies 

of buyers and sellers on the bourse. Thirdly, electricity consumption is 

inherently seasonal, with marked differences between summer and winter, as 

well as between the different days of the week. For all these reasons we 

think that more robust strategies can be developed by using a relatively short 

training set that reflects the current market structure and trading practices. 

We chose a moving training set consisting of the aggregated offers to 

buy/sell electricity on the day-ahead auction market during the previous 4 

weeks. As the usage patterns vary from one day of the week to another, 

different strategies are developed for each day of the week and the training 

set consists of same day of the week over the previous four weeks. Public 

holidays are taken into account because electricity consumption is different 

on holidays compared to working days. Care is also required with the day in 

spring when Europe changes over from winter time to summer time and 

again in autumn with the change back to winter time3.  

Market data for the past two years, 2010 and 2011, were used in the 

study. Over the past 5 years several important changes have been made to 

the structure of electricity markets in Western Europe. Firstly in 2007 the 

markets in France, Belgium and the Netherlands were coupled. This means 

that provided the transmission capacity was sufficient, the three countries 

had a common price. In November 2010 the Central Western European 

market was formed by coupling Germany with those three countries. So our 

study covers the period before and after a major structural change in the 

French electricity market. One of our objectives was to see how much the 

                                                      
3 On the Saturday night in March of the change-over to day-light saving, there are only 23 
hours, whereas in autumn there is a day with 25 hours. 
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optimal strategies changed because of the market coupling with Germany, 

and whether there were problems just after the change-over when the 

training set uses data before the market coupling to determine the strategies 

applied afterwards. 

The next point to decide was when the clients were likely to arrive and 

when the batteries would be charged. To simplify the computations we 

assumed that no clients arrive between 10pm and 6am. In G2V mode, the 

batteries are recharged from 10pm until 6am4 and all vehicles must be fully 

charged by 6am when clients start arriving. The G2V strategy gives the 

optimal amount to buy for each of these 8 hours. In V2G mode, all the 

batteries must also be fully charged by 6am but as the BSS can buy or sell at 

any time during the 24 hour period, the optimal strategy gives the amounts to 

buy or sell for each of the 24 hours. In contrast to the G2V case, the arrival 

times during the day have a marked effect on the V2G strategy. Two extreme 

scenarios are considered: (A) all EVs arrive at 6am and (B) the arrival of the 

EVs is spread evenly from 6am until 10pm.  

It is assumed that on arrival batteries contain 10% of the nominal 

charge (24KWh). Secondly due to technical losses between the grid and the 

battery, 5% is lost each time a battery is charged or discharged (Badey, 2012 

p13; Dang et al, 2010). By way of comparison, Lyon et al (2012) considered 

a battery capacity of 16 KWh and a charging efficiency of 88% based on the 

specifications of the 2011 Chevy Volt. Like them we do not take account of 

the wear and tear on batteries due to charging and discharging. 

The key step in the study is to determine the impact of buying or 

selling more power on the day-ahead market. Figure 1 shows a schematic 

representation of the offers to buy and the bids to sell electricity for a given 

hour5. As we have assumed that the BSS operator is a price-taker, an offer to 

buy power would shift the aggregate offers to buy to the right, leading to a 

higher price (Figure 2 left). Figure 2 (right) illustrates the effect of selling 

electricity, which drops the price. 

                                                      
4 The times 10pm and 6am correspond to a cheap tariff proposed by EDF for heating hot 
water systems. 
5 In this figure the minimum price is 0. This was the case before the market coupling with 
Germany. Since then the market has adopted the German convention of having a minimum 
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Figure 1: Aggregate offers to buy and sell electricity during a given hour. The 

intersection of the two curves gives the market fixing price and volume. 

 

 

 

 

 

Figure 2: Aggregate offers. If the BSS wishes to buy power, the aggregate curve of 

offers to purchase would be shifted to right leading to a higher price (left); 

conversely if the BSS wishes to sell power, the aggregate curve of offers to sell 

would be shifted to right, leading to a lower price (right). 

 

Optimisation procedure 

Our objective is to determine the quantities qi of electricity to charge into or 

discharge from the batteries in the ith hour for i=1, …24, to ensure that all the 

batteries are fully charged by 6am the next day. By convention qi is positive 

when the battery is being charged and negative when it is being discharged. 

