How do US natural gas producers react to price changes?

Micaela Ponce and Anne Neumann

Paris, 27 June 2017

Micaela Ponce and Anne Neumann

Paris, 27 June 2017 1 / 21

Motivation

- 'shale revolution'
- increasing demand for natural gas (in particular Asia)
- natural gas exports from the US

• ...

 \Longrightarrow What is the supply responsiveness of producers to changes in prices?

Contribution

- existing evidence on supply elasticities over the past years limited, results vary in an enormous range
- input for modelling exercises, useful for regulators, relevant for emission and pollution reduction discussion
- estimate the aggregate natural gas supply response to prices in a competitive fuel market

The Bigger Picture

International Energy Resource Markets under Climate Constraints -Strategic Behavior and Carbon Leakage in Coal, Oil and Natural Gas Markets

- Fossil resources continue to remain important in the worlds energy systems until 2050. Regional climate policies cannot mitigate the global upward trend due to large share of growing Asia.
- Supply-side climate policies require multilateral coordination in order to be effective.
- Fossil fuel consumers can use domestic renewables and energy efficiency strategically to increase security of supply and reduce GHG emissions.

- Literature review
- 2 Data and empirical strategy

8 Results

Natural gas supply elasticities

Study	Period	Sample Data	Elasticity
Erickson (1971) new discoveries, regulation	1946-1959	US Cross sectional time series	0.69(L)
Barret (1992) elasticities of supply	1960-1990	US Annual time series	0.014
Dahl (1992) price elasticity of reserves, cost	1986-1989	US Cross sectional time series	0.40(L)
Chermak (1995) natural gas from tight sands, cost	1988-1990	US Cross sectional time series	1.05 to -1.92
Krichene (2002) price elasticity of supply	1918-1999	Worldwide Annual time series	0.6
	1918-1973	Worldwide Annual time series	0.28(L)
	1973-1999	Worldwide Annual time series	0.8(L)
Arora (2014)	1993-2013	US	
price elasticity of supply, allowing		Monthly time series	0.3 to 0.5(L)
for a shale gas boom break in data		Quarterly time series	0.4 to 0.5(L)

(L) indicates a long-run estimate

demand side: Dahl C. (2010): > 1.900 references/950 (electricity, oil)
supply side: Dahl, C. & Duggan, T. (1996): 48 studies (3)

Empirical Specification

Economic Model

natural gas supply = f(natural gas price, price of substitute energy source, working gas in storage, natural gas drilling activity, season of the year)

$$q = f(P_G, P_S, S, D, season)$$

we use publicly available monthly data (EIA, FRED, NCDC) from Aug 1987 to Dec 2012 (n=305)

Empirical Specification

Econometric Model: ARDL

$$q_{0} = \alpha_{0} + \sum_{j=1}^{a} \alpha_{j} q_{t-j} + \sum_{j=0}^{b} \beta_{j} P_{Gt-j} + \sum_{j=0}^{c} \zeta_{j} P_{St-j} + \sum_{j=0}^{d} \delta_{j} S_{t-j}$$
$$+ \sum_{j=0}^{e} \eta_{j} D_{t-j} + \theta_{1} summer + \theta_{2} winter + \theta_{3} spring + \nu_{t}$$

 $\begin{array}{l} q_t \colon (\mathsf{T} \times 1) \text{ vector of the dependent variables} \\ P_{Gt}, P_{St}, S_t, D_t \colon (\mathsf{T} \times 1) \text{ explanatory variables} \\ \alpha_0 \colon \text{intercept} \\ \beta_j, \zeta_j, \delta_j, \eta_j \colon \text{scalars of coefficient} \\ \nu_t \colon (\mathsf{T} \times 1) \text{ vector of disturbances} \end{array}$

