

Technology adoption, inattention and heuristic decision-making: Evidence from a UK district heating scheme

Presentation for The Economics of Natural Gas, Paris, 06.27.2017

Dr. Andrew Burlinson, Prof. Giuliana Battisti and Prof. Monica Giulietti

Warwick Business School

Economic Modeling and Forecasting Group

THE UNIVERSITY OF WARWICK

PART I: Presentation Overview

PART I: Background

- IntroEnergy effici
- Energy efficiency paradox
- Rational inattention
- Heuristics

PART II: Survey data and empirical methodology

The data
The experiment
The empirical methodology

PART III: Analysis

• Results

PART IV: Conclusion and policy implications

PART V: Q&A

PART I: Why energy efficiency?

Temperature's rising (Mobb Deep, 1995)

Domestic consumption

UK Climate Change Act (2008)

Figure 1: The recommended fifth carbon budget would continue emissions reduction on the path to the UK's 2050 target

Source: DECC (2015) Find UK greenhouse gas emissions national statistics: 1990-2013; DECC (2015) Provisional UK greenhouse gas emissions national statistics; DECC Energy Model; CCC analysis.

Notes: Data labels show reductions in annual emissions relative to 1990. Historical emissions are on a 'gross' basis (i.e. actual emissions). Projections and carbon budgets are on the current budget accounting basis: net carbon account excluding international aviation and shipping (IAS), but allowing for IAS to be included in the 2050 target.

Fuel poverty

PART I: Energy efficiency paradox Classic Approach

The energy efficiency paradox:

- An observed rate of uptake of energy efficient technologies that is too low (Gillingham, Newell and Palmer, 2009, pp.7)
- I.e. energy efficient technologies that would pay off are not adopted (Newell, Stavins and Gerarden, 2015, pp.1)

What explains the paradox?

- Internal discount rates are much higher than market rate of interest (Hausman, 1979, pp. 51)
- Discount rate for central heating ranges between 6 and 36% (Train, 1985)

What else explains the paradox?

- Traditional market features (e.g. un-priced externalities)
- Behavioural factors?

PART I: Energy efficiency paradox - The Behavioural Approach

Does inattention explain the paradox?

- Consumers are rationally inattentive: high search costs > benefits (Sallee, 2015)
- Limited empirical evidence in energy market: a gap we aim to address (Allcott, 2011; Palmer and Walls, 2015)
- Micro (and macro) policy can be slow and ineffective (Reis, 2006; Sims, 2003)

Does heuristics explain the paradox?

- Consumers adopt simple 'rules-of-thumb' in the energy market (e.g. MPG) (Larrick and Soll, 2008; Attari et al, 2010; Allcott, 2011)
- Qualitative evidence is mixed over use of payback period (Kempton and Montgomery, 1984; Turrentine and Kurani, 2007)
- More evidence is needed...(Newell, Stavins and Gerarden, 2015)

PART I: Hypotheses

Hypotheses

- Hypothesis 1: Consumers discount too heavily the financial benefits accrued from the use of energy efficient technologies, i.e. their internal discount rates is significantly higher than the market rate of interest.
- Hypothesis 2: The adoption of energy efficient technologies is negatively affected by consumers' inattention.
- Hypothesis 3: A high number of years required to pay back the outlays for an energy efficient technology reduces the consumers' likelihood to install it.

District heating:

• Birmingham district heating scheme: reduce prices and fuel poverty

The sampling strategy:

- Telephone survey (May-June 2014) carried out by IFF Research
- Random Digit Dialling and proportionate sampling (self-weighted)
- 20 minutes average, 67 questions max.
- 784 complete questionnaires

The sample:

- Representative of Birmingham and (to a lesser extent of England) across a wide range of demographic, housing and energy efficiency characteristics
- Less representative of young, single and living in flats/apartments

Stated preference - Contrastive Vignette Technique (CVT):

- Simulates a real life decision-making 'scenario' (Wason, Polonsky and Hyman, 2002)
- Useful when observed behaviour is infeasible (Caro et al., 2009)
- Use between variation in responses to a systematic change in the scenario (Alexander and Becker, 1978; Burstin, Doughtie and Raphaeli, 1980)
- Allows for systematic variation of three cost dimensions (yearly bill; installation; and maintenance costs) across three levels
- Evaluate the effect of price and profitability of the DH investment

Other CVT studies:

 Implemented in studies of crime, marketing, racism, managerial decisions, network effects, happiness, health care, social norms, elderly residential decisions, hiring, job behaviour and job settings and nudges.

