



### Measuring Safety under Varying Transparency Evidence from French Nuclear Incidents

#### R. Bizet, P. Bonev, F. Lévêque

Mines ParisTech - Centre for Industrial Economics

November 17th, 2016

- A need to monitor nuclear safety
  - Safe operation of present nuclear plants
  - Implement socially desirable policies (new builds, shut-downs...)
- Is safety the probability of inflicting harm to people or goods?
  - not compatible with the nuclear risk
  - not used in practice
- Raises important questions
  - How to monitor safety over time?
  - with new reactor designs? new regulations?

Observation Nuclear accidents are too scarce to measure safety

Questions Do incidents carry information regarding safety? Can they shed light on safety variations?

Method Count-data regression on a partition of nuclear incidents

Results Safety decreases with age, improvements observed Effect of age small when compared to technology Propensity to declare matters

#### • The economic analysis of the nuclear risk

- using scarce accident data (Rabl, 2013; Rangel, 2014)
- using larger datasets (Hofert, 2011; Wheatley, 2016a,b))
- The assessment of safety using incident data
  - Airline and auto. industry (Rose, 1990; Dionne, 1992)
  - Nuclear safety (Feinstein, 1989; Hausman, 2014)
- Declaration distortions and audit mechanisms
  - Audit mechanisms (Macho-staddler, 2006)
  - Lab. experiments (Cason, 2016)

#### The context

- France (1997-2014)
  - 1 firm (EDF), 19 station operators, 58 reactors
  - 1 technology, 3 types of reactors, 6 designs
- Operators have to declare safety incidents
  - Declaration criteria set by the safety regulator
  - Subject to mild audit mechanism (no clear sanctions)
- The dataset
  - 19.000 events declared between 1973 and 2014 in French reactors
  - Over 30 descriptive variables: date, causes, real or potential consequences, affected systems, declaration criteria...

#### Global trends



Source: IRSN. Commons duplicated, generic excluded. N = 20 978 ever



< A

Source: IRSN. Commons duplicated, generic excluded. INES1 = 2 736 event



November 17th, 2016

э





- Safety:  $\mathbb{P}(E = 1)$
- Data: (E, O, D) = (1, 1, 1)



- Safety:  $\mathbb{P}(E = 1)$
- Data: (*E*, *O*, *D*) = (1, 1, 1)
- Observed variations may be due to:
  - better detection abilities
  - better transparency



- Safety:  $\mathbb{P}(E = 1)$
- Data: (E, O, D) = (1, 1, 1)
- Observed variations may be due to:
  - better detection abilities
  - better transparency
- How to relate variations in annual counts of events per reactor to their safety levels?

Selection Systematically Detected and Declared (SDD) events: Automatic shut-downs (ASD) Safeguard systems (SFG)

Identification Variations necessarily due to safety ASD and SFG subject to constant criteria

Covariates Technology, reactor age, calendar time Station Size, maintenance days First-of-a-kind, first-of-a-site

| Variable | Definition                                    | Mean   | Std. Dev. |
|----------|-----------------------------------------------|--------|-----------|
| ASD      | Automatic shut-downs declared per R.Y         | 1.138  | 1.242     |
| SFG      | Unplanned use of safeguard mechanisms per R.Y | 0.391  | 0.701     |
| ALL      | All events declared per R.Y                   | 12.290 | 5.094     |



æ

$$\mathbb{E}(Y|\mathbf{X}) = \exp\left(\beta \cdot \mathbf{X} + \gamma \cdot \mathbf{AGE} + \sum_{t=1998}^{2014} \mu_t \cdot \mathbb{1}_t \times \mathbf{AGE} + \sum_g \omega_g \cdot \mathbb{1}_g \times \mathbf{AGE}\right) + \epsilon$$

- Model specifications
  - Poisson vs. Neg. Bin. (NB1 & NB2)
  - Clustered std. errors at site and reactor level
  - No reactor fixed-effects
- Robustness checks
  - Several definitions of age
  - Several technology groups