Empirical Specification

Econometric Model: ECM

$$\begin{split} \delta q_{0} &= \alpha_{0} + \alpha_{1}^{*} q_{t-1} + \beta_{j}^{*} P_{Gt-1} + \zeta_{j}^{*} P_{St-1} + \delta_{j}^{*} S_{t-1} + \eta_{j}^{*} D_{t-1} \\ &+ \beta_{0}^{*} \Delta P_{Gt} + \zeta_{0}^{*} \Delta P_{St} + \sum_{j=1}^{a-1} \tau_{j} \Delta q_{t-j} + \sum_{j=1}^{b-1} \pi_{j} \Delta P_{t-j} \\ &+ \sum_{j=1}^{c-1} \Phi_{j} \Delta P_{St-j} + \sum_{j=1}^{d-1} \delta_{j} \Delta S_{t-j} \sum_{j=1}^{e-1} \eta_{j} \Delta D_{t-j} \\ &+ \theta_{0} summer + \theta_{1} winter + \theta_{2} spring + \nu_{t} \end{split}$$

where the cointegration relationship defined as:

$$\alpha_1^* q_{t-j} + \beta_1^* P_{Gt-1} + \zeta_1^* P_{St-1} + \delta_1^* S_{t-1} + \eta_1^* D_{t-1} = 0$$

Elasticities

- interested in estimated coefficients β_0 and ζ_0 in the ARDL
- β_0 short-run own price elasticity of supply
- long-run elasticities dervied from long-run equation
- ζ_0 is the cross-price elasticity of supply between crude oil and natural gas
- long-run price elasticity of supply for the ARDL model is

$$LRM_{ARDL} = \frac{\sum_{j=0}^{b} \hat{\beta}_j}{1 - \sum_{j=1}^{a} \hat{\alpha}_j}$$

can also be derived from ECM

$$LRM_{ECM} = \frac{\hat{\beta}_1^*}{\hat{\alpha}_1^*}$$

Data

Descriptive Statistics

Variable	Description	Obs	Mean	Std. Dev.	Min	Max	Unit of measurement
9	Natural gas supply	305	53584	4986	39632	65169	million cubic meters
log q		305	10.88	.09	10.58	11.08	
prod	Domestic Natural Gas production	305	47336.16	4406.38	37699	61363	million cubic meters
logprod		305	10.76	.09	10.54	11.02	
PG	Real natural gas	305	2.3	0.85	0.77	5.18	US Dollars per MBTU
$\log PG$	wellhead price	305	0.77	0.35	-0.27	1.64	
PS	Crude oil price (WTI)	305	71.3	77.0	11.29	361.82	US Dollars per barrel
log PS	-	305	3.8	1.0	2.42	5.89	
S	Storage working gas	305	185761	20536	142773	234878	million cubic meters
log S	(reserves underground)	305	12.1	0.1	11.87	12.37	
D	US natural gas rotary	305	720	362	250	1585	number of rigs
$\log D$	rigs in operation	305	6.5	0.5	5.52	7.37	in operation
winter	binary variable	305	0.25	0.4	0	1	1-0
summer	binary variable	305	0.25	0.4	0	1	1-0
spring	binary variable	305	0.25	0.4	0	1	1-0
ipi	Monthly industrial	305	81	14	56	101	Index
log ipi	production	305	4.4	0.2	4.02	4.61	
inc	Real monthly	305	8582	1837	5578	11479	Billions of chained
log inc	income	305	9.0	0.2	8.63	9.35	2009 US Dollars

Empirical Strategy

- exclude variables that are I(2) or higher (ADF, DFGLS, PP)
- determine lag structure (13,3,2,13,2) to derive and estimate unrestricted ECM by 2SLS
- F-test of first lags of dependent and independent variables
- estimate ARDL with identified lag structure and the unrestricted ECM
- short-run price elasticity of supply (production)
- derive long-run ealsticities
- post-estimation tests to test for strengths of selected variables and for misspecification

Results (Supply)