The quantities to be bought or sold on the bourse depend on the extent of 

losses when charging and discharging the batteries. If the quantity qi is 

charged into the batteries after losing 5% of energy during the charging 

process, then the quantity bought on the bourse was 1.05qi; and conversely if 

qi is discharged from the batteries, then 0.95qi will be available for sale on 

the bourse.  

                                                                                                                                                      
price of -3000 €. It may seem unnatural to sell electricity for a negative price but some 
producers prefer to pay to continue to produce rather than having to stop. 

Price  

Volume  Volume  

Price  

Price  

Volume  
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Having chosen 6am is the reference time when all batteries must be 

fully charged, it is natural to number the hours as shown in Table 1. Hours 

numbered i=1 through to 18 correspond to hours H7 to H24 on the bourse, 

while hours numbered i=19 to 24 correspond to H1 to H6 the next day. 

 

Table 1: Convention for numbering the 24 hours in the day, with i=19, … 24 

being on the next day 

i= 1 2 … 18 19 … 24 
Hour H7 H8 … H24 H1  H6 

 

 

When the BSS sells electricity, the revenue generated is positive; conversely 

when it buys power, it incurs a cost. Let p(qi) be the contribution to the BSS’s 

revenue from charging or discharging the quantity qi in the ith hour on a given 

day. Now we develop the equations for optimising the V2G case. Those for 

the G2V case are very similar except that q1 = 0, q2 = 0 … q18 = 0 and q19 

≥0, q20 ≥ 0  … q24 ≥ 0. In both cases, the objective function6 has to be 

maximised subject to a certain number of constraints: ( )
24

i i

i 1

q p q
=

φ =∑ .  

Let M be the number of spare batteries held by the BSS. Let Nmin be 

the minimum number of batteries to be kept fully charged in case more 

clients than expected arrive on a given day. Let Ai be the number of EVs 

expected to arrive in the ith hour that day. Clearly 
24

i min

i 1

M A N
=

> +∑ . In our 

example, M = 100,000; Nmin = 10,000 and 
24

i

i 1

A 85700
=

=∑ . For simplicity we 

have assumed that the same number of batteries has to be charged each 

day of the week, but the methodology would be exactly the same if it varied. 

 Let k be the capacity of each battery. On arrival batteries still have 

10% residual charge. Since all M batteries must be fully charged at 6am each 

                                                      
6 To simplify the analysis the initial capital expenditure has been considered a sunk cost and 
has not been included in the objective function because it does not influence the optimisation 
of the day-to-day trading strategies. Similarly we ignore the revenue for tariffs paid by users. 
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day, the first constraint concerns the net increase in the charge in the 

batteries: 
24 24

i i

i 1 i 1

q 0.9k A
= =

= ×∑ ∑  

As the charge in the batteries cannot be less than zero or more than 100% of 

the capacity, there are also limits on the quantity that can be physically 

charged into the batteries or discharged from them in any given hour, and 

hence on the quantities that can be bought or sold. For the V2G case, these 

depend on the expected hourly arrivals Ai. During the first hour, A1 EVs are 

expected to arrive. After those batteries have been exchanged and the 

quantity q1 is charged into the batteries, the total charge left in the M 

batteries in the BSS will be 

1 1Mk 0.9A k q− +  

This amount must be greater than Nmin k and less than Mk: 

 ( )
min 1 1

min 1 1

N k Mk 0.9A k q

0 M N 0.9A k q

≤ − +
⇒ ≤ − − +

 

1 1

1 1

Mk 0.9A k q Mk

q 0.9A k

− + ≤
⇒ ≤

 

By the ith hour in the day, a total of (A1+…+Ai) EVs should have arrived. The 

cumulative amount put into the batteries and discharged from the batteries 

will be (q1 +…+qi), so the total charge left in the batteries in the BSS will be 
i i

j j

j 1 j 1

Mk 0.9k A q
= =

− +∑ ∑  

This gives the inequalities 

i i

min i j

j 1 j 1

0 M N 0.9 A k q
= =

 
 ≤ − − +
 
 

∑ ∑  for i =1, … 23 

i i

j j

j 1 j 1

q 0.9k A
= =

≤∑ ∑      for i =1, … 23 

Because all the batteries must be fully charged by 6am, the constraint on the 

24th hour of the day is: 
24 24

i i

i 1 i 1

q 0.9k A
= =

=∑ ∑  
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Summing up, the system to be maximised is: 

