



# Embargo of Russia Energy


Marc Vielle, (EPFL) Sigit Perdana, (EPFL) Maxime Schenckery, (IFPEN-IFP School)

Séminaire PSL de recherches en économie de l'énergie

Feb 2023





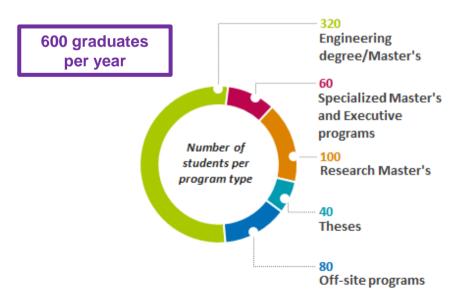


### MAXIME SCHENCKERY

#### **2018-... IFPEN - IFP SCHOOL Director Center for Energy Economics and Management**

- Professor IFPEN in Energy Economics
- Visiting lecturer Energy Geopolitics: Ponts, CNAM, ESSEC, University of Paris-Saclay
- Visiting lecturer Energy Transition Economics: Audencia, BI Norway, University of Paris-Saclay
- 2016-18 CEO ePwak Energy Research
- 2010-15 Head of Market Analysis and Forecast at Qatar Petroleum Corporate Strategy
- 2005-2010 Senior Advisor for Oil and Gas in Houston based French Consulate
- 2002-2005 Assistant Professor at IFP School
- 1997- 2002 Manager Ernst and Young Consulting Fi System Internet consulting
- 1994-1997 Knowledge Manager Schlumberger
- 1994 Doctorate in Economics Industrial Organization




Center for Energy Economics and Management (CEEM)

- 150 graduate students in 2021-22. (https://www.ifp-school.com/en)
- Two international Masters taught in English
  - Master of Sciences in Energy Technology Economics and Management
  - Executive Master of Management in Energy in partnership with BI
    Norwegian Business School
- A Master of Sciences in « Energy and Markets » with partners from energy and environment as well as trading and finance.
- **A Master in Transportation, Environmental and Energy Economics** in partnership with the Paris-Saclay University (AgroParisTech, Centrale Supelec, Ensta ParisTech, INSTN), Paris-Nanterre University, and Ecole des Ponts ParisTech.
- Supervision of doctoral theses in energy economics
- The economic touch to **Massive Open Online Courses** (MOOCs) and other internet based education on energy innovation, sustainable mobility and responsible resources (<u>https://www.ifp-school.com/en/programs/mooc</u>).

# **IFP SCHOOL**

IFP School is an engineering school specializing in energy innovation and sustainable mobility.

- 17 high-level programs tailored to industry's and society's needs and leading to internationallyrecognized degrees
- adapted to the needs of the energy and transport sectors
- for graduates with 4 or 5 years of higher education



# IFP ENERGIES NOUVELLES (IFPEN)

### ● IFP School is part of IFP Energies Nouvelles

Around 1,650 people

● 280M€ budget

### • A **public-sector** research & innovation center

• Over 50 job fields, from geologists to engine technicia

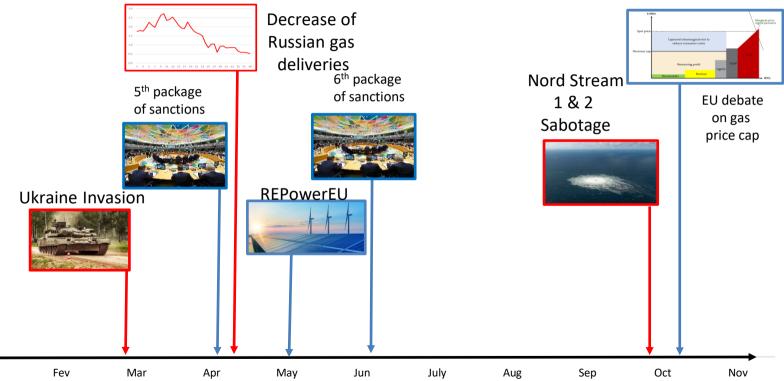
- Above 11,000 active patents
- World class scientific recognition

### Major industrial achievements

• 1,600 industrial references

• Spin-off subsidiaries employing > 25,000 persons

This institution punches well above its weight in terms of both scientific recognition and industrial relevance




Prof. Yves Chauvin (Nobel Prize 2005)





## TIMELINE OF EUROPEAN ENERGY EVENTS RELATED TO THE UKRAINE INVASION





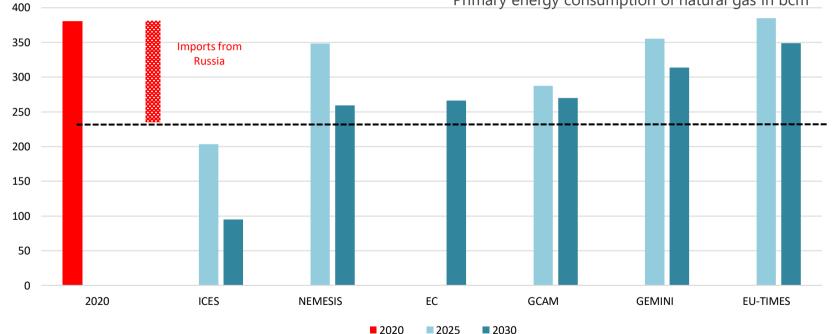
Jan

### **RESEARCH AIM, METHODS & SCENARIO DEVELOPMENT**

• <u>Research Question</u>: What are the impacts of cutting Russian fossil energy imports considering the fit for 55 Package?