# Results: negative binomial for ASD and SFG

| Variables                      | ASD       | SFG      |
|--------------------------------|-----------|----------|
| RSize                          | -0.036    | -0.18*** |
| AGE                            | 0.14***   | 0.16***  |
| 1300 MW                        | 0.82**    | 1.26**   |
| 1450 MW                        | 2.38***   | 2.49***  |
| $1300 \times AGE$              | -0.029**  | -0.012   |
| $1450 \times AGE$              | -0.15***  | -0.099*  |
| FoaS                           | -0.034    | -0.39    |
| FoaK                           | -0.090    | -0.086   |
| $FoaS{	imes}AGE$               | -0.0079   | 0.0056   |
| $FoaK \times AGE$              | 0.014     | 0.021    |
| 111998×AGE                     | -0.024*   | -0.024   |
| $\mathbb{1}_{1999} \times AGE$ | -0.035*** | -0.035   |
| 1 <sub>2000</sub> ×AGE         | -0.040*** | -0.047** |

Site-clustered standard errors 1,042 observations

| Variables                      | ASD       | SFG       |
|--------------------------------|-----------|-----------|
| 12001×AGE                      | -0.030**  | -0.049**  |
| $1_{2002} \times AGE$          | -0.038*** | -0.042**  |
| $1_{2003} \times AGE$          | -0.036*** | -0.073*** |
| $1_{2004} \times AGE$          | -0.054*** | -0.10***  |
| $1_{2005} \times AGE$          | -0.059*** | -0.071**  |
| $1_{2006} \times AGE$          | -0.058*** | -0.13***  |
| $1_{2007} \times AGE$          | -0.063*** | -0.11***  |
| $1_{2008} \times AGE$          | -0.094*** | -0.16***  |
| $1_{2009} \times AGE$          | -0.071*** | -0.095**  |
| $\mathbb{1}_{2010} \times AGE$ | -0.081*** | -0.12***  |
| $\mathbb{1}_{2011} \times AGE$ | -0.082*** | -0.11***  |
| $\mathbb{1}_{2012} \times AGE$ | -0.088*** | -0.10***  |
| $\mathbb{1}_{2013} \times AGE$ | -0.082*** | -0.12***  |
| $\mathbb{1}_{2014} \times AGE$ | -0.082*** | -0.11***  |

ommitted intercept \*\*\* p<0.01, \*\* p<0.05, \* p<0.1

R. Bizet (Mines ParisTech)

November 17th, 2016

# Results: negative binomial for ASD and SFG

| Variables                      | ASD       | SFG      |
|--------------------------------|-----------|----------|
| RSize                          | -0.036    | -0.18*** |
| AGE                            | 0.14***   | 0.16***  |
| 1300 MW                        | 0.82**    | 1.26**   |
| 1450 MW                        | 2.38***   | 2.49***  |
| 1300×AGE                       | -0.029**  | -0.012   |
| $1450 \times AGE$              | -0.15***  | -0.099*  |
| FoaS                           | -0.034    | -0.39    |
| FoaK                           | -0.090    | -0.086   |
| $FoaS{	imes}AGE$               | -0.0079   | 0.0056   |
| $FoaK \times AGE$              | 0.014     | 0.021    |
| 1 <sub>1998</sub> ×AGE         | -0.024*   | -0.024   |
| $1_{1999} \times AGE$          | -0.035*** | -0.035   |
| $\mathbb{1}_{2000}{\times}AGE$ | -0.040*** | -0.047** |
|                                |           |          |

- Older reactors declare more ASDs
- Small compared to  $\beta_{P1450}$
- New types declare more ASDs, but are less affected by AGE

