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1 Introduction

Mean field type models describing the asymptotic behavior of stochastic differential games (Nash
equilibria) as the number of players tends to +∞ have been introduced and termed mean field
games in [7, 8, 9]. For brevity, the acronym MFG will sometimes be used for mean field games.
Since its introduction ten years ago, the topic has attracted the attention of many researchers,
so many that it has become almost impossible to give all the references. The models have been
applied to many areas such as economics, finance, social sciences and engineering. Examples
of MFG models with applications in economics and social sciences are proposed in [5, 1]. The
first articles [7, 8, 9] mostly dealt with the cases when each player is exposed to an independent
source of risk (idiosynchratic risk). The case when there is a risk common to all players (maybe
in addition to the abovementionned idiosynchratic risks) is much more difficult and has been
first discussed in [10]. Such models lead to the so-called master equations, a term chosen for
some second order partial differential equations set in a space of probability measures. The well-
posedness of master equations have been discussed in the recent article [4] in some particular
cases, together with the convergence as the number of players tends to +∞. When the set of
states is finite, MFG models may lead to systems of hyperbolic equations: this will be precisely
the case in the specific model discussed hereafter.

Mining industries have several specifities which are well taken into account by mean field
games (MFG) models. The present work is devoted to the dynamics of mining industries on
very long time periods and at an aggregate level, for which a MFG model will be proposed.
More precisely, we are interested in steady state MFG systems that lead to a good approxima-
tion of the so called cost curve and involve a quite parcimonious parametrization. The interest
of this reduced parametric model is to lead to low dimensional MFG systems that can be solved
numerically and tested by comparison with available historical data. The adequation of the
model with historical observations a posteriori supports its validity.
The interest of the models proposed in the present paper in terms of economical analysis will be
tackled in more details in another article in preparation, in which we shall analyze the qualitative
and quantitative agreement of the model with the economical observations and the historical
data. Therefore, after a short introduction on mining industries, we will focus on the mathemat-
ical and numerical aspects of our models and their calibration from historical data, and leave
most of the economical interpretation for the other paper.
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In mining industries, the capital has essentially two functions: prospection for new deposits,
and construction of new extraction facilities, which create a production system characterized
by: the available reserve of ore, the annual production capacity, the operational cost of extrac-
tion. Production decreases the available reserve, and ceases when the reserve is drained. On
the long term, mining industries rely on a continuous flux of investments on prospection and
building extraction capacities.
The present model is adapted to the long-term analysis (on several decades) of the dynamics
of the prices of commodities on global markets. We shall neglect short-term phenomenons and
regional disparities.
Mining producers are distinguished from each other by their prospection costs, their costs for
constructing facilities, and their operational costs of extraction. We shall however simplify the
model by supposing that the costs of prospection and of building facilities only depend on the
size of the available reserve possessed by the producer. We shall also assume that the operational
cost of production are constant in time and can take only a small number n of different values.
In the language of mining industry, this amounts to saying that the cost curve is piecewise con-
stant. We shall see that the simplest model, namely with n = 1, is already in good adequation
with the historical data on four decades.
On the mathematical and numerical viewpoint, the model leads to a MFG system in n di-
mensions, with specific difficulties related in particular to boundary conditions, and which is
equivalent to a Hamilton-Jacobi-Bellman equation in the absence of economical frictions.

2 Mathematical models

2.1 The simpler model: a closed industry with a single technology

2.1.1 The main economical assumptions

We consider a mining industry composed of production units in competition. In this first model,
only the existing production units can prospect for new resource and build new production
facilities.
The main assumptions are as follows:

• The term reserves means reserves immediately available for production.

• Each production unit has two controls: the production rate and the investments in prospect-
ing for new reserves/building new production structures. In what follows, we will not make
the distinction between prospecting for new reserves and building new production facilities.
Both activities will be termed prospection.

• There is only one type of production unit, i.e. there is only one technology; thus all units
have the same prospection and production costs.

• Scale invariance: there are no nonlinear effects, i.e. the production of a production unit
is proportional to its reserve. This assumption makes it possible to consider that all
production units have the same unitary reserve (this amounts to splitting production
units so that they all have unitary reserve)

More precisely,

• The total reserve will be noted R(t) ∈ R+. With the convention above, R(t) can also be
viewed as the quantity of production units.
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• It is assumed that the production capacity is proportional to the reserve. Let k, 0 < k ≤ 1
be the production capacity of a single production unit (with reserve 1).

• Let c > 0 be the unitary production cost, i.e. the production cost of a unit of ore.

• Each production unit can invest into prospection. The flux invested into prospection by a
single unit is αdt (α is a control parameter). An investment rate of α results in increasing
the reserves at a rate φ(α), where φ is an increasing and concave function on R+ such
that φ(0) = 0. For example, one may choose φ(α) =

√
α. Translated into the equivalent

model where production units may have different sizes, this means that if the reserve of
a production unit is ρ, and the flux spent into investment during dt is z, then the reserve
will be increased by ρφ(z/ρ)dt.

• The other control parameter is the production rate β of a single unit, with 0 ≤ β ≤ k.

• The discount factor of the expected income is r > 0.

Systemic risk: an exogeneous demand function A source of common noise is the exoge-
neous demand function: it is assumed that the demand function has the form D(X, p) = XD̃(p)
where p is the unitary price of ore and X is a random positive parameter standing for the state of
the economy. The function D̃ is defined on (0,+∞), takes nonnegative values, is nonincreasing
with respect to p > 0 and decreasing in the interval D̃−1(0,+∞). It tends to 0 at +∞. For
example, one can take D̃(p) = (1− εp)+ where ε is a positive parameter, or D̃(p) = p−s where
s is a positive exponent.
The dynamics of X is assumed to be of the form

dXt = Xt(bdt+ σdWt), (1)

where Wt is a standard Brownian motion and b is the average growth rate of the economy, and
the volatility σ is a nonnegative constant (for simplicity).

2.1.2 The strategy of the production units

Let u(R,X) be the expected benefit of a production unit, discounted by r, or equivalently the
value of a production unit. When a production unit produces q units of ore, its costs can be
shared into two parts:

• a production cost of qc

• a decrease of the reserves of q, which costs qu(R,X),

so the total cost is qc + qu(R,X) while the income is pq. Therefore, the following inequality
must hold:

p ≥ c+ u(R,X). (2)

If p = c+ u(R,X), it is indifferent for a production unit to produce or not.

Fixing the price p and the global production Q knowing u(R,X) The unit price p of
ore and the global production Q can be found by using (2) and matching offer and demand.
Let P ∗(R,X, u) and Q∗(R,X, u) be respectively the price and global production functions. The
cash income for a unit of ore produced by the industry is

g(R,X, u) = P ∗(R,X, u)− c. (3)

There are thus two cases:
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1. The industry produces at full capacity when p > u+ c.
The total production is Q = kR. Matching offer and demand yields kR = D(X, p), i.e
P ∗(R,X, u) = D̃−1 (kR/X). The inequality P ∗(R,X, u) > u + c is then equivalent to
D̃(u+ c) > kR/X. In this regime, g(R,X, u) = D̃−1 (kR/X)− c.

2. The industry has a partial production when u + c = p. The total production Q is
obtained by matching offer and demand: Q = D(X,u+ c). In this regime, 0 ≤ D̃(u+ c) <
kR/X and g(R,X, u) = u.

To summarize, setting D̃−1(z) = −∞ if z > limp→0+ D̃(p), and D̃(p) = +∞ is p < 0,

P ∗(R,X, u) = max

(
D̃−1

(
kR

X

)
, u+ c

)
, (4)

Q∗(R,X, u)

X
= min

(
D̃(u+ c),

kR

X

)
, (5)

g(R,X, u) = max

(
D̃−1

(
kR

X

)
− c, u

)
. (6)

As always in mean field games, we are interested in finding an equilibrium where

1. each production unit chooses its strategy given the dynamics of some aggregate quantities,
here Rt (and Xt which is exogeneous)

2. conversely, the evolution of the aggregate quantity Rt is deduced from the previously
mentioned individual optimal controls.

The optimal strategy of a production unit The value u is obtained by optimizing on the
controls, knowing the dynamics of the aggregate quantities R and X

u(R,X) = (1− rdt) max
α>0,0≤β≤k

E
(

(βg(R,X, u)− α)dt
+(1 + φ(α)dt− βdt)u(R+ dR,X + dX)

)
.

A first order expansion yields

0 =− ru(R,X) + k(g(R,X, u)− u(R,X)) + max
α

(φ(α)u(R,X)− α)

+ ∂Ru
dR

dt
+

(
bX∂Xu+

1

2
σ2X2∂XXu

)
,

(7)

where the optimal β has been given by

β∗ = k if g(R,X, u)− u > 0, (8)

β∗ =
D(X,u+ c)

R
if g(R,X, u)− u = 0. (9)

While (8) is unambiguous, (9) needs to be explained: in the regime when g(R,X, u) − u = 0,
the units are indifferent to producing or not, hence, β∗ is not really characterized. To fix β∗,
we have arbitrarily imposed that all units behave the same way, so in (9), β∗ is obtained by
matching the global offer and the demand: Rβ∗ = D(X,u+ c). This choice does not affect (7),
because β is multiplied by g(R,X, u)− u = 0.