	ARDL		ECM		
Variable	Coefficient	(Std. Err.)	Variable	Coefficient	(Std. Err.)
Supply _{e-1}	0.494***	(0.068)	ASupply-1	-0.445***	(0.067)
Supply-2	0.107**	(0.049)	ASupply-2	-0.338***	(0.084)
Supply-3	0.095**	(0.048)	ASupply-3	-0.243***	(0.098)
Supply-4	-0.020	(0.055)	ASupply_4	-0.263***	(0.039)
Supply	0.013	(0.048)	Asupply_s	-0.250***	(0.079)
Supply_6	-0.097**	(0.043)	ASupply_A	-0.346***	(0.072)
Supply-7	0.032	(0.053)	ASupply_7	-0.314***	(0.074)
Supply-s	0.025	(0.042)	ASupply_s	-0.289***	(0.075)
Supply-0	0.071	(0.048)	ASMODIN-9	-0.219***	(0.085)
Supply-10	-0.059	(0.056)	ASupply-10	-0.278***	(0.070)
Supply-11	-0.055	(0.045)	ASupply-11	-0.332***	(0.063)
Supply-12	0.677***	(0.0s1)	ASupply-12	0.344***	(0.063)
Supplys-13	-0.344***	(0.063)			
Natural ens.	0.079	(0.057)	A Natural sas.	0.079	(0.057)
Nau algas,-1	-0.065	(0.057)	ANauralgas,	0.044***	(0.015)
Nau algas	-0.020	(0.024)	ANauralgas,	0.024	(0.018)
Naur algase-3	-0.024	(0.018)			
Crude Oil	-0.009	(0.014)	A Crude Oil.	-0.009	(0.014)
CrudeO(L_1	0.008	(0.023)	ACrudeOil.	-0.001	(0.015)
Or ude Oth-2	0.001	(0.015)			
Storage_1	0.050	(0.042)	Astarage-1	0.051	(0.041)
Storage-2	-0.098*	(0.056)	Astarage-2	-0.047	(0.029)
Storage_3	0.050	(0.043)	Astarage-3	0.003	(0.028)
Storage_4	-0.021	(0.042)	Astarage_4	-0.018	(0.031)
Storage-5	0.025	(0.042)	Astarage-s	0.007	(0.027)
Storage_6	-0.065	(0.040)	Astarage-6	-0.057**	(0.026)
Storage-7	0.019	(0.041)	Astarage-7	-0.038	(0.026)
Storage K	0.044	(0.041)	Astarage-s	0.006	(0.026)
Storage0	-0.011	(0.040)	Astarage-9	-0.005	(0.028)
Storage-10	-0.033	(0.042)	Astarage-10	-0.039	(0.025)
Storage-11	0.044	(0.042)	Astarage-11	0.005	(0.027)
Storage-12	-0.080*	(0.042)	Astarage-12	-0.074***	(0.025)
Storage-13	0.074***	(0.025)			
Drilling Act -1	0.053**	(0.027)	AD illingAct -1	0.028	(0.025)
Drilling Act -2	-0.028	(0.025)			
			Supply-1	-0.0s0**	(0.030)
			Nauralgas -1	-0.030***	(0.011)
			CrudeOile-1	-0.001	(0.004)
			Star age -1	-0.001	(0.015)
			DrillingAct -1	0.024***	(0.009)
rammer	0.003	(0.005)	summer	0.003	(0.005)
winter	0.004	(0.006)	winter	0.004	(0.006)
spring	0.011**	(0.005)	spring	0.011**	(0.005)

Micaela Ponce and Anne Neumann

Results

Empirical Results

- empirical support for the existence of a stable long-run relationship among the variables (supply/domestic production)
- in the very short-run $\hat{\beta_0}$ not significantly different from zero \to no immediate adjustments
- no immediate effect of crude oil price on natural gas supply
- long-run supply elasticity: 0.495** \rightarrow slow adj
sutment to price changes
- long-run cross-price elasticity not significant different from zero
- adjustment coefficient of ARDL indicates that after exogenous shock model achieves equilibrium after 17 months
- long-run elasticity of production is 0.66, adjustment after 13 months

Conclusion

- inelastic natural gas supply in the US
- a one-percent change in wellhead natural gas prices would lead to a 0.49 percent chance in supply.
- Own price elasticity of domestic producers (0.66) suggests that these react faster to price changes by themselves.

Producers do not react strongly to price changes in a competitive market.

Thank you.

anne.neumann@uni-potsdam.de

Results I (Unit Roots)

Level							First Differences					
Variable	Trend	ADF		DFGLSa		PP	ADF		$DFGLS^{a}$		PP	
log q	No	-0.84	(7)	1.99	(13)	-4.56***	-10.49***	(7)	-0.29	(15)	-40.48***	
log prod	No	0.57	(7)	2.55	(12)	-4.49***	-10.83***	(6)	-7.27***	(12)	-41.96***	
log PG	No	-2.28	(2)	-1.43	(11)	-2.37	-14.26***	(1)	-3.28***	(10)	-14.84***	
log WT1	No	-0.35	(1)	0.76	(13)	-0.72	-11.70***	(1)	-3.6***	(9)	-11.52***	
log S	No	-4.22***	(6)	-2.65***	(6)	-6.13***	-	-	-	_	-	
$\log S_{sa}^b$	No	-3.28**	(4)	-2.07**	(13)	-3.48***	_	-	-	-	-	
$\log D$	No	-0.04	(4)	-1.11	(11)	1.97	-8.9***	(3)	-4.56***	(10)	-8.8***	

Lags are given in parenthesis. Two asterisks indicate significance at 5% level, and three asterisks, at the 1% level.