Site-clustered standard errors 1,042 observations

November 17th, 2016

# Results: negative binomial for ASD and SFG

- The effect of AGE decreases over time
- For a given year: more ASD in older reactors
- Differences across age flatten over time

| Variables                      | ASD       | SFG       |
|--------------------------------|-----------|-----------|
| $\mathbb{1}_{2001} \times AGE$ | -0.030**  | -0.049**  |
| $1_{2002} \times AGE$          | -0.038*** | -0.042**  |
| $1_{2003} \times AGE$          | -0.036*** | -0.073*** |
| $1_{2004} \times AGE$          | -0.054*** | -0.10***  |
| $1_{2005} \times AGE$          | -0.059*** | -0.071**  |
| $1_{2006} \times AGE$          | -0.058*** | -0.13***  |
| $1_{2007} \times AGE$          | -0.063*** | -0.11***  |
| $1_{2008} \times AGE$          | -0.094*** | -0.16***  |
| $1_{2009} \times AGE$          | -0.071*** | -0.095**  |
| $1_{2010} \times AGE$          | -0.081*** | -0.12***  |
| $\mathbb{1}_{2011} \times AGE$ | -0.082*** | -0.11***  |
| $\mathbb{1}_{2012} \times AGE$ | -0.088*** | -0.10***  |
| $\mathbb{1}_{2013} \times AGE$ | -0.082*** | -0.12***  |
| $\mathbb{1}_{2014} \times AGE$ | -0.082*** | -0.11***  |

ommitted intercept \*\*\* p<0.01, \*\* p<0.05, \* p<0.1

Transparency What about the rest of the dataset?

Strategy Adapted from Rose (1990) Run similar regressions on two datasets One characterized by subjective declarations If similar results, subjectivity can be neglected

Adaptation New dependant variable: all events declared per R.Y Compare to previous results Results no longer significant

| Variables                      | ASD       | ALL      |  |
|--------------------------------|-----------|----------|--|
| RSize                          | -0.036    | 0.0057   |  |
| AGE                            | 0.14***   | 0.014    |  |
| 1300 MW                        | 0.82**    | 0.067    |  |
| 1450 MW                        | 2.38***   | 0.35     |  |
| 1300×AGE                       | -0.029**  | 0.0048   |  |
| $1450 \times AGE$              | -0.15***  | 0.011    |  |
| FoaS                           | -0.034    | 0.042    |  |
| FoaK                           | -0.090    | -0.19*   |  |
| $FoaS{	imes}AGE$               | -0.0079   | -0.0028  |  |
| $FoaK \times AGE$              | 0.014     | 0.013**  |  |
| $\mathbb{1}_{1998} \times AGE$ | -0.024*   | -0.014** |  |
| $\mathbb{1}_{1999} \times AGE$ | -0.035*** | 0.011*   |  |
| $\mathbb{1}_{2000}{\times}AGE$ | -0.040*** | 0.0071   |  |
| Cite alwatened attaind and     |           |          |  |

Site-clustered standard errors 1,042 observations

| Variables                      | ASD       | ALL     |
|--------------------------------|-----------|---------|
| $1_{2001} \times AGE$          | -0.030**  | 0.00084 |
| $1_{2002} \times AGE$          | -0.038*** | 0.015** |
| $\mathbb{1}_{2003} \times AGE$ | -0.036*** | 0.020** |
| $1_{2004} \times AGE$          | -0.054*** | -0.0037 |
| $1_{2005} \times AGE$          | -0.059*** | 0.0051  |
| $1_{2006} \times AGE$          | -0.058*** | 0.0076  |
| $1_{2007} \times AGE$          | -0.063*** | 0.0068  |
| $1_{2008} \times AGE$          | -0.094*** | 0.0047  |
| $1_{2009} \times AGE$          | -0.071*** | 0.0093  |
| $\mathbb{1}_{2010} \times AGE$ | -0.081*** | 0.0017  |
| $\mathbb{1}_{2011} \times AGE$ | -0.082*** | 0.0070  |
| $\mathbb{1}_{2012} \times AGE$ | -0.088*** | 0.0083  |
| $\mathbb{1}_{2013} \times AGE$ | -0.082*** | 0.0072  |
| $\mathbb{1}_{2014} \times AGE$ | -0.082*** | 0.0014  |

ommitted intercept \*\*\* p<0.01, \*\* p<0.05, \* p<0.1

R. Bizet (Mines ParisTech)

November 17th, 2016

# Conclusion and policy implications

• Safety decreases slightly with age, progress over time

- Impact is small when compared to technology groups
- Impact is decreasing over time
- Robust across two different categories of events
- Yet, test does not allow to neglect propensity to declare