At the equilibrium, if α∗ is the optimal value of α and if Q∗(R,X, u) is the demand
Q∗(R,X, u) = Rβ∗, then the aggregate quantity R evolves as follows:

dR = (Rφ(α∗)−Q∗(R,X, u)) dt. (10)
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To summarize, we get the partial differential equation

−ru+k (g(·, u)− u)−Q∗(·, u)∂Ru+∂R

(
Rmax

α
(uφ(α)− α)

)
+bX∂Xu+

1

2
σ2X2∂XXu = 0. (11)

We are interested in nonnegative solutions of (11).

2.1.3 Reduced forms of (11)

Homogeneity: a reduced variable Observe that g and Q̃∗ = Q∗/X only depend on R/X
and u. Introduce the reduced variable y = R/X; looking for a nonnegative solution of (11) of
the form u(R,X) = v(y), we obtain the second order differential equation:

−rv + k(g(y, v)− v)− Q̃∗(y, v)v′ +
d

dy

(
ymax

α
(vφ(α)− α)

)
+ (σ2 − b)yv′ + σ2y2

2
v′′ = 0. (12)

Using (5) and (6), (12) becomes

0 =− rv + k1{D̃−1(ky)≥v+c}

(
D̃−1(ky)− c− v − yv′

)
− 1{D̃(v+c)<ky}D̃(v + c)v′

+
d

dy

(
ymax

α
(vφ(α)− α)

)
+ (σ2 − b)yv′ + σ2y2

2
v′′.

(13)

We are interested in nonnegative solutions of (13).

A Hamilton-Jacobi equation For what follows, it is useful to notice that for any M > 0,
the function defined on R+ × R+ by

y 7→ 1{D̃(v+c)<ky}

∫ M

v+c
D̃(z)dz − 1{D̃(v+c)≥ky}

(
ky
(
v + c− D̃−1(ky)

)
−
∫ M

D−1(ky)
D̃(z)dz

)
is a primitive of

y 7→ k1{D̃−1(ky)≥v+c}
(
D̃−1(ky)− c− v − yv′

)
− 1{D̃(v+c)<ky}D̃(v + c)v′.

Let the Hamiltonian H1(y, v) be the continuous function defined on R+ × R+ by

H1(y, v)

=− 1{D̃(v+c)<ky}

∫ M

v+c
D̃(z)dz + 1{D̃(v+c)≥ky}

(
ky
(
v + c− D̃−1(ky)

)
−
∫ M

D−1(ky)
D̃(z)dz

)
.

(14)

Note the following monotonicity property:

(H1,v(y, v)−H1,v(z, w), v − w)− (H1,y(y, v)−H1,y(z, w), y − z) ≤ 0. (15)

It is also useful to introduce the second Hamiltonian

H2(y, v) = −ymax
α≥0

(vφ(α)− α), (16)

which also satisfies (15). Finally, let the global Hamiltonian H(y, v) be defined by

H(y, v) = H1(y, v) +H2(y, v). (17)
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Then (13) admits the conservative form

(b− r)v − d

dy
(H(y, v)) +

d

dy

(
σ2y2

2

dv

dy
− byv

)
= 0.

Consider now the Hamilton-Jacobi equation

(r − b)V + byV ′ +H(y, V ′)− σ2y2

2
V ′′ = 0. (18)

By deriving (18), we observe that if V is a nondecreasing solution to (18), then v = V ′ is a
nonnegative solution to (12).

2.1.4 Two special cases

The demand law is of the form

D(X, p) = X(1− εp)+.

In this case, (11) becomes

0 =− ru+ k1{kR≤X}

(
1− kR

X

ε
− c− u

)
+

−min

(
(1− ε(u+ c))+,

kR

X

)
X∂Ru

+ ∂R

(
Rmax

α
(uφ(α)− α)

)
+ bX∂Xu+

1

2
σ2X2∂XXu,

and the reduced equation(13) becomes

0 =− rv +
k1{ky≤1}

ε
(1− ε(v + c)− ky)+ − kyv′ + ((1− ε(v + c))+ − ky)− v

′

+
d

dy

(
ymax

α
(vφ(α)− α)

)
+ (σ2 − b)yv′ + σ2y2

2
v′′.

In (18), H is given by (17) and H1 is defined on R+ × R+ by

H1(y, v) = −1{1−ε(v+c)<ky}
(1− ε(v + c))2

2ε
+ 1{1−ε(v+c)≥ky}

ky

ε

(
ε(v + c)− 1 +

ky

2

)
=
ky

ε

(
ε(v + c)− 1 +

ky

2

)
−

(ε(v + c)− 1 + ky)2+
2ε

,

which is obtained by choosing M = 1
ε in (14). Then (18) becomes

(r−b)V +(b+k)yV ′+H2(y, V
′)+

ky

ε

(
εc− 1 +

ky

2

)
−

(ε(V ′ + c)− 1 + ky)2+
2ε

−σ
2y2

2
V ′′ = 0. (19)

If φ(α) = C
√
α, then H2(v) = −yC2v2

4 and (19) becomes

0 =(r − b)V + (b+ k)yV ′ − y

4
C2(V ′)2 − σ2y2

2
V ′′

+
ky

ε

(
εc− 1 +

ky

2

)
−

(ε(V ′ + c)− 1 + ky)2+
2ε

− σ2y2

2
V ′′ = 0.

(20)
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The demand law is of the form

D(X, p) = Xp−s. (21)

In this case, (13) becomes

0 =− rv + k1{v+c≤(ky)−1/s}

(
(ky)−1/s − c− v − yv′

)
− 1{v+c>(ky)−1/s}(v + c)−sv′

+
d

dy

(
ymax

α
(vφ(α)− α)

)
+ (σ2 − b)yv′ + σ2y2

2
v′′.

(22)

and the Hamiltonian H1 takes the form:

H1(y, v) = k1{v+c≤(ky)−1/s}

(
y(v + c)− s

s− 1
k−1/sy1−1/s

)
+

1

1− s
1{v+c>(ky)−1/s}(c+ v)1−s.

If φ(α) = C
√
α, then the Hamilton Jacobi equation is:

0 =(r − b)V + byV ′ − y

4
C2(V ′)2 − σ2y2

2
V ′′

+ k1{V ′+c≤(ky)−1/s}

(
y(V ′ + c)− s

s− 1
k−1/sy1−1/s

)
+

1

1− s
1{V ′+c>(ky)−1/s}(c+ V ′)1−s.

(23)

2.2 A model of an open industry with a single technology

Here, investment into prospection is not reserved to the existing units. The efficiency of the
investment is assumed to have the same law has above: an investment rate of α results in
increasing the reserves at a rate φ(α). The global increase of the reserves if all units invest α
(the global investment is then αR) during dt is Rφ(α)dt. Globally, since there are no restriction
to investment, the investment rate will be such that the marginal value created by a unitary
investment is 1, i.e.

uφ′(α∗) = 1, (24)

where u is the value of a production unit. If we assume that φ(α) = C
√
α, (24) has a unique

solution: α∗ = C2u2/4. The evolution of the reserve is given by (10) with the same value of α∗.
All the other aspects of the model are described in § 2.1. The value u is obtained by optimizing
on the control β:

u(R,X) = (1− rdt) max
0≤β≤k

E
(
βg(R,X, u)dt+ (1− βdt)u(R+ dR,X + dX)

)
A first order expansion yields

−ru(R,X) + k(g(R,X, u)− u(R,X)) + ∂Ru
dR

dt
+

(
bX∂Xu+

1

2
σ2X2∂XXu

)
= 0

where the optimal β has been given by β∗ = k1{g(R,X,u)−u>0}. We obtain the partial differential
equation

−ru+ k (g(·, u)− u)−Q∗(·, u)∂Ru+ φ(α∗)∂Ru+ bX∂Xu+
1

2
σ2X2∂XXu = 0. (25)
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Looking for a nonnegative solution of (11) of the form u(R,X) = v(y), we obtain the second
order differential equation:

0 =− rv + k1{D̃−1(ky)≥v+c}

(
D̃−1(ky)− c− v − yv′

)
− 1{D̃(v+c)<ky}D̃(v + c)v′

+ yφ(α∗)v′ + (σ2 − b)yv′ + σ2y2

2
v′′,

(26)

and φ(α∗) = C2v/2 if φ(α) = C
√
α.

In this case, there is no connected Hamilton-Jacobi equation.

3 Mathematical analysis of Hamilton-Jacobi equations related
to (23)

The typical equation that we shall study is a simplified version of (23), namely

v +H

(
x,
dv

dx

)
= x−α in [0,+∞), (27)

where α is a nonnegative number.

Remark 3.1. Note that v plays the role of −V in (23). Compared to (23), we dropped the
second order term and isolated the singularity of the data at x = 0. In fact, we will tackle (23)
in § 3.3.