( )
24

i i

i 1

q p q
=

φ =∑  

Subject to the constraints 

i i

min i j

j 1 j 1

0 M N 0.9 A k q
= =

 
 ≤ − − +
 
 

∑ ∑  for i=1, … 23 

i i

j j

j 1 j 1

q 0.9k A
= =

≤∑ ∑      for i=1, … 23 

24 24

i i

i 1 i 1

q 0.9k A
= =

=∑ ∑     for i=24 

 

This system was solved using Matlab7 for every day of the year in 

2010 and 2011 for the three cases: the G2V case, the V2G case for scenario 

A when all the EVs arrive at 6am and the V2G case for scenario B when the 

arrivals of the EVs are evenly spread over the 16 hours from 6am until 10pm. 

The revenue generated by implementing this strategy (i.e. the optimal 

revenue that could be generated) was also computed. In addition we  

computed the new market fixing price and the new volume of transactions. 

This procedure gives the strategy that would have been optimal ex 

post; that is, when all the other bids are known but it clearly cannot be 

implemented ex ante. The schedule that we propose to use is the average of  

the optimal strategies for the four days in the training set. We call this the 

realised schedule. The revenue that would actually be generated by applying 

this strategy in practice (i.e. using the actual aggregate curves for that day) is 

also computed. By definition this must be less than or equal to the optimal 

revenue. Finally we computed the average of the four optimal revenues 

corresponding to the four days in the training, to see whether it gave a good 

estimate of how much revenue the realised strategy would generate. We 

refer to it as the estimated revenue. 

 

                                                      
7 The only difficulty was to find a quick way of evaluating the function p(q) without having to 
compute the intersection of the updated aggregate curves to buy and to sell power. This is 
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Results 

The results will be presented in the following order: firstly the optimal and 

realised schedules for recharging the batteries; secondly, the values 

generated by carrying out these schedules and thirdly the impact that 

recharging the batteries would have on the day-ahead market (i.e. on prices 

and on the volumes transacted).  

Optimal and Realised Schedules 

The schedules give the quantity of electricity in MW to buy or sell each hour 

of the day on the day-ahead market. The optimal schedules were averaged 

over periods of 13 weeks in winter and summer 2010 (Figure 3) and in 2011 

(Figure 4). Figures 5 and 6 present the corresponding averages of the 

realised schedules. In each case the solid black line is for the V2G case for 

scenario A (when all EVs arrive at 6am), while the thick black dotted line is 

for the V2G case for scenario B (when the arrivals of EVs are evenly spread 

from 6am until 10pm) and the solid red line is for the G2V case.  

Both the optimal and the realised schedules vary from one day of the 

week to another but the main differences are between the weekend and the 

other five working days. To save space only two typical cases are presented: 

the schedules for 6am Sunday to 6am Monday, and for 6am Tuesday to 6am 

Wednesday. Looking at these figures we see that: 

 

 

                                                                                                                                                      
done by pre-calculating the intersections for a set of 100 evenly spaced points above and 
below the original market fixing and interpolating linearly in between these points. 
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Figure 3: Average of the optimal schedules for the V2G case with scenario A 

where all EVs arrive at 6am (solid black line), for the V2G case with scenario 

B where the arrivals of EVs are evenly spread from 6am until 10pm (thick 

black dotted line) and for the G2V case (solid red line). In each case the 

averages (in MW) were computed over 13 weeks in 2010, in Jan-March 

(above) or July-Sept (below). The upper panel in each set of figures 

corresponds to Sun-Mon; the lower one, to Tues–Wed. 
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Figure 4: Average of the optimal schedules for the V2G case with scenario A 

where all EVs arrive at 6am (solid black line), for the V2G case with scenario 

B where the arrivals of EVs are evenly spread from 6am until 10pm (thick 

black dotted line) and for the G2V case (solid red line). In each case the 

averages (in MW) were computed over 13 weeks in 2011, in Jan-March 

(above) or July-Sept (below). The upper panel in each set of figures 

corresponds to Sun-Mon; the lower one, to Tues–Wed 
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Figure 5: Average of the realised schedules for the V2G case with scenario A 