# Conclusion and policy implications

• Safety decreases slightly with age, progress over time

- Impact is small when compared to technology groups
- Impact is decreasing over time
- Robust across two different categories of events
- Yet, test does not allow to neglect propensity to declare
- Current research and policy implications
  - An alternative way to monitor nuclear safety
  - Importance of technology in debates regarding safety
  - Follow up: What policy to increase transparency?

# Thank you for your attention !

References and additional information

- www.cerna.mines-paristech.fr/nuclearpower/
- www.cerna.mines-paristech.fr/bizet/

#### The French nuclear fleet



| Operation<br>Discipline   | Installation<br>Conformity     | Maintenance<br>Interventions | Event<br>Severity                  | Safety<br>Analysis         |
|---------------------------|--------------------------------|------------------------------|------------------------------------|----------------------------|
| Domain Exits              | Safeguard system<br>failures   | Preparedness<br>defaults     | Unplanned use of safeguard systems | Learning<br>failures       |
| Group1 events             | Qualification<br>losses        | Execution<br>failures        | Entries in SAM                     | Inappropriate declarations |
| Recuperation<br>failures  | Trial failures                 | Surveillance<br>failures     | Transitory states                  |                            |
| Operation<br>failures     | Maintenance<br>scheme failures | Requalification defaults     | Common cause<br>failures           |                            |
| Surveillance<br>defaults  |                                |                              | Triggering events                  |                            |
| Configuration<br>failures |                                |                              | Remarkable events<br>(IRSN)        |                            |
| Control failures          |                                |                              |                                    |                            |
| Gusts of events           |                                |                              |                                    |                            |

글 > : < 글 >

3

- Cason, T. N., Friesen, L., and Gangadharan, L. (2016). Regulatory performance of audit tournaments and compliance observability. *European Economic Review*, 85:288–306.
- Dionne, G. and Vanasse, C. (1992). Automobile insurance ratemaking in the presence of asymmetrical information. *Journal of Applied Econometrics*, 7(2):149–165.
- Feinstein, J. S. (1989). The safety regulation of u.s. nuclear power plants: Violations, inspections and abnormal occurences. *Journal* of *Political Economy*, 97:115–154.
- Hausman, C. (2014). Corporate incentives and nuclear safety. American Economic Journal: Economic Policy, 6(3):178–206.

- Hofert, M. and Wüthrich, M. V. (2011). Statistical review of nuclear power accidents. *Asia-Pacific Journal of Risk and Insurance*, 7:1–13.
- Macho-Stadler, I. and Pérez-Castrillo, D. (2006). Optimal enforcement policy and firms' emissions and compliance with environmental taxes. *Journal of Environmental Economics and Management*.
- Rabl, A. and Rabl, V. A. (2013). External costs of nuclear: Greater or less than the alternatives? *Energy Policy*, pages 575–584.
- Rangel, L. E. and Lévêque, F. (2014). How fukushima dai-ichi core meltdown changed the probability of nuclear accidents ? Safety Science, 64:90–98.

- Rose, N. L. (1990). Profitability and product quality: Economic determinants of airline safety performance. *Journal of Political Economy*, 98(5):944–964.
- Wheatley, S., Sovacool, B. K., and Sornette, D. (2016a). Of disasters and dragon kings: a statistical analysis of nuclear power incidents and accidents. *Risk analysis*.
- Wheatley, S., Sovacool, B. K., and Sornette, D. (2016b). Reassessing the safety of nuclear power. *Energy Research & Social Science*, 15:96–100.