Here, the Hamiltonian H is a continuous real valued function on [0,+∞) × R and satisfies
the following assumptions: for some m ≥ 1 and δ > 0,

(H1) there exist two positive constants ν ≤ µ and a nonnegative function C ∈ BC([0,+∞))
with C(0) = 0 such that

νx|p|m − C(x) ≤ H(x, p) ≤ µx|p|m + C(x), ∀x ∈ [0,+∞), ∀p ∈ R (28)

(H2) there exists a modulus of continuity ω such that

|H(x, p)−H(y, p)| ≤ ω(|x− y|(1 + |p|m)), ∀x, y ∈ [0,+∞),∀p ∈ R (29)

If m > 1, there exists a modulus of continuity ω such that ∀x, y ∈ [0,+∞), ∀p ∈ R,∣∣∣H (x, px− 1
m

)
−H

(
y, py−

1
m

)∣∣∣ ≤ ω (∣∣∣xm−1
m − y

m−1
m

∣∣∣ (1 + |p|)
)

(30)

(H3) For any R > 0, there exists a modulus of continuity ωR such that ∀x ∈ [0,+∞), for any
p, q ∈ R, if −R ≤ p ≤ R and −R ≤ q ≤ R, then

|H (x, p)−H (x, q)| ≤ ωR (x|p− q|) (31)

(H4) if m > 1, there exist two continuous Hamiltonians H1 and H2 such that H(x, p) =
H1(x, p)+H2(x, p) in [0, δ]×R, x 7→ H1(x, p) is continuous in [0, δ] uniformly with respect
to p ∈ R, x 7→ H2(x, p) is nondecreasing in [0, δ] for any p ∈ R

An issue is to understand what definition of viscosity solutions should be chosen for (27), in
particular what condition should be imposed at x = 0.
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3.1 Bounded right hand sides

We first study

v +H

(
x,
dv

dx

)
= f(x) in [0,+∞). (32)

for f ∈ BC([0,+∞)).

3.1.1 The case when m = 1

In this paragraph, we suppose that Assumptions (H1), (H2), (H3) hold with m = 1. The
following comparison result for (32) can be proved with the same techniques as in Lions [10],
Bardi-Capuzzo Dolcetta [2]:

Theorem 3.1. Consider two functions u,w ∈ BUC([0,+∞)). Under Assumptions (H1), (H2),
(H3) with m = 1, if w is a supersolution of (32) and u is a subsolution of (32) in [0,∞), then
u ≤ w.

Proof. We double the variables in [0,∞] and use a similar penalty function as in the proof of
[2], II, Theorem 3.5, namely 1

ε |x − y|
2 + β(g(x) + g(y)), where g(x) = 1

2 ln(1 + (x − a)2+) for
some fixed value of a > 0 and 0 < β < 1. The parameter β will be chosen later. We study the
maximum points of ψε(x, y) = u(x)− w(y)− 1

ε |x− y|
2 − β(g(x) + g(y)).

Assume by contradiction that M = sup(u − w) > 0. Then there exists x0 > 0 such that
b = u(x0) − w(x0) > 0. We can always choose β̄ < 1 small enough such that for all 0 <
β ≤ β̄, βg(x0) < b/4. Let (xε, yε) be such that ψε(xε, yε) = maxx,y ψε(x, y) > b/2. Clearly,
1
ε |xε − yε|

2 + β(g(xε) + g(yε)) is bounded uniformly with respect to ε and β ∈ (0, β̄]. Therefore,
as ε tend to 0, we may assume that both xε and yε converge to some point x̄ ∈ [0,+∞). Moreover,
limε→0

1
ε |xε − yε|

2 = 0 since ψε(xε, xε) + ψε(yε, yε) ≤ 2ψε(xε, yε).
Let us first focus on the case when x̄ ≥ a. For ε small enough, we may assume that xε > a/2
and that yε > a/2. We use the notations q1 = 2

ε (xε− yε) +βg′(xε) and q2 = 2
ε (xε− yε)−βg

′(yε).
Since u is a viscosity subsolution, |q1| ≤ C, where C is the Lipschitz constant of u in [a/2,+∞)

which is independent of ε and β. This implies that 2 |xε−yε|ε ≤ C + 1 since ‖g′‖∞ ≤ 1. Then
|q2| ≤ C + 2. Set Q = C + 2.
The viscosity inequalities are u(xε) + H (xε, q1) ≤ f(xε) and w(yε) + H (yε, q2) ≥ f(yε). From
Assumption (H3),

|H (xε, q1)−H (xε, q2)| ≤ ωQ(βxε(|g′(xε)|+ |g′(yε)|)). (33)

Note that xε|g′(xε)| ≤ 1 + a and that xε|g′(yε)| ≤ 1 + a+ |xε − yε| ≤ 2 + a if ε is small enough.
Hence, βxε(|g′(xε)|+ |g′(yε)| ≤ β(3 + 2a). From Assumption (H2),

|H (xε, q2)−H (yε, q2)| ≤ ω (|xε − yε|(1 +Q)) . (34)

Subtracting the two viscosity inequalities, using (33) and (34) and letting ε tend to 0, using also
the continuity of f , yields that b/2 ≤ u(x̄)−w(x̄) ≤ ωQ(β(3 + 2a)). For β small enough, this is
a contradiction.
Now, we consider the case when x̄ < a. Then u(x̄) − w(x̄) = M . For ε small enough, we
may assume that xε < a and yε < a. For qε = xε−yε

ε , the viscosity inequalities are u(xε) +
H (xε, qε) ≤ f(xε) and w(yε) + H (yε, qε) ≥ f(yε). Subtracting and using Assumption (H2)
yields u(xε) − w(yε) ≤ f(xε) − f(yε) + ω(|xε − yε|(1 + |qε|)). Since limε→0 |xε − yε||qε| = 0, we
obtain that M ≤ 0 by passing to the limit. ut
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An existence result can also be obtained. We skip the proof for brevity.

Theorem 3.2. Under Assumptions (H1), (H2), (H3) with m = 1, there exists a unique vis-
cosity solution v ∈ BUC([0,+∞)) of (32).

Value at x = 0 Recall that from the assumptions, H(x, p) ≤ µx|p| + C(x) for a continuous
function C vanishing at 0. Consider the following optimal control problem:

u(x) = inf


∫ +∞

0
e−s (f(zx(s;α))− C(zx(s;α))) ds;

∣∣∣∣∣∣
żx(s;α) = α(s)zx(s;α)
zx(0;α) = x
α(s) = ±µ

 .

Clearly, u(0) = f(0) and u is a viscosity subsolution of (32) with H(x, p) replaced by µx|p|+C(x).
On the other hand, there exists a function w ∈ BUC([0,+∞)) such that w(0) = f(0), w(x) ≥
−H(x, p) + f(x) for any x ∈ [0,+∞) and p ∈ R. The function w is a viscosity supersolution of
(32) in [0,+∞). Then, from Theorem 3.1, the bounded viscosity solution v of (32) is such that
u ≤ v ≤ w: therefore v(0) = f(0).

3.1.2 The case when m > 1

Proposition 3.1. Under Assumptions (H1),(H2), (H3) with m > 1, there exists a viscosity
solution v ∈ BUC([0,+∞)) of (32). It satisfies v(0) ≤ f(0).

Proof. For a positive number M , we approximate (32) by

v +HM (x,
dv

dx
) = f(x), in [0,+∞) (35)

where HM (x, p) = min(νMx|p|+H(x, 0), H(x, p)).
Take x, y ∈ [0,+∞) and p ∈ R: we can make out three cases:

1. If HM (x, p) = H(x, p) and HM (y, p) = H(y, p), then ν|p|m ≤ νM |p| + H(x, 0) + C(x) ≤
νM |p|+ 2C(x) ≤ νM |p|+ 2‖C‖∞. Hence, |HM (x, p)−HM (y, p)| ≤ ω(|x− y|(1 +M |p|+
2‖C‖∞/ν)).

2. If HM (x, p) = νMx|p| + H(x, 0) and HM (y, p) = νMy|p| + H(y, 0), then |HM (x, p) −
HM (y, p)| ≤ νM |x− y||p|+ ω(|x− y|).

3. If HM (x, p) = νMx|p| + H(x, 0) and HM (y, p) = H(y, p), then there must exist some z
between x and y such that H(z, p) = νMz|p|+H(z, 0). In that case,

|HM (x, p)−HM (y, p)| ≤ |H(y, p)−H(z, p)|+ νM |x− z||p|+ ω(|x− z|)
≤ ω(|z − y|(1 +M |p|+ 2‖C‖∞/ν)) + νM |x− z||p|+ ω(|x− z|)
≤ ω(|x− y|(1 +M |p|+ 2‖C‖∞/ν)) + νM |x− y||p|+ ω(|x− y|).

To summarize, HM satisfies Assumption (H2) with m = 1.
It is also clear that if |p| ≤ R and |q| ≤ R, then for any x ≥ 0, |HM (x, p) − HM (x, q)| ≤
νMx|p− q|+ ωR(x|p− q|) so Assumption (H3) is satisfied by HM .
Finally,

νxmin(M |p|, |p|m)− C(x) ≤ HM (x, p) ≤ νMx|p|+ C(x), ∀x ≥ 0, ∀p ∈ R. (36)
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This property is not exactly Assumption (H1) with m = 1, but it is sufficient for Theorems 3.1
and 3.2 to hold.