[a] Uses ESR critical values, selected by Ng and Perron (1995)

[b] subscript sa indicated seasonally adjusted time series.

Results II (F-Test)

TABLE 4 F-test for cointegration							
	Aggregated supply model	Domestic production model					
Computed F-statistic	14.43	26.69					
P-value	(0.0131)	(0.0001)					
Bound test critical values at 1%	3.41 (lower)						
	4.68(upper)						

Bound test critical values extracted from Pesaran et al. (2001),

p. 300 Table CI (iii) Case III: Unrestricted intercept and no trend.

Results III (Diagnostics)

TABLE 5 Results of diagnostic tests

	Aggregate mod		Domestic production model		
Test	Statistic	Prob.	Statistic	Prob.	
Overidentification Sargan Chi ²	0.20	0.89	.055	0.81	
Strength of Instrument F-Statistic	11.16	0.00	9.27	0.00	
Endogeneity Durbin Chi ²	2.30	0.13	.014	0.91	

Results IV (Supply)

	ARDL		ECM		
Variable	Coefficient	(Std. Err.)	Variable	Coefficient	(Std. Err.)
Supply _{e-1}	0.494***	(0.068)	ASupply-1	-0.445***	(0.067)
Supply-2	0.107**	(0.049)	ASupply-2	-0.338***	(0.084)
Supply-3	0.095**	(0.048)	ASupply-3	-0.243***	(0.098)
Supply-4	-0.020	(0.055)	ASupply_4	-0.263***	(0.039)
Supply_5	0.013	(0.048)	Asupply_s	-0.250***	(0.079)
Supply_6	-0.097**	(0.043)	ASupply -6	-0.346***	(0.072)
Supply-7	0.032	(0.053)	ASupply_7	-0.314***	(0.074)
Supply-s	0.025	(0.042)	A.Supply-s	-0.289***	(0.075)
Supply-0	0.071	(0.048)	ASupply_9	-0.219***	(0.085)
Supply-10	-0.059	(0.056)	ASupply-10	-0.278***	(0.070)
Supply-11	-0.055	(0.045)	ASupply-11	-0.332***	(0.063)
Supply-12	0.677***	(0.0s1)	ASupply-12	0.344***	(0.063)
Supply-13	-0.344***	(0.063)			
Natural ens.	0.079	(0.057)	A Natural sas.	0.079	(0.057)
Nauralgas.	-0.065	(0.057)	ANauralgas,	0.044***	(0.015)
Nau algas	-0.020	(0.024)	ANaiw algas	0.024	(0.018)
Nau algase-3	-0.024	(0.018)			(and fully
Crude Oil	-0.009	(0.014)	A Crude Oil.	-0.009	(0.014)
Crude Oth-1	0.005	(0.023)	ACrudeOil.	-0.001	(0.015)
CrudeOth-2	0.001	(0.015)			(and they
Storage_1	0.050	(0.042)	Astarage-1	0.051	(0.041)
Storage-2	-0.098*	(0.056)	Astorage-2	-0.047	(0.029)
Storage_3	0.050	(0.043)	Astarage -3	0.003	(0.028)
Storage	-0.021	(0.042)	Astarage_4	-0.018	(0.031)
Storage-5	0.025	(0.042)	Astarage-1	0.007	(0.027)
Storage-6	-0.065	(0.040)	Astorage-6	-0.057**	(0.026)
Storage-7	0.019	(0.041)	Astarage-7	-0.038	(0.026)
Storages	0.044	(0.041)	Astorage-s	0.006	(0.026)
Storage	-0.011	(0.040)	Astarage-9	-0.005	(0.028)
Storage10	-0.033	(0.042)	Astarage-10	-0.039	(0.025)
Storage_11	0.044	(0.042)	Astorage-11	0.005	(0.027)
Storage-12	-0.060*	(0.042)	Astarage-12	-0.074***	(0.025)
Storage-13	0.074***	(0.025)			
Drilling Act -1	0.053**	(0.027)	AD illingAct -1	0.028	(0.025)
Drilling Act -2	-0.028	(0.025)			
			Supply-1	-0.0s0**	(0.030)
			Nauralgas -1	-0.030***	(0.011)
			CrudeOile-1	-0.001	(0.004)
			Star age-1	-0.001	(0.015)
			DrillingAct -1	0.024***	(0.009)
rammer	0.003	(0.005)	summer	0.003	(0.005)
winter	0.004	(0.006)	winter	0.004	(0.006)
spring	0.011**	(0.005)	spring	0.011**	(0.005)