Classic Model: Life time cost

$$U_i = b_1 U C_i + b_2 A C_i + X_i g + e_i$$

where, LTC_i = UC_i +
$$\overset{T}{\underset{t=1}{a}} \frac{AC_i}{(1+r)^t}$$

$$UC_{i} = \frac{1}{b_{1}} \left[U_{i} - (b_{2}AC_{i} + X_{i}g + e_{i}) \right]$$
$$\frac{DUC_{i}}{DAC_{i}} = -\frac{b_{2}}{b_{1}}$$
$$\sum \frac{b_{1}}{b_{2}} = \left[\frac{1 - (1 + r)^{t}}{r} \right]^{-1}$$

Ordered Probit $P(D:=i) = \Phi(\alpha; -\beta_1 UC; -\beta_2 AC; -\sum_{i=1}^{3} \delta_i)$

$$P(D_{i}=j) = \Phi(\alpha_{j}-\beta_{1}UC_{i}-\beta_{2}AC_{i}-\sum_{j=1}^{j}\delta_{j}(IN_{1i}) - \sum_{j=1}^{j}\lambda_{j}(IN_{2i}) - \sum_{j=1}^{j}\xi_{j}(PB_{i}) - X_{i}'\gamma) - \sum_{j=1}^{j}\delta_{j}(IN_{1i}) - \sum_{j=1}^{j}\lambda_{j}(IN_{2i}) - \sum_{j=1}^{j}\xi_{j}(PB_{i}) - X_{i}'\gamma) - \sum_{j=1}^{j}\delta_{j}(IN_{2i}) - \sum_{j=1}^{j}\delta_{j}($$

3

4

$$\Phi(\alpha_{j-1} - \beta_1 UC_i - \beta_2 AC_i - \sum_{j=1}^{3} \delta_j (IN_{1i}) - \sum_{j=1}^{3} \lambda_j (IN_{2i}) - \sum_{j=1}^{4} \xi_j (PB_i) - X_i' \gamma)$$

 $\begin{array}{l} 1 \ if \ 'Definitely \ Unlikely'\\ 2 \ if \ 'Unikely'\\ And, \ D_{ij} = \begin{array}{c} 3 \ if \ 'Not \ Sure'\\ 4 \ if \ 'Likely'\\ 7 \ 5 \ if \ 'Definitely \ Likely'\\ \end{array}$

Inattention variables

$$IN_{1} = \frac{1}{1} = Direct Methods of Information$$

$$IN_{1} = \frac{1}{1} 2 = Indirect Methods of Information$$

$$\frac{1}{1} 3 = No Information$$

$$\frac{1}{1} = Low Expected Savings < \pounds 300$$

$$IN_{2} = \frac{1}{1} 2 = High Expected Savings > \pounds 300 \quad \text{where, } /_{3} < /_{2} < 0$$

$$\frac{1}{1} 3 = Unsure \text{ or } Doesn't Know$$

Decision heuristics – payback period

$$\mathsf{Payback}_{i} = \frac{UC_{i}}{S_{i}} = \frac{UC_{i}^{DH}}{AC_{i}^{C} - AC_{i}^{DH}} \qquad \text{where, } \mathsf{PB}_{i} = quartiles \text{ of } ln(payback)$$

where, $d_3 < d_2 < 0$

Table 2: Main descriptive statistics

Table 6: Income and socio-economic variables									
Variable	Sample								
	N	Mean	S.D.	Median	Min	Max			
Income variables		•							
Annual income	645	22994	18396	18462	2830	201460			
Annual energy costs									
Annual gas bill	683	711.79	431.25	611.56	0	3577.82			
Maintenance costs	558	224.01	893.44	50	0	15000			
Low-income-high-cost indicator			•			•			
LILC	784	0.12	0.33	0	0	1			
LIHC	784	0.11	0.31	0	0	1			
HILC	784	0.23	0.42	0	0	1			
HIHC	784	0.22	0.41	0	0	1			
UNSURE BILLS/INCOME	784	0.33	0.47	0	0	1			
Demographic variables		•							
NON-OWNER	784	0.65	0.48	0	0	1			
DEGREE	784	0.30	0.46	0	0	1			
ELDERLY	784	0.35	0.48	0	0	1			
SINGLE	784	0.21	0.41	0	0	1			
INACTIVE	784	0.36	0.48	0	0	1			
DAMP	784	0.67	0.47	1	0	1			
KNOWS-DH	784	0.15	0.36	0	0	1			

PART III: Results

Table 7: Estimated coefficients and implied discount rates for the 'decision to connect' to district heating