We therefore know that there is a unique viscosity solution vM ∈ BUC([0,+∞)) of (35).
Moreover vM (0) = f(0).
The comparison principle ensures that the family of functions (vM )M>0 is nonincreasing with
respect to M : vN ≤ vM if N ≥M , and that vN ≥ infx(f(x)−H(x, 0)).
It can be deduced from the latter observation that for all y > 0, vM is a viscosity subsolution
of min(ν|dvMdx |

m, νM |dvMdx |) ≤ cy in [y,+∞), where cy depends on y but not on M . If M >

(cy/ν)1−1/m, then vM is a viscosity subsolution of |v′M | ≤ (cy/ν)1/m in [y,+∞): therefore vM is
continuous in [y,+∞) uniformly with respect to M .
The sequence vM converges in a monotone way to a function v defined on (0,+∞), and the
convergence is uniform in the compact subsets of (0,+∞). Therefore v ∈ BC(0,∞) and v ≥
infx(f(x)−H(x, 0)). By standard stability results, v is a viscosity solution of (35) in (0,+∞).
For c = supx f(x)− infx(f(x)−H(x, 0)), v is a viscosity subsolution of x|v′|m ≤ c

ν in (0,+∞),
which implies that

|v(x)− v(y)| ≤
( c
ν

) 1
m m

m− 1
|x1−

1
m − y1−

1
m |, ∀0 < x, y.

This shows that v is uniformly continuous on (0, z] for all z > 0 and can be extended to a
continuous function (still named v) defined in [0,+∞). Moreover, since vM (0) = f(0) and vM
converges in a nonincreasing manner in (0,+∞), v(0) ≤ f(0). Hence, v is a subsolution of (32)
in [0,+∞). We notice that v(0) = lim infx→0+,M→+∞ vM (x).
We now claim that one among the following two assertions is true

1. v(0) = f(0)

2. v(0) < f(0) and for any function φ ∈ C1([0,+∞)), v − φ does not have a local minimum
at 0.

As a consequence, v is a supersolution of (32) in [0,+∞).
The claim is proved by contradiction: assume that v(0) < f(0) and that v − φ has a local
minimum at 0. Replacing possibly φ by φ − x2, we may also suppose that v − φ has a strict
local minimum at 0. Since v(0) = lim infx→0+,M→+∞ vM (x), classical arguments show that
there exists a sequence (Mn)n>0 such that limn→∞Mn = +∞, a sequence of positive numbers
(xn)n>0 such that vMn − φ has a local minimum at xn, limn→∞ xn = 0 and limn→∞ vMn(xn) =
v(0). A key point is to observe that there cannot exist a subsequence (not relabeled) such that
xn = 0, because in this case, vMn(0) = f(0) would imply v(0) = f(0). Therefore, vMn(xn) +

HMn

(
xn,

dφ
dx (xn)

)
≥ f(xn), and since φ ∈ C1([0,+∞)), this yields for n large enough: vMn(xn)+

H
(
xn,

dφ
dx (xn)

)
≥ f(xn). Letting n → ∞ yields that limn→∞

∣∣∣dφdx (xn)
∣∣∣ = +∞, i.e. the desired

contradiction. ut

Theorem 3.3. Under Assumptions (H1), (H2), (H3) and (H4) with m > 1, if w ∈ BUC([0,+∞))
is a supersolution of (32) and u ∈ BUC([0,+∞)) is a subsolution of (32) in [0,+∞), then u ≤ w.

Proof. In the spirit of the comparison principles proved by Soner [12, 13], Capuzzo Dolcetta-
Lions [3], see also [2], for problems with state constraint boundary conditions, we choose a
monotone function T ∈ C1([0,+∞)) such that T (x) = 1 in [0, h], and T (x) = 0 in [2h,+∞), for
some h < δ.
Assume first that the supremum M of u − w is not achieved at x = 0. In this case, the same
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proof as for Theorem 3.1 can be used, mainly because H is uniformly coercive away from x = 0:
it consists of studying the maximum points of the function ψε(x, y) = u(x)−w(y)− 1

ε |x− y|
2−

β(g(x) + g(y)), where g(x) = 1
2 ln(1 + (x− δ)2+). It yields that M ≤ 0.

Assume now that the maximum M of u− w is achieved at x = 0 and consider the function

ψε(x, y) = u(x) − w(y) − 1
ε

∣∣∣xm−1
m − (y +

√
εT (y))

m−1
m

∣∣∣2 − (g(x) + g(y)). The supremum of ψε

in [0,+∞)2 is a maximum. Since u(0) − w(0) = M , we see that maxψε(x, y) ≥ ψε(
√
ε, 0) ≥

M −ωu(
√
ε), where ωu is the modulus of continuity of u. Therefore, if (xε, yε) a maximum point

of ψε, then xε, yε and 1
ε

∣∣∣xm−1
m − (y +

√
εT (y))

m−1
m

∣∣∣2 are bounded by some R independent of ε.

Therefore, after the extraction of a subsequence, we can assume that both xε and yε converge
to some point x̄ ∈ [0,+∞). Moreover,

ψε(xε, yε) ≤M + ωw(|xε − yε|)−
1

ε

∣∣∣∣(yε +
√
εT (yε))

m−1
m − x

m−1
m

ε

∣∣∣∣2 − (g(xε) + g(yε)),

where ωw is the modulus of continuity of w. Combining the latter two observations,

1

ε

∣∣∣∣(yε +
√
εT (yε))

m−1
m − x

m−1
m

ε

∣∣∣∣2 + (g(xε) + g(yε)) ≤ ωw(|xε − yε|) + ωu(
√
ε),

which implies that∣∣∣∣(yε +
√
εT (yε))

m−1
m − x

m−1
m

ε

∣∣∣∣ ≤ ε 1
2 η(ε) with lim

ε→0
η(ε) = 0, (37)

and that
g(xε) + g(yε) ≤ η(ε). (38)

If for a subsequence, yε ∈ (h,R], then we may assume that xε ∈ (h/2, R]. Of course,
x̄ ∈ [h,R]. We then use the Lipschitz continuity of u in [h/2,+∞) and obtain that∣∣∣∣2ε m− 1

m

(
x
m−1
m

ε − (yε +
√
εT (yε))

m−1
m

)
x
− 1
m

ε + g′(xε)

∣∣∣∣ ≤ Lu,
where Lu is the Lipschitz constant of u in [h/2,+∞). Next, setting

q =
2

ε

m− 1

m

(
x
m−1
m

ε − (yε +
√
εT (yε))

m−1
m

)
− g′(yε)y

1
m
ε ,

q1 =
2

ε

m− 1

m

(
x
m−1
m

ε − (yε +
√
εT (yε))

m−1
m

)
x
− 1
m

ε + g′(xε),

q2 =
2

ε

m− 1

m

(
x
m−1
m

ε − (yε +
√
εT (yε))

m−1
m

)
(yε +

√
εT (yε))

− 1
m (1 +

√
εT ′(yε))− g′(ym),

q̃1 =
2

ε

m− 1

m

(
x
m−1
m

ε − (yε +
√
εT (yε))

m−1
m

)
x
− 1
m

ε − g′(yε)y
1
m
ε x
− 1
m

ε ,

q̃2 =
2

ε

m− 1

m

(
x
m−1
m

ε − (yε +
√
εT (yε))

m−1
m

)
y
− 1
m

ε − g′(yε),

the previous estimates show that there exist positive constant Q and C independent of ε (if ε is
small enough) such that max(|q|, |q1|, |q2|, |q̃1|, |q̃2|) ≤ Q and that |q2 − q̃2| ≤ C

√
ε.
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The viscosity inequalities are u(xε) +H (xε, q1) ≤ f(xε) and w(yε) +H (yε, q2) ≥ f(yε). Then,

|H (xε, q1)−H (xε, q̃1) | ≤ ωQ

(
|xε|

(
g(xε) + g(yε)y

1
m
ε x
− 1
m

ε

))
, (39)

|H (yε, q2)−H (yε, q̃2) | ≤ ωQ(C|yε|
√
ε), (40)

|H (xε, q̃1)−H (yε, q̃2) | ≤ ω

(∣∣∣∣xm−1
m

ε − y
m−1
m

ε

∣∣∣∣ (1 + |q|)
)
. (41)

Indeed (39) and (40) come from Assumption (H3) and (41) is a consequence of Assumption
(H2), namely (30). The right hand sides of (39)-(41) tend to 0 as ε → 0. Subtracting the
viscosity inequalities, using (39)-(41) and (38), then by passing to the limit yield that

M = u(x̄)− w(x̄) ≤ 0.

There remains to discuss the case when for ε small enough, yε ∈ [0, h). In this case T (yε) = 1,
T ′(yε) = 0 and g(yε) = g(xε) = 0 for ε small enough. We make out two cases:

1. yε > 0: defining qε = 2
ε
m−1
m

(
x
m−1
m

ε − (yε +
√
ε)

m−1
m

)
and subtracting the viscosity inequal-

ities, we obtain

u(xε)− w(yε) +H

(
xε, qεx

− 1
m

ε

)
−H

(
yε, qε(yε +

√
ε)−

1
m

)
≤ f(xε)− f(yε). (42)

Then

H

(
xε, qεx

− 1
m

ε

)
−H

(
yε, qε(yε +

√
ε)−

1
m

)
≥ −

∣∣∣∣H (xε, qεx− 1
m

ε

)
−H

(
yε +

√
ε, qε(yε +

√
ε)−

1
m

)∣∣∣∣
−
∣∣∣H1

(
yε +

√
ε, qε(yε +

√
ε)−

1
m

)
−H1

(
yε, qε(yε +

√
ε)−

1
m

)∣∣∣
+H2

(
yε +

√
ε, qε(yε +

√
ε)−

1
m

)
−H2

(
yε, qε(yε +

√
ε)−

1
m

)
.