Micaela Ponce and Anne Neumann

Results V (Domestic Production)

	ARDL	store l'adverte		ECM	
Variable	Coefficient	(Std. Err.)	Variable	Coefficient	(Std. Err.)
Production-1	0.504***	(0.058)	A.Supply-1	-0.421***	(0.059)
Production-2	0.130***	(0.047)	A.Suppiy-2	-0.291***	(0.070)
Production-3	0.024	(0.048)	A.Suppiy-3	-0.265***	(0.083)
Production-4	-0.089*	(0.050)	A.Supply_4	-0.355***	(0.077)
Production_	0.020	(0.046)	A.Supply_s	-0.335***	(0.071)
Production_	-0.084**	(0.042)	A.Supply_6	-0.419***	(0.067)
Production	0.115**	(0.049)	A.Supply-7	-0.304***	(0.065)
Production_s	0.074*	(0.042)	ASupply_s	-0.230***	(0.067)
Production	0.005	(0.047)	A.Supply -9	-0.225***	(0.074)
Production 10	-0.092*	(0.051)	A.Supply-10	-0.318***	(0.066)
Production-11	-0.056	(0.044)	ASupply-11	-0.374***	(0.060)
Production-12	0.727***	(0.062)	ASupply-12	0.352***	(0.059)
Production-11	-0.352***	(0.059)			
Vanural en.	-0.016	(0.056)	A Natural sas.	-0.016	(0.056)
Naturalgas,	0.028	(0.055)	ANauralgas,	0.062***	(0.016)
Nauralgas.	.0.059**	(0.024)	ANaugalgas,	0.003	(0.017)
Naturalgas-3	-0.003	(0.017)	and million and million of the	0.000	(more)
Crude Oil	0.001	(0.017)	A Crade Oil.	0.000	(0.014)
DrudeOil-1	-0.005	(0.022)	$\Delta CrudeOtl_{e-1}$	-0.008	(0.014)
CrudeOile-2	0.008	(0.014)			
Storage _x a _{e-1}	-0.021	(0.042)	Astar age -1	-0.011	(0.039)
a orage _x a _{e-2}	-0.016	(0.056)	Astar age -2	-0.027	(0.029)
Storage_a3	0.007	(0.042)	Astor age,-3	-0.020	(0.027)
Storage_a_4	-0.016	(0.041)	Astar age, 4	-0.036	(0.030)
Storagezae-5	0.033	(0.040)	Astar age -5	-0.003	(0.026)
Storagezae-6	-0.070*	(0.039)	Astar age -6	-0.073***	(0.026)
Storagezae-7	0.033	(0.040)	Astar age -7	-0.040	(0.026)
Storage_de-K	0.036	(0.040)	Astar age -s	-0.004	(0.025)
Storage_de-0	-0.026	(0.039)	A.Star age -9	-0.030	(0.025)
Storage_de-10	0.003	(0.040)	Astar age -10	-0.028	(0.025)
worage _x a _{c-11}	0.012	(0.041)	Astar age -11	-0.016	(0.026)
a orage ad-12	-0.060	(0.040)	ASIG age -12	-0.076***	(0.024)
woragerage-13	0.076***	(0.024)			
Drilling Act	0.039	(0.026)	ADrillingAct -1	0.007	(0.025)
Drilling Act	-0.007	(0.025)	and and a set		(control)
			Production-1	-0.075**	(0.038)
			Nauralgase-1	-0.050***	(0.014)
			CrudeOll-1	0.003	(0.004)
			Stor age -1	-0.010	(0.016)
			DrillingAa -1	0.032***	(0.009)
summer	-0.009	(0.00s)	summer	-0.009	(0.006)
winter	-0.009	(0.005)	wing	-0.009	(0.005)
winuer corine	0.009*	(0.005)	smine	0.009*	(0.005)

Micaela Ponce and Anne Neumann