where all EVs arrive at 6am (solid black line), for the V2G case with scenario 

B where the arrivals of EVs are evenly spread from 6am until 10pm (thick 

black dotted line) and for the G2V case (solid red line). In each case the 

averages (in MW) were computed over 13 weeks in 2010, in Jan to March 

(above) or July- Sept (below). The upper panel in each set of figures 

corresponds to Sun-Mon; the lower one, to Tues-Wed 
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Figure 6: Average of the realised schedules for the V2G case with scenario A 

where all EVs arrive at 6am (solid black line), for the V2G case with scenario B 

where the arrivals of EVs are evenly spread from 6am until 10pm (thick black dotted 

line)and for the G2V case (solid red line). In each case the averages (in MW) were 

computed over 13 weeks in 2011, in Jan to March (above) or July- Sept (below). 

The upper panel in each set of figures corresponds to Sun-Mon; the lower one, to 

Tues-Wed 

• For both V2G cases in winter, the BSS sells power during the noon 

peak period, recharges the batteries during the afternoon when prices are 
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lower, then sells power again during the evening peak period and recharges 

the batteries during the night; in summer, the evening peak price is not as 

high so less power is sold on the market. 

• The recharging schedule for the V2G case scenario A when all the 

EVs arrive at 6am is quite different from scenario B when the arrivals are 

spread evenly from 6am until 10pm. Much more power is bought and sold in 

scenario B. 

• The recharging schedule for the G2V is almost the same as for 

scenario A of the V2G case during the night-time (10pm to 6am). This is why 

the solid red line has almost covered up the solid black line. 

• The optimal schedules are quite similar to the realised schedules, but 

both vary from winter to summer because of different usage patterns 

because electrical heating is widely used in winter in France.  

 

Values generated by carrying out these schedules 

The value generated by implementing these strategies can be either negative 

(i.e. a cost that the BSS must pay) or positive (i.e. revenue for the BSS). 

Three sets of values were computed for each case:  

• the estimated value obtained by averaging the optimal values for the 

days in the training set;  

• the optimal value (obtained by optimising the schedule ex post)  

• the realised value obtained using the proposed schedule and the 

actual information for the day.   

We had expected the estimated value to be a good predictor of the 

future value but this turned out to be incorrect. To illustrate this point, Figure 

7 shows the cross-plot of the estimated value (left) and the realised value 

(right) as a function of the optimal value for the 24 hour period Sunday to 

Monday in 2010. The correlation coefficient in the left panel is -0.37 

compared 0.97 in the right one. That is, there is a strong correlation between 

the realised value and the optimal value, but virtually none between the 

estimated value and the optimal one.  Consequently the estimated value will 

not be considered in the rest of the study. 
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Figure 7: The cross-plots of the estimated value (left) and the realised value (right) 

as a function of the optimal value for the 24 hour period from Sunday to 6am 

Monday morning. As the correlation on the left is -0.37, the estimated value is not a 

good predictor of optimal value or of the realised value. However the optimal and the 

realised values are strongly correlated (0.97) 

 

Next we compare the averages of the optimal and the realised values. 

But before doing this, it is important to note that by definition the optimal 

value is equal to or greater than the realised value. The only way that the 

realised value could be equal to the optimal value would be if the recharging 

schedule obtained from the training set happened to be equal to that by 

optimising the schedule ex post. 

Table 2 gives the averages of the optimal and the realised values for 

the three cases: V2G scenario A, V2G scenario B and G2V, for 2010 and 

2011 if there are no losses when charging and discharging the batteries, 

while Table 3 gives the corresponding values if there are 5% losses. As 

expected, the values for the G2V case are systematically negative (costs). 

The values for the V2G depend on when the EVs arrive. For scenario A, the 

optimal values are positive on Sunday (revenue) but not for the other days of 

the week. For scenario B, the values are systematically positive (revenue). 

This highlights the importance of knowing the arrival times of the EVs.  

Figures 8 and 9 present the optimal value of the three strategies for 

each day of the year in 2010 and 2011. The solid black line corresponds to 
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Scenario A for the V2G case, the dotted black corresponds to Scenario B of 

the V2G case while the solid red line is for the G2V case. In each figure the 

case where there are no losses is in the upper panel, while the lower panels 

corresponds to the case where there are 5% losses. The optimal value for 

G2V case is almost always less than the other two; the optimal value for 

scenario B of the V2G case is almost always higher than the other two. 