	•	Ordered probit coefficients							
Model (m)	(1)	(2)	(3)	(4)	(5)	(6)			
βINTERFACE / βDH BILL	0.367	0.521*	0.293†	0.419**					
	(0.250)	(0.290)	(0.186)	(0.211)					
P-VALUE	0.141	0.073	0.115	0.047					
IMPLIED DISCOUNT RATE	0.358	0.518	0.278	0.412					
Inattention variables									
POSTAL INFORMATION	-0.304***		-0.305***		-0.309***				
	(0.109)		(0.108)		(0.108)				
INDIRECT INFORMATION	-0.644***		-0.634***		-0.653***				
	(0.132)		(0.131)		(0.131)				
INATTENTIVE-A	-1.691***		-1.657***		-1.725***				
	(0.243)		(0.241)		(0.243)				
HIGH UNOBSERVED COSTS	-0.210**		-0.169		-0.219**				
	(0.105)		(0.104)		(0.105)				
INATTENTIVE-B	-0.645***		-0.645***		-0.621***				
Observations	784	784	784	784	784	784			
Log-likelihood	-930.01	-992.10	-939.106	-1000.80	-937.35	-1010.10			
Pseudo R ²	0.127	0.070	0.119	0.061	0.121	0.052			
$LR \chi^2$	271.66***	147.49***	253.47***	130.08***	256.98***	111.49***			
LR χ^2 (Ho: m=1 vs. m=2,,6)	-	124.17***	18.19***	141.57***	14.67**	160.17***			
AIC	1920.025	2034.197	1928.212	2041.60	1924.7	2050.19			
BIC	2059.957	2150.807	2044.822	2134.89	2041.31	2120.16			
Df	30	25	25	20	25	15			
Residual Pr(Skewness)	0.892	0.895	0.605	0.794	0.879	0.951			
Residual Pr(Kurtosis)	0.264	0.521	0.399	0.307	0.281	0.329			
Residual Normal (p-value)	0.892	0.805	0.612	0.573	0.552	0.619			
Link test x' $\hat{\beta}^2$ (p-value)	0.396	0.878	0.229	0.963	0.413	0.494			

Notes: $^{\dagger} p < 0.15$, $^{\bullet} p < 0.1$, $^{\bullet\bullet} p < 0.05$, $^{\bullet\bullet\bullet} p < 0.01$. Standard errors in parentheses. See Table A.3 Appendix A3 for controls and cut-off points.

PART III: Results

Figure 1: Spread of the implied discount rate

Mean: 0.397 SD: 0.05 Models: 16

Robustness checks:

- Heterogeneous choice, partial parallel regression and more...

PART III: Marginal Effects – Definitely Likely

LTC Marginal effects:

- £100 increase in annual DH bill \rightarrow decrease by 1.3%
- £100 increase in upfront DH cost \rightarrow decrease by 0.1%

Heuristics:

- \odot 2 to 3.5 years → decrease by 6.7% points (c.f. < 2 years)
- ⊙ 3.5 to 6 years \rightarrow decrease by 12% points (c.f. < 2 years)

Inattention:

- Indirect Information \rightarrow decrease by 5.7% points (c.f. Direct)
- No information \rightarrow decrease by 14% points (c.f. Direct)
- Not sure of expected savings \rightarrow decrease by 6% points (c.f.<£300)

Socio-economic MEs:

Single, unemployed, aged 60+ and no degree decrease probability by 2-2.5%
All of the above are significant at the 5% (individual/joint) level of significance

PART IV: Conclusion

Key insights:

Do we observe an energy efficiency paradox which is likely to hinder the expansion of energy efficient technologies in the UK?

- Yes, owner discount rate around 40% but...
- Trade-off between upfront and annual costs weaker after controlling for heuristics and inattention

Is the adoption of energy efficient technologies negatively affected by consumers' inattention?

 Inattentive consumers have 6% points lower probability to be 'definitely likely'

Are consumers less likely to install energy efficiency technology following an increase in the number of years of payback?

- Probability highest between 0-2 years
- Probability reaches minimum up to around 7-8 years

PART IV: Policy Implications

- Discount rates between 30-40% on average for the group most likely to connect (i.e. owners) for district heating
- Our findings suggest consumer behaviour is more in line with simple 'rules of thumb' and 'inattention'
- ⊙ Energy labels \rightarrow targeting 'payback' period
- Software to help calculate Net Present Value → make costs of inefficient technology salient at point of purchase
- Health and safety should not be compromised

But also:

- Socio-economic factors: high-income, married and owners of property most likely to connect
- Targeted subsidies/grants needed if district heating were to expand to lowincome households

THANK YOU