(43)

The first term in the right hand side of (43) tends to 0 from (30) and (37). The second
term tends to 0 using the continuity of H1, see Assumption (H4). The third term is
nonnegative since H2 is nondecreasing w.r.t x by Assumption (H4).
Combining these observations, we deduce from (42) that M ≤ 0 by letting ε tend to 0.

2. If yε = 0, then y 7→ w(y) + 1
ε

∣∣∣xm−1
m − (y +

√
ε)

m−1
m

∣∣∣2 has a minimum at 0: this implies

that w(0) ≥ f(0) and that M ≤ 0 since u(0) ≤ f(0).
ut

3.2 Analysis of (27)

We still make Assumptions (H1), (H2), (H3) and (H4) with m > 1 and suppose furthermore
that 0 < α < m− 1.

Definition 3.1. We say that v ∈ BUC([0,+∞)) is a viscosity solution of (27) if it is a viscosity
solution of (27) in (0,+∞) and if it is not possible to find a C1 function φ such that v − φ has
a local minimum at 0.

Proposition 3.2. Under Assumptions (H1), (H2), (H3) and (H4) with m > 1, if 0 < α <
m− 1, there exists a viscosity solution v ∈ BUC([0,+∞)) of (27).
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Proof. There exist four constants k1, k2 > 0, k3 = − supxH(x, 0), h̄: 0 < h̄ < δ (where δ is the
constant appearing in the assumptions), such that uh(x) = max(k1 − k2(x + h)(m−1−α)/m, k3)
is a subsolution of (27) in (0,+∞), for all h, 0 < h < h̄. Calling R(h) = k1 + 2µ(k2(m − 1 −
α)/m)mh−α, it is always possible to decrease h̄ in such a way that for any 0 < h < h̄, R(h) > 0

and uh is also a subsolution of uh+H
(
x, duhdx

)
≤ min(x−α, R(h)) in [0,+∞). From the previous

paragraph, we know that there exists a unique viscosity solution vh ∈ BUC([0,+∞)) of

vh +H

(
x,
dvh
dx

)
= min(x−α, R(h)) in [0,+∞). (44)

Comparison results imply that vh ≥ k3 and that the family (vh)h is nonincreasing with respect
to h.
It is also possible to find a bounded supersolution w of (27) in (0,∞) of the form w(x) =
K1 −K2 min(x, 1)(m−1−α)/m . Note that w is also a supersolution of (44) in [0,+∞).
Hence, k3 ≤ uh ≤ vh ≤ w, and we see that |vh| is bounded uniformly in h; furthermore, vh is a

viscosity subsolution of νx
∣∣∣dvhdx ∣∣∣m ≤ x−α − k3 + C(x); this shows that for any y > 0, the norms

‖vh‖C(m−1−α)/m([0,y]) are bounded uniformly with respect to h.
From the monotonicity of the sequence (vh)h and the uniform Hölder estimate, vh converges
uniformly in the intervals [0, y], y > 0 to some v ∈ BC([0,∞)) such that v ∈ C(m−1−α)/m([0, y])
for any y > 0. The function v is a viscosity solution of (27) in (0,+∞) and v ∈ BUC([0,∞)).
We also claim that it is not possible to find a C1 function φ such that v − φ has a local
minimum at 0. Indeed, in the opposite case, we could always assume that the minimum is
strict by replacing φ by φ − x2, and by standard arguments, we could find a sequence (hn)n>0

such that limn→∞ hn = 0, a sequence of positive numbers (xn)n>0 such that vhn − φ has a
local minimum at xn, limn→∞ xn = 0 and limn→∞ vhn(xn) = v(0). This would imply that

vhn(xn) + H
(
xn,

dφ
dx (xn)

)
≥ min(x−αn , R(hn)). This would yield that limn→∞

∣∣∣dφdx (xn)
∣∣∣ = +∞,

the desired contradiction. We have proved that v is a solution of (27).
Moreover, if ṽ ∈ BUC([0,+∞)) is another viscosity solution of (27), then ṽ is a supersolution of
(44). Hence ṽ ≥ vh, which shows that ṽ ≥ v: v is the minimal solution of (27). ut

Proposition 3.3. Under Assumptions (H1), (H2), (H3) and (H4) with m > 1, if w ∈
BUC([0,+∞)) is a supersolution of (27) and u ∈ BUC([0,+∞)) is a subsolution of (27), then
u ≤ w.

Proof. The proof is identical to that of Theorem 3.3 until the discussion of the case when
yε ∈ [0, h]; at this point, the proof slightly differs as follows:

1. if yε > 0, then, subtracting the viscosity inequalities, we get

u(xε)− w(yε) +H

(
xε, qεx

− 1
m

ε

)
−H

(
yε, qε(yε +

√
ε)−

1
m

)
≤ x−αε − y−αε , (45)

which is the counterpart of (42), recalling that qε = 2
ε
m−1
m

(
x
m−1
m

ε − (yε +
√
ε)

m−1
m

)
.

But we also know that∣∣∣∣(yε +
√
ε)

m−1
m − x

m−1
m

ε

∣∣∣∣ ≤ ε 1
2 η(ε) with lim

ε→0
η(ε) = 0,

which implies that xε > yε and that x−αε ≤ y−αε for ε small enough. From this, the fact
that M ≤ 0 follows as in the proof of Theorem 3.3.
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2. The case yε = 0 is not possible since otherwise y 7→ w(y)+ 1
ε

∣∣∣xm−1
m − (y +

√
ε)

m−1
m

∣∣∣2 would

have a minimum at 0.
ut

Remark 3.2. Under Assumptions (H1), (H2), (H3) and (H4) with m > 1, if α ≥ m − 1,
it would be possible to prove that there exists a unique viscosity solution v ∈ C(0,+∞) of (27)
which blows up at 0 (like x(m−1−α)/m if α > m−1 and logarithmically if α = m−1). For brevity,
we do no study this case in details; the proof of the existence of a minimal viscosity solution
would be rather similar to the proof of Proposition 3.2. For the proof of uniqueness, a different
strategy close to the one introduced in [6] would be needed.

3.3 Analysis of (23) in the case when σ = 0

We aim at proving existence and uniqueness of a nondecreasing solution of (23), focusing on the
case σ = 0 for simplicity. After the change of variables v = −V , x = y, the equation takes the
form

αv +H1(x, v
′) +H2(x, v

′) =
s

1− s
k1−1/sx1−1/s, (46)

where H1(x, p) = βxp+ γxp2, α > 0, β > 0, γ > 0, s < 1 and

H2(x, p) = 1{c−p>(kx)−1/s}

(
− 1

1− s
(c− p)1−s +

s

1− s
k1−1/sx1−1/s

)
+ 1{c−p≤(kx)−1/s}kx(p− c),

with k > 0, c > 0.

Remark 3.3. Note that H2 ∈ C1([0,+∞) × R) and that for any p ∈ R, x 7→ H2(x, p) +
s
s−1k

1−1/sx1−1/s is nondecreasing with respect to x.

Theorem 3.4. There exists a unique nonincreasing viscosity solution v ∈ BUC([0,+∞)) of
(46).

Proof. Since we look for a nonincreasing function v, we first modify the equation as follows:

0 = αv + H̃(x, v′) =
s

1− s
k1−1/sx1−1/s, (47)

where H̃(x, p) = H1(x, p) + H̃2(x, p) and H̃2(x, p) = H2

(
x, p1{p≤0}

)
. From Remark 3.3, H̃2 ∈

C([0,+∞)×R) and for any p ∈ R, x 7→ H̃2(x, p)+ s
s−1k

1−1/sx1−1/s is nondecreasing with respect
to x.
One can check that if v ∈ BUC([0,+∞)) is a nonincreasing viscosity solution of (46), then it is
a viscosity solution of (47).
Existence and uniqueness for (47) will stem from Propositions 3.2 and 3.3, once we have checked
that H̃ satisfies Assumptions (H1)-(H4) with m = 2.