 

Table 2: Optimal values (OptVal) and realised values (RVal) for the V2G 

case scenario A (where all EVS arrive at 6am), for the V2G case scenario B 

(where the arrivals of the EVs are evenly spread from 6am until 10pm) and 

for the G2V case, for 2010 and 2011 when there are no losses transferring 

power to and from the batteries. 

 

2010 Sun Mon Tues Wed Thu Fri Sat 

OptValA 9.83 -10.90 -9.60 -13.36 -11.87 -12.19 -1.54 

RValA 3.95 -18.04 -17.58 -19.85 -21.92 -18.20 -7.71 

OptValB 51.00 60.76 75.60 57.91 57.95 50.05 46.01 

RValB 32.37 41.03 53.96 39.00 36.86 33.09 7.94 

OptValG2V -26.81 -32.91 -31.32 -32.39 -31.86 -31.87 -24.43 

RValG2V -27.70 -33.53 -32.24 -33.35 -32.90 -32.71 -25.08 

 

2011 Sun Mon Tues Wed Thu Fri Sat 

OptValA 4.71 -14.70 -16.92 -16.16 -18.63 -16.89 -3.41 

RValA -6.06 -24.91 -23.71 -23.03 -26.40 -24.32 -14.27 

OptValB 34.36 41.06 38.74 44.31 30.05 33.25 33.23 

RValB -3.22 6.41 15.18 22.63 9.53 12.01 1.96 

OptValG2V -27.60 -32.83 -33.66 -31.38 -33.76 -32.77 -25.56 

RValG2V -28.84 -34.03 -34.44 -32.60 -35.12 -33.98 -27.07 
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We had wondered to what extent the creation of the CWE market would 

perturb the strategies since the data from before the change was being used 

afterwards. In particular we had been expecting to see changes in the 

realised values, or a discontinuity in the optimal value. Looking at Figure 8, 

there are no obvious differences toward the end of that year. So the 

strategies are quite stable – even when confronted with a major structural 

change in the market. 

 

Table 3: Optimal values (OptVal) and realised values (RVal) for the V2G 

case scenario A (where all EVS arrive at 6am),  for the V2G case scenario B 

(where the arrivals of the EVs are evenly spread from 6am until 10pm) and 

for the G2V case, for 2010 and 2011 when there is a 5% losses transferring 

power to and from the batteries. 

 

2010 Sun Mon Tues Wed Thu Fri Sat 

OptValA 9.72 -11.07 -9.73 -13.41 -12.09 -12.33 -1.74 

RValA 4.00 -18.27 -17.89 -20.30 -22.23 -18.42 -7.88 

OptValB 51.41 61.54 76.40 58.09 58.39 50.44 46.33 

RValB 33.82 42.29 55.77 40.13 38.60 34.50 27.02 

OptValG2V -26.96 -33.04 -31.45 -32.53 -31.98 -32.02 -24.53 

RValG2V -27.84 -33.69 -32.36 -33.51 -32.98 -32.79 -25.17 

 

2011 Sun Mon Tues Wed Thu Fri Sat 

OptValA 4.58 -14.97 -17.15 -16.33 -19.02 -17.11 -3.66 

RValA -6.30 -24.96 -24.13 -23.48 -26.54 -24.95 -14.55 

OptValB 33.59 41.16 38.56 44.21 29.85 33.48 33.44 

RValB -3.24 6.74 14.86 22.52 9.98 11.64 1.97 

OptValG2V -27.78 -33.03 -33.83 -31.54 -33.97 -32.92 -25.72 

RValG2V -29.06 -34.28 -34.61 -32.81 -35.29 -34.10 -27.20 
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Figure 8: The optimal values are presented for scenario A of the V2G case (solid 

black line), for scenario B of the V2G case (thick black dotted line) and the G2V 

case (solid red line), for the cases where there are no losses (upper panel) and 

when there are 5% losses, for 2010. The optimal value for G2V case is almost 

always less than the other two; the optimal value for scenario B of the V2G case is 

almost always higher than the other two. 
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Figure 9 The optimal values are presented for scenario A of the V2G case (solid 

black line), for scenario B of the V2G case (thick black dotted line) and the G2V 

case (solid red line), for the cases where there are no losses (upper panel) and 

when there are 5% losses, for 2011. The optimal value for G2V case is almost 

always less than the other two; the optimal value for scenario B of the V2G case is 

almost always higher than the other two. 
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Impact of the strategies for recharging the batteries on the day-ahead market 

 

As the strategies were designed to optimise the revenue for the BSS, we 

want to find out what effect this will have on the wholesale electricity market. 

To be more precise, we are interested in their impact on the hourly day-

ahead prices for electricity and on the volumes of transactions.  

The average prices were computed over a 13 week period in winter 

and again in summer, in 2010 and 2011. Figures 10 and 11 show these for 

winter and summer 2010, and winter and summer 2011, respectively.  As 

before the averages are shown for the 24 hour period from 6am Sunday until 

6 am Monday, and from 6 am Tuesday until 6 am Wednesday. Four curves 

are shown in each figure: a solid black line for scenario A for the V2G case, a 

thick black dotted line for scenario B for the V2G case, a solid red line for the 

G2V case and finally a fine black line showing the original prices (that is, the 

observed prices). The red line corresponding to the G2V case is only shown 

from 10pm until 6am because it does not affect prices or volumes during the 

daytime. 

As expected the original prices are higher than those for the two V2G 

cases during the evening peak hour especially in winter. Scenario B in the 

V2G case leads to a greater drop at peak hours and to a correspondingly 

higher price in the early morning off-peak period. In contrast to electricity 

prices which drop during peak hours in the V2G cases, the volumes of 

electricity bought and sold through the auction market rise in both peak hours 

and off peak periods. This is particularly marked for scenario B in the V2G 

case. In the case studied where 300,000 EVs have signed up with the BSS, 

the impact on the market prices and volumes are not very marked. But the 

French government has plans to have 10 times as many EVs on the roads. In 

that case the impact of coordinated changing would lead to a much more 

pronounced drop in peak prices.  
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Figure 10: Average price on the day-ahead market in France:  for scenario A 

of the V2G case (solid black line), for scenario B of the V2G case (thick black 

dotted line), for the G2V case (solid red line) and the original prices (thin 

black line), for a typical weekday and for the weekend, for winter 2010 (upper 

panel) and summer 2010 (lower panel) 
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Figure 11: Average volumes on the day-ahead market in France:  for 

scenario A of the V2G case (solid black line), for scenario B of the V2G case 

(thick black dotted line), for the G2V case (solid red line) and the original 

prices (thin black line), for a typical weekday and for the weekend, for winter 

2010 (upper panel) and summer 2010 (lower panel) 
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Discussion and Conclusions 

Most papers that study the recharging of electric vehicles focus on charging 

the batteries at home and in the work-place. The alternative is for owners to 

exchange the battery at a specially equipped battery switch station (BSS). 

This paper proposes strategies for the BSS to buy and sell the electricity 

through the day-ahead auction market. To do this the BSS would have to 

submit firm offers specifying the amounts of electricity that it is offering to buy 

or sell during each hour of the day, before noon on the day prior to delivery. 

So the management needs a procedure for determining those quantities. 

We determined what the optimal strategies would have been for a 

large fleet of EVs each day in 2010 and 2011, for the V2G and the G2V 

cases. As one of the key factors influencing the optimal strategies for the 

V2G case is the expected arrival time of the EVs, two fairly extreme 

possibilities were considered: firstly an unfavourable case where all the EVs 

arrive first thing in the morning and secondly when their arrivals are spread 

evenly throughout the day. Another factor that was taken into account was 

losses when charging and discharging batteries. Table 4 gives the annual 

revenue in millions of euros from buying and selling on the day-ahead 

market, for the three scenarios considered with and without losses. Positive 

values correspond to revenue while negative ones are costs. These can be 

compared with the amount (27 M euro) that it would cost to buy the same 

quantity of electricity at the benchmark base-load price of 40 € per MWh at 

which the government obliges EDF to sell nuclear power to competitors. 
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Table 4: Annual revenue in millions of euro for the three scenarios considered, with 

and without losses, for 2010 and 2011. Positive values correspond to revenue; 

negative ones, to costs incurred. These should be compared to the benchmark cost 

(-27 M€) at the benchmark base-load price of 40 euro per MWh. 