• If p > 0, then H̃2(x, p) = H2(x, 0) is a function in BUC([0,+∞)) that vanishes at 0.
If p ≤ 0 and c − p > (kx)−1/s, then − k

1−sx(c − p) ≤ − 1
1−s(c − p)1−s ≤ H̃2(x, p) ≤

s
1−sk

1−1/sx1−1/s ≤ ks
1−sx(c − p). If p ≤ 0 and c − p ≤ (kx)−1/s, then kx ≤ c−s, and

H̃2(x, p) = kx(p− c). Combining the preceding observations, we deduce that there exists
a nonnegative function η ∈ BUC([0,+∞)) with η(0) = 0 and ζ > 0, such that

−η(x)− ζx|p| ≤ H̃2(x, p) ≤ η(x) + ζx|p|. (48)

This implies that H̃ satisfies (H1) with m = 2.
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• We claim that H̃2 satisfies Assumption (H2) with m = 1. Consider p ≤ 0: if c − p >
(kx)−1/s and c− p > (ky)−1/s then |H̃2(x, p)− H̃2(y, p)| ≤ kmax((kx)−1/s, (ky)−1/s)|x−
y| ≤ k(c− p)|x− y|. If c− p ≤ (kx)−1/s and c− p ≤ (ky)−1/s then |H̃2(x, p)− H̃2(y, p)| =
k|x − y||c − p|. Finally, if c − p ≤ (kx)−1/s and c − p > (ky)−1/s, there exists z between
x and y such that c − p = (kz)−1/s, and |H̃2(x, p) − H̃2(y, p)| ≤ |H̃2(x, p) − H̃2(z, p)| +
|H̃2(z, p) − H̃2(y, p)| ≤ k|x − y||c − p|. Finally, if p > 0, then |H̃2(x, p) − H̃2(y, p)| =
|H̃2(x, 0) − H̃2(y, 0)| ≤ kc|x − y|. The claim is proved. This implies that H̃ satisfies
Assumption (H2) with m = 2.

• We claim that H̃2 satisfies Assumption (H3) with m = 1. Set p̃ = p1{p≤0} and q̃ = q1{q≤0};

if c − p̃ > (kx)−1/s and c − q̃ > (kx)−1/s |H̃2(x, p) − H̃2(x, q)| = 1
1−s |(c − p̃)

1−s − (c −
q̃)1−s| ≤ max ((c− p̃)−s, (c− q̃)−s) |p̃− q̃| ≤ kx|p̃− q̃| ≤ kx|p− q|. If c− p̃ ≤ (kx)−1/s and
c− q̃ ≤ (kx)−1/s then |H̃(x, p)−H̃(x, q)| = kx|p̃− q̃| ≤ kx|p−q|. Finally, if c− p̃ ≤ (kx)−1/s

and c− q̃ > (kx)−1/s, there exists r between p̃ and q̃ such that c− r = (kx)−1/s, and this
yields that |H̃(x, p) − H̃(x, q)| ≤ kx|p̃ − q̃| ≤ kx|p − q|. The claim is proved. It implies
that H̃ satisfies Assumption (H3) with m = 2.

• There remains to study (H4). From (48), we see that there exists p̄ > 0 and C > 0
such that H̃(x, p) + Cx is nondecreasing with respect to x in [0, δ] × {|p| ≥ p̄}, because
the dominating behavior is that of βx|p|m in this region. Let χ be a smooth monotone
function on R+ such that χ(t) = 1 for t ≥ 2p̄ and χ(t) = 0 for t ≤ p̄. We can split
H̃ as follows: H̃(x, p) = H̃3(x, p) + H̃4(x, p) where H̃3(x, p) = χ(|p|)H̃(x, p) + Cx and
H̃4(x, p) = (1− χ(|p|))H̃(x, p)− Cx, which proves that H̃ satisfies (H4).

Combining all these observations, we see that (47) has a unique solution v ∈ BUC([0,+∞)).
This implies that there is at most one nonincreasing viscosity solution v ∈ BUC([0,+∞)) of
(46).
We now need to prove that the function v that we just found is indeed nonincreasing: note first
that v is Lipschitz continuous in [x,+∞) for all x > 0, and that the Lipschitz constant of v in
[x,+∞) tends to 0 as x → +∞. This implies that for all h > 0, limx→∞ |v(x+ h)− v(x)| = 0.
Assume by contradiction that infx∈[0,+∞) v(x) − v(x + h) = m < 0. From the latter point,
there exists x0 ≥ 0 such that v(x0) − v(x0 + h) = m. Consider the function φ(x, y) = v(x) −
v(y) + |x+h−y|2

ε . This function has a negative infimum (not greater than m). By studying
maximizing sequences for φ and using the boundedness of v, it can be proved that the infimum
is achieved by some pair (xε, yε). Standard arguments show that limε→0 |xε + h − yε| = 0 and
that there exits R > 0 such that xε ∈ [0, R] for ε small enough. Therefore, we can extract a
subsequence (not relabeled) such that limε→0 xε = x̄ ∈ [0, R] and limε→0 yε = x̄+h. Then, since

φ(xε, yε) ≤ φ(xε, xε + h), we see that limε→0
|xε+h−yε|2

ε = 0. From the viscosity inequalities, we
deduce that

v(xε)− v(yε) + H̃(xε, 2
yε − h+ xε

ε
) + H̃(yε, 2

yε − h+ xε
ε

) +
s

s− 1
k1−1/s

(
x1−1/sε − y1−1/sε

)
≥ 0.

But x 7→ H̃(x, p) + s
s−1k

1−1/sx1−1/s is nondecreasing with respect to x, and that yε − xε ≥ h/2
for ε small enough. Therefore, for ε small enough, v(xε)− v(yε) ≥ 0, which contradicts the fact
that m < 0.
We have thus proved that the viscosity solution v of (47) is nondecreasing. One can then check
that v is the nondecreasing BUC viscosity solution of (46). ut
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4 Extension: a closed industry with two technologies

Suppose now that there are two types of production units (different technologies), with different
prospection and production costs. The indices i = 1, 2 will be used to distinguish the two kinds
of production units.

• The total reserve of type i will be noted Ri(t) ∈ R+. With the assumption above, Ri(t)
can also be viewed as the quantity of production units of type i.

• It is assumed that the production capacity is proportional to the reserve. Let k, 0 < k < 1
be the production capacity of a single production unit (with reserve 1): to begin with, k
is assumed to be independent of the reserve type i = 1, 2.

• Let ci > 0 be the unitary production cost (i.e. the production cost of a unit of ore) of the
industry of type i, with c1 < c2.

• Each production unit of type i can invest into prospection. For the industry of type i,
the flux invested into prospection by a single unit is αidt (αi is a control parameter). An
investment rate of αi increases the reserves of type j, j = 1, 2 with a rate of φi,j(αi), where
φi,j are increasing and concave functions on R+ with φi,j(0) = 0. To begin with, it is
possible to assume that φi,j = 0 is i 6= j, i.e. the new reserves created by the industry of
type i are only of type i. For example, one may choose φi(α) =

√
α

• The other control parameters are the production rates βi of a unit of type i, i = 1, 2, with
0 ≤ βi ≤ k.

• The discount factor of the expected income is ri > 0 for the industry of type i.

4.1 The strategy of the production units

Let ui(R1, R2, X) be the expected benefit of a production unit of type i, discounted by ri. As
above, when a production unit of type i produces q units of ore, its production cost is qci and
the cost of decreasing the reserves is qui(R1, R2, X). The total cost is qci + qui(R1, R2, X) and
the income is pq. Therefore, the following inequality should hold: p ≥ ci + ui(R1, R2, X). If
p = ci + ui(R1, R2, X), it is indifferent for a unit of type i to produce or not.

Fixing the price p and the global productions Qi, i = 1, 2 knowing ui(R1, R2, X) As
above, the price p and global productions Qi can be found by matching offer and demand. Let
P ∗(R1, R2, X) be the price function. The cash income for a unit of ore produced by the industry
of type i is gi(R1, R2, X, u1, u2) = P ∗(R1, R2, X, u1, u2)− ci.
In order to divide the number of cases by two, we assume that u2 + c2 > u1 + c1, but should
the opposite case occur, we would compute the prices and productions in a symmetric way, by
exchanging the indices 1 and 2. If u2 + c2 > u1 + c1, there are four different cases:

1. The two industries produce at full capacity when p > u2 + c2.
The total productions are Q1 = kR1 and Q2 = kR2. Matching offer and demand
yields k(R1 + R2) = XD̃(p), i.e P ∗(R1, R2, X, u1, u2) = D̃−1

(
k
(
R1
X + R2

X

))
. The in-

equality is then equivalent to D̃−1
(
k
(
R1
X + R2

X

))
> max(u1 + c1, u2 + c2). In this regime,

gi(R1, R2, X, u1, u2) = D̃−1
(
k
(
R1
X + R2

X

))
− ci.
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2. Industry 1 produces at full capacity and industry 2 has a positive but partial
production when u1 + c1 < p = u2 + c2. The total productions are Q1 = kR1 and
Q2 is obtained by matching offer and demand: Q2/X = D̃(c2 + u2) − kR1/X. Then
kR2 > Q2 > 0 occurs if an only if D̃−1

(
k
(
R1
X + R2

X

))
< u2 + c2 < D̃−1

(
kR1
X

)
. In this

regime, g1(R1, R2, X, u1, u2) = u2 + c2 − c1 and g2(R1, R2, X, u1, u2) = u2.

3. Industry 1 produces at full capacity and industry 2 does not produce when
u1 + c1 < p < u2 + c2. The total productions are Q1 = kR1 and Q2 = 0; matching offer
and demand yields P ∗(R1, R2, X, u1, u2) = D̃−1

(
kR1
X

)
. The inequality is equivalent to

u2 + c2 > D̃−1
(
kR1
X

)
> u1 + c1. In this regime, gi(R1, R2, X, u1, u2) = D̃−1

(
kR1
X

)
− ci.