  

Optimum Value 

2010 No losses %5 Losses 2011 No losses %5 Losses 

V2G A -4.99 M€ -5.10 M€ V2G A -8.24 M€ -8.41 M€ 

V2G B 40.49 M€ 40.15 M€ V2G B 25.67 M€ 25.64 M€ 

G2V -21.28 M € -21.37 M € G2V -21.88 M€ -22.00 M€ 

Realised Value 

2010 No losses %5 Losses 2011 No losses %5 Losses 

V2G A -9.99 M€ -10.16 M€ V2G A -14.35 M€ -14.57 M€ 

V2G B 27.37 M€ 26.39 M€ V2G B 6.48 M€ 6.48 M€ 

G2V -21.87 M€ -21.96 M€ G2V -22.74 M€ -22.86 M€ 

 

Looking at the figures we see firstly that all of the strategies are more 

cost-effective than buying directly from a utility. Secondly, there is little 

difference between the cost of charging the batteries in 2010 and 2011 for 

the G2V case, but the differences are quite marked for both the V2G cases. 

There is a significant difference between the revenue that can be generated 

in the V2G case for scenario B and the cost for scenario A. This highlights 

the importance of having a good understanding of arrival times of the EVs. It 

also suggests that it might be worthwhile proposing advantageous tariffs for 

EV owners who exchange their batteries at certain times in the day. 

As the optimal strategies were found for a reasonably large fleet of 

300,000 EVs, the quantities of electricity bought and sold will displace the 

market equilibrium. Table 5 gives the new average prices for the 8 hour 

period from 10pm to 6am (when batteries are charged in the G2V case) and 

for the rest of the day, and also the average price for the same times in the 

original data. As expected, the night price rose in all three scenarios and the 

V2G prices decreased in the day-time. Much more marked effects could be 

expected with a larger fleet.  
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Table 5: Average prices for electricity, for the three scenarios considered, with and 

without losses, during the times from 6am to 10pm and from 10pm to 6am for 2010 

and 2011. 

 

 H7 to H22  H23 to H6 

2010 No losses %5 Losses 2010 No losses %5 Losses 

V2G A 52.57 52.63 V2G A 37.86 37.90 

V2G B 50.98 51.10 V2G B 41.00 41.19 

G2V NA NA G2V 37.94 37.98 

Original 52.76 NA Original 37.26 NA 

2011 No losses %5 Losses 2011 No losses %5 Losses 

V2G A 54.27 54.34 V2G A 39.12 39.19 

V2G B 52.23 52.40 V2G B 42.84 43.09 

G2V NA NA G2V 39.31 39.38 

Original 54.28 NA Original 38.24 NA 

 

One important feature of the results is the stability of the strategies 

during the last two months of 2010 just after the creation of the CWE market. 

As data from the French market were used to set up the strategy after the 

French and German markets were combined, we had wondered how robust 

the strategies would be. No instabilities were found. We think that this is 

because the basic patterns for electricity consumption remained the same 

despite the structural changes in the market. 

Finally, the implications of this study for policy-making should be 

drawn. As we analysed the results of this study, it occurred to us that BSS 

might be an economically viable alternative to charging the batteries at home 

or at the workplace, and not just a back-up for longer journeys. The 

advantages of BSS are: 

1. Rather than having to upgrade the whole electricity distribution 

network and install millions of smart meters, the grid would only have 

to be upgraded for several thousand BSS, granted at a higher voltage; 

2. The owners of EVs do not need to have the same level of trust in the 

aggregator since they just drop off the depleted battery and get a 
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fully charged battery in exchange. No one is charging/discharging the 

battery in THEIR car. The batteries remain anonymous; 

3. From a mathematical point of view it is much simpler to optimize the 

charging/discharging of a large set of anonymous batteries. There is 

no need to know the owners’ travel details individually, or to store and 

process vast quantities of private information; 

4. Most interesting of all, no new special incentives are needed to 

convince the BSS operator to charge the batteries in a socially 

optimal way during offpeak periods. It is in his/her interest to reduce 

the cost of charging the EVs to increase the profitability of the 

business, and as we have shown, in V2G mode this achieves the 

socially desirable outcome of having the BSS sell power to the grid 

during peak hours (thereby reducing prices and the need for new 

peaking power plants) and buying during off-peak periods when 

some of the generation capacity is under-used. 

This is why we think that if the cost of the batteries drops sufficiently 

and if they resist the additional wear-and-tear due to the additional 

charging/ discharging cycles, a pure BSS business might actually be a 

viable economic proposition - as well as being socially useful. 
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