4. Industry 1 has a positive but partial production and industry 2 does not
produce when u1 + c1 = p < u2 + c2. Then Q2 = 0 and matching offer and de-
mand yields Q1/X = D̃(c1 + u1). In this regime, u2 + c2 > u1 + c1 > D̃−1

(
kR1
X

)
,

g1(R1, R2, X, u1, u2) = u1 and g2(R1, R2, X, u1, u2) = u1 + c1 − c2.

Summarizing, if u1 + c1 < u2 + c2, then the total productions are given by the continuous
functions

Q∗1(R1, R2, X, u1, u2) = X min

(
kR1

X
, D̃(c1 + u1)

)
(49)

Q∗2(R1, R2, X, u1, u2) = X max

(
0,min

(
kR2

X
, D̃(c2 + u2)−

kR1

X

))
(50)

The optimal strategy of a production unit As above, the expected values ui are obtained
by optimizing on the controls, knowing the dynamics of R1 and R2:

ui(R1, R2, X)

=(1− ridt) max
αi>0,0≤βi≤k

E
(

(βigi(R1, R2, X, u1, u2)− αi)dt
+(1 + φi(αi)dt− βidt)ui(R1 + dR1, R2 + dR2, X + dX)

)
(51)

4.2 Partial differential equations

A first order expansion in (51) and the equilibrium relations dRi = (Riφi(α
∗
i )−Q∗i (R1, R2, X, u1, u2)) dt,

where α∗i is the optimal value of αi, yield the system of partial differential equations: for i = 1, 2,

0 =− riui + k (gi(·, u1, u2)− ui)−Q∗1(·, u1, u2)∂R1ui −Q∗2(·, u1, u2)∂R2ui

+ ∂Ri

(
Ri max

αi
(uiφi(αi)− αi)

)
+ φj(α

∗
j )Rj∂Rjui + bX∂Xui +

1

2
σ2X2∂XXui,

(52)

where j = 2 (resp. j = 1) if i = 1 (resp. i = 2).

Homogeneity: reduced variables Observe that gi and Q̃∗i = Q∗i /X are functions of y1 =
R1/X, y2 = R2/X, u1 and u2). It is natural to look for a solution of the form ui(R1, R2, X) =
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vi(y1, y2); this leads to the following system:

0 =− r1v1 + k (g1(y1, y2, v1, v2)− v1)− Q̃∗1(y1, y2, v1, v2)∂y1v1 − Q̃∗2(y1, y2, v1, v2)∂y2v1

+ ∂y1

(
y1 max

α1

(v1φ1(α1)− α1)

)
+ φ2(α

∗
2)y2∂y2v1

+ (σ2 − b)(y1∂y1v1 + y2∂y2v1) +
1

2
σ2(y21∂

2
y1v1 + 2y1y2∂

2
y1y2v1 + y22∂

2
y2v1)

0 =− r2v2 + k (g2(y1, y2, v1, v2)− v2)− Q̃∗1(y1, y2, v1, v2)∂y1v2 − Q̃∗2(y1, y2, v1, v2)∂y2v2

+ ∂y2

(
y2 max

α2

(v2φ2(α2)− α2)

)
+ φ1(α

∗
1)y1∂y1v2

+ (σ2 − b)(y1∂y1v2 + y2∂y2v2) +
1

2
σ2(y21∂

2
y1v2 + 2y1y2∂

2
y1y2v2 + y22∂

2
y2v2)

(53)

A Hamilton-Jacobi equation In the case when r1 = r2 = r, consider the degenerate second
order Hamilton-Jacobi equation:

(b− r)V −H(y1, y2, DV )− b (y1∂y1V + y2∂y2V ) +
σ2

2
(y21∂

2
y1V + 2y1y2∂

2
y1y2V + y22∂

2
y2V ) = 0

(54)

where H(y1, y2, v1, v2) = H1(y1, y2, v1, v2) +H2(y1, y2, v1, v2) and

H2(y1, y2, v1, v2) = −
∑
i=1,2

yi max
αi≥0

(φi(αi)vi − αi) .

We give the expression of H1 when v1 + c1 < v2 + c2. In the opposite case, it is enough to switch
the indices i = 1, 2.

H1(y1, y2, v1, v2)

=



k
(
y1(v1 + c1) + y2(v2 + c2)− (y1 + y2)D̃

−1(k(y1 + y2))
)
−
∫ M

D−1(k(y1+y2))
D̃(z)dz

if D−1(k(y1 + y2)) > v2 + c2,

ky1(v1 + c1 − v2 − c2)−
∫ M

v2+c2

D̃(z)dz

if D−1(k(y1 + y2)) < v2 + c2 < D−1(ky1),

ky1

(
v1 + c1 − D̃−1(ky1)

)
−
∫ M

D−1(ky1)
D̃(z)dz

if v1 + c1 < D−1(ky1) < v2 + c2,

−
∫ M

v1+c1

D̃(z)dz

if D−1(ky1) < v1 + c1.

The Hamiltonians H1 and H2 have the following monotonicity property:

(Hk,p(y, p)−Hk,p(z, q), p− q)− (Hk,y(y, p)−Hk,y(z, q), y − z) ≤ 0, k = 1, 2. (55)
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If r1 = r2 = r and V is a solution of (54) such that ∂1V ≥ 0 and ∂2V ≥ 0, then (v1, v2) = DV
is a solution to (53) with nonnegative components.
When D is given by (21), the Hamiltonian H1(·, v1, v2) has the following form if v1+c1 < v2+c2:

H1(y1, y2, v1, v2) =



ky1(v1 + c1) + ky2(v2 + c2) +
s

1− s
k1−

1
s (y1 + y2)

1− 1
s

if (k (y1 + y2))
− 1
s > v2 + c2,

ky1(v1 + c1 − v2 − c2) +
1

1− s
(v2 + c2)

1−s

if (k (y1 + y2))
− 1
s < v2 + c2 < (ky1)

− 1
s ,

ky1 (v1 + c1) +
s

1− s
k1−

1
s y

1− 1
s

1

if v1 + c1 < (ky1)
− 1
s < v2 + c2,

1

1− s
(c1 + v1)

1−s

if (ky1)
− 1
s < v1 + c1.

(56)

5 Tuning the parameters

We consider the model described in § 2.1, assuming that the function φ describing the efficiency
of prospection is of the form

φ(α) = C
√
α, (57)

and that the demand function if of the form D(X, p) = Xp−s. The model therefore depends on
a set S of seven parameters, namely

• the interest rate r

• the growth rate b and the volatility σ of the process Xt

• the production cost c and the production capacity k

• the parameter C in (57)

• the exponent s in the demand function.

From (1), (10), the reduced variable yt = Rt/Xt satisfies the stochastic differential equation:

dyt = ΨS(yt)dt− σytdWt, (58)

with the drift given by

ΨS(y) =

(
Cv(y)−min

(
k,

1

y(c+ v(y))s

)
+ σ2 − b

)
y (59)

The model must be calibrated in order to fit the data, which is, for a given material (e.g. copper,
zinc, nickel, cobalt), the series of the prices every month in the last 40 years. There are thus
480 observed prices (pi)i=1,...,480, see for example Figure 1 where the price of copper is plotted.
The time interval between two observations is ∆t = 1/12. Let ti = i∆t be the date of the ith

observation.
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Let vS be the solution to (22) when the parameter set if S. Knowing S and vS , we can map any
observed prices pi to a value yi by inverting pi = max

(
(kyi)

−1/s, vS(yi) + c
)
, see (4).

The parameters estimation consists of maximizing the likelihood of the observations. This
amounts to minimizing

J(S) =
1

2

∑
i

(
yi+1 − yi −∆tΨS(yi)

σyi
√

∆t

)2

+
∑
i

ln (σyi) , (60)

given a positive parameter ε. We also impose some constraints on the parameters. The con-
strained minimization of J is done using Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm.

For copper, we found that the set of parameters: r = 0.18, b = 0.01, c = 0.2 k = 0.29,
C = 1, σ = 0.20 and s = 0.8 permits to fit the data in a rather satisfactory manner. In Figure 2,
we plot both the distribution of the observed prices (dotted line) and the distribution of the
prices predicted by the model with the above parameters. In both the observed and predicted
distributions, there is narrow peak correponding to small prices at p ≈ 0.6 and a bump for
larger prices: the narrow peak corresponds to periods when the demand is low, during which
p = c+ u(R,X) and Q(R,X) = X/(c+ u(R,X))s. The bump corresponds to periods when the
demand is high, during which p > c+ u(R,X) and Q(R,X) = kR.
In Figure 3, we plot the optimal price as a function of R/X. The two different regimes discussed
in § 2.1.2 appear clearly: in the first regime, corresponding to small values of R/X (the bump in
the price distribution in Figure 2) the industry produces at full capacity. In the second regime,
corresponding to higher values of R/X, (the peaks in the price distribution in Figure 2), the
price is low, and the industry has a partial production.
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Figure 1: The observed prices of copper

We have carried the same program for several materials: in Figure 4, we compare the histor-
ical and predicted distributions of prices for zinc, with the following set of parameters: r = 0.2,
b = 0.01, c = 0.2 k = 0.35, C = 1.05, σ = 0.23 and s = 0.92
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Figure 2: Copper: the distribution of the prices (observed and computed from the model)
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Figure 3: Copper: in red : the solution v of (12); in blue: the price P ∗ predicted by the model
as a function of y = R/X.
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Figure 4: Zinc: the distribution of the prices (observed and computed from the model)

6 Numerical simulations of the closed industry with two tech-
nologies

6.1 Case 1

We consider the model presented in § 4 with

D̃(p) = p−s, φ1(α) = φ2(α) = 0.895
√
α,

with the following parameters

r1 = r2 = 0.18; c1 = 0.35; c2 = 0.6;

k = 0.3; s = 0.6; σ = 0.15; b = 0.04;

In this model, the cost of production of industry 1 is smaller than that of industry 2: c1 < c2,
whereas the investments into prospection are equally efficient.

On Figure 5, we plot the contours of v1 and v2 as functions of y1 = R1/X and y1 = R2/X.
Note that both v1 and v2 blow up at (0, 0).
On Figure 6, we plot the rescaled productions Q̃1 = Q1

X and Q̃2 = Q2

X as functions of y1 = R1/X
and y2 = R2/X. We plot the contours of the same functions on Figure 7. Note the region near
the y2 axis in which the production of industry 1 is zero.
On Figure 9, we plot the different zones corresponding to the different regimes of the Hamil-
tonian. The zones numbered from 0 to 3 correspond to the case when v1 + c1 ≤ v2 + c2 and
to the four successive regimes in the definition of H1 in (56). The zones numbered from 4 to
7 correspond to the case when v2 + c2 ≤ v1 + c1 and to the four related regimes in the sym-
metrized version of (56). We see that all the regimes are present except the first one in the case
v1 + c1 ≤ v2 + c2, i.e. there are seven different zones.
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Figure 5: The contours of v1 and v2
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different regimes
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Figure 9: There are seven different regimes for the Hamiltonians (see § 4.1): all the possible
regimes are present except the first regime in the case when v1 + c1 ≤ v2 + c2.

6.2 Case 2

We keep the same parameters as above except that

φ1(α) = 0.895
√
α, φ2(α) = 1.183

√
α,

In this model, the cost of production of industry 1 is smaller than that of industry 2: c1 < c2,
whereas the investments into prospection are more efficient for industry 2.

On Figure 10, we plot the contours of v1 and v2 as functions of y1 = R1/X and y1 = R2/X.
On Figure 11, we plot the rescaled productions Q̃1 = Q1

X and Q̃2 = Q2

X as functions of y1 = R1/X
and y2 = R2/X. We plot the contours of the same functions on Figure 12.
On Figure 14, we plot eight different zones corresponding to the different regimes of the Hamil-
tonian. All the eight possible regimes are present.
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Figure 11: The productions Q̃1 = Q1

X and Q̃2 = Q2

X
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Figure 12: The contours of the productions Q̃1 = Q1

X and Q̃2 = Q2
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Figure 13: The distributions of the agents and the prices
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different regimes
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Figure 14: There are eight different regimes for the Hamiltonians (see § 4.1)

A A mean field games approach to Lucas-Prescott benevolent
planner model

The present mining industry model is reminiscent of the celebrated Lucas-Prescott model, see
[11]: let us recall the latter and propose its interpretation in terms of mean field games.

A.1 The framework

Lucas and Prescott consider a market of production units. The size of a given unit, i.e. the
capital owned by the producer is kt. Each producer can invest in order to improve the production
capacity, and therefore increase its capital: the flux of capital generated during dt by an invested
flux of ztdt is ktΦ(zt/kt)dt, where the nondecreasing and concave function φ measures the impact
of the investment: therefore

dkt = ktΦ(zt/kt)dt.

The price of a unit of capital is fixed by a pricing function:

pt = P (Kt, Xt),

where Kt is the aggregate capital and Xt is an exogeneous parameter standing for the global
state of the economy. This parameter is driven by a diffusion process:

dXt = µ(Xt)dt+ σ(Xt)dWt,

hence it represents an aggregate risk, common to all production units.
Each individual firm solves the optimal control problem: maximiz e

u = max
zt≥0

E
(∫ ∞

0
e−rt(ptkt − zt)dt

)
.
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A.2 The approach via mean field games

Similarly as in § 2, it is convenient to split the production units in such a way that any production
unit corresponds to a unit of capital. Then the aggregate capital Kt is the number of such
production units. The value u of a unit of capital can be expressed as a function of K and X:
u = u(K,X). From the dynamic programming principle, u satisfies

u(K,X) = (1− rdt) max
α≥0

E
(

(1 + φ(α)dt)u(K + dK,X + dX) + (P (K,X)− α)dt
)
. (61)

Note the similarity with (7). A first order expansion yields

max
α≥0

(φ(α)u(K,X)− α) + ∂Ku(K,X)
dK

dt
+ µ(X)∂Xu(K,X) +

σ2(X)

2
∂2Xu(K,X) + P (K,X)

= ru(K,X),

where the optimal control α∗ is such that φ′(α∗)u(K,X) = 1. Then, at the mean field game
equilibrium, dK

dt = φ(α∗)K. Finally, we obtain the partial differential equation:

max
α≥0

(φ(α)u(K,X)− α) +Kφ(α∗)∂Ku(K,X) + µ(X)∂Xu(K,X) +
σ2(X)

2
∂2Xu(K,X) + P (K,X)

= ru(K,X),

or in an equivalent manner

∂K

(
K max

α≥0
(φ(α)u(K,X)− α)

)
+µ(X)∂Xu(K,X)+

σ2(X)

2
∂2Xu(K,X)+P (K,X) = ru(K,X).

(62)

A.3 From (62) to a Hamilton-Jacobi equation

The aim is to find a Hamilton-Jacobi equation of the form

rV (K,X) = H(K,X, ∂KV, ∂XV ) + a(X)∂2XV, (63)

in such a way that if V is a solution to (63), then u = ∂KV is a solution to (62). Differentiating
(63) with respect to K,

r∂KV =∂KH(K,X, ∂KV, ∂XV )

+ ∂3H(K,X, ∂KV, ∂XV )∂2KV + ∂4H(K,X, ∂KV, ∂XV )∂2KXV + a(X)∂3XXKV,

with self-explanatory notations. If u = ∂KV , this yields

ru = ∂KH(K,X, u, ∂XV ) + ∂3H(K,X, u, ∂XV )∂Ku+ ∂4H(K,X, u, ∂XV )∂Xu+ a(X)∂2Xu

Identifying, we obtain that a(X) = σ2(X)/2, ∂4H(K,X, u, ∂XV ) = µ(X), ∂3H(K,X, u, ∂XV ) =
KΦ(α∗) and ∂KH(K,X, u, ∂XV ) = P (K,X)+maxα≥0(φ(α)u−α). Consider a surplus function
s(K,X) such that ∂Ks(K,X) = P (K,X); we see that a good candidate for the Hamiltonian is

H(K,X, u, z) = K max
α≥0

(φ(α)u− α) + µ(X)z + s(K,X).
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and (63) becomes

rV (K,X) = K max
α≥0

(φ(α)∂KV − α) + µ(X)∂XV +
σ2(X)

2
∂2XV + s(K,X), (64)

which plays the same role as (18), except that no reduced variable as been used in (64). Note
that differentiating (64) with respect to X and setting w(K,X) = ∂XV yields another partial
equation:

K(φ(α∗)∂Kw(K,X) + ∂X(µw) + ∂X

(
σ2

2
∂Xw

)
+ ∂Xs(K,X) = rw(K,X). (65)

A.4 Link of (64) with Lucas-Prescott benevolent planner problem

Hamilton-Jacobi equation (64), which has been found via mean field game theory, is also satisfied
by the value function of Lucas-Prescott benevolent planner problem. Indeed, Lucas-Prescott
benevolent planner problem is as follows:

V (K,X) = max
αt

E
(∫ ∞

0
e−rt(s(Kt, Xt)− αtKt)dt

)
, (66)

subject to

dKt = KtΦ(αt)dt, K0 = K (67)

dXt = µ(Xt)dt+ σ(Xt)dWt, X0 = X, (68)

and from the dynamic programming principle, V solves (64).
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[8] , Jeux à champ moyen. II. Horizon fini et contrôle optimal, C. R. Math. Acad. Sci. Paris 343
(2006), no. 10, 679–684. MR MR2271747 (2007m:91022)

[9] , Mean field games, Jpn. J. Math. 2 (2007), no. 1, 229–260. MR MR2295621

[10] P.L Lions, Generalized solutions of Hamilton-Jacobi equations, Research Notes in Mathematics 69,
Pitman, Boston, 1982.

[11] Robert E. Lucas, Jr. and Edward C. Prescott, Investment under uncertainty, Econometrica 39
(1971), 659–681. MR 0398471

[12] H. M. Soner, Optimal control with state-space constraint. I, SIAM J. Control Optim. 24 (1986),
no. 3, 552–561. MR MR838056 (87e:49029)

[13] , Optimal control with state-space constraint. II, SIAM J. Control Optim. 24 (1986), no. 6,
1110–1122. MR MR861089 (87k:49021)

36