The reference scenario assumes that the fit for 55 package is implemented (i.e. -55% of GHG emissions in 2030) and benefits from Paris Reinforce runs

• We use the GEMINI-E3 where EU27+UK and Russia are represented


• Timeframe 2022 – 2030



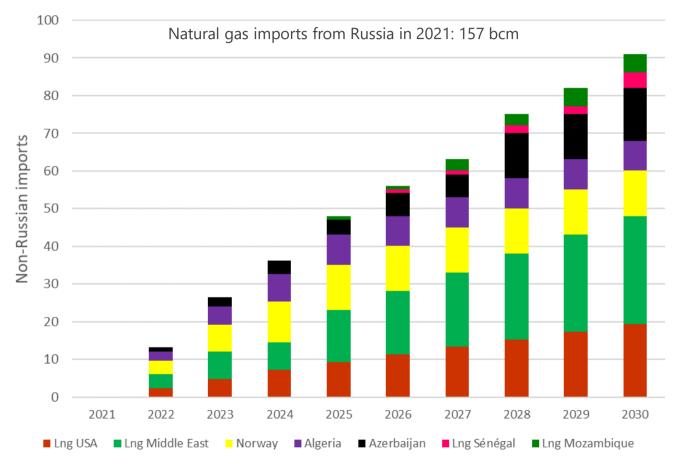
# EU GAS CONSUMPTION WITHIN THE FIT FOR 55

#### Insights from Paris Reinforce runs Scenario NZE EU Policy standard

Primary energy consumption of natural gas in bcm






### SCENARIO DESIGN

- Current Policies scenarios: NZE EU Policy Standard with two European CO2 prices
- No gas embargo: 5th and 6th packages of energy restrictive measures are implemented
- Full embargo: No gas embargo + embargo on natural gas
- Limited gas embargo: No gas embargo + only 80 bcm of Russian gas import
- Short term embargo: Limited gas embargo but with an additional assumption of war ending in 2025 and returning of energy deliveries

• All scenarios deliver a level of emissions compatible with Fit for 55



# ASSUMPTIONS ON ADDITIONAL GAS IMPORT CAPACITIES





# NO GAS EMBARGO SCENARIO

#### Table 3

No gas embargo scenario - EU28.

| <u> </u>                               |        |        |        |        |        |
|----------------------------------------|--------|--------|--------|--------|--------|
|                                        | 2022   | 2023   | 2024   | 2025   | 2030   |
| GDP <sup>a</sup>                       | -0.08% | -0.24% | -0.22% | -0.19% | -0.16% |
| Welfare <sup>b</sup>                   | -0.46% | -0.82% | -0.83% | -0.79% | -0.66% |
| Energy consumption <sup>a</sup>        |        |        |        |        |        |
| Coal                                   | 6.6%   | -1.6%  | 0.3%   | 0.7%   | -4.7%  |
| Natural gas                            | -11.4% | 1.9%   | 2.1%   | 3.1%   | 2.3%   |
| Petroleum products                     | -0.7%  | -4.6%  | -3.9%  | -2.8%  | -2.0%  |
| Electricity                            | -0.7%  | 0.2%   | 0.7%   | 0.7%   | 1.3%   |
| Wholesale energy price <sup>a</sup>    |        |        |        |        |        |
| Coal                                   | 10.6%  | 26.9%  | 27.8%  | 28.0%  | 29.9%  |
| Natural gas                            | 19.4%  | 1.5%   | 1.7%   | 2.2%   | 1.5%   |
| Petroleum products                     | 2.5%   | 12.8%  | 12.2%  | 11.0%  | 10.6%  |
| Electricity                            | 2.1%   | -0.5%  | -1.6%  | -1.4%  | -2.2%  |
| CO <sub>2</sub> ETS price <sup>c</sup> | 52     | 62     | 79     | 92     | 113    |
| CO <sub>2</sub> ESR price <sup>c</sup> | 0      | 0      | 0      | 0      | 146    |
|                                        |        |        |        |        |        |

<sup>a</sup>In percentage relative to the current policies scenario.

<sup>b</sup>In percentage of households' consumption expenditure.

11 | <sup>©</sup> <sup>2</sup> <sup>c</sup>In US\$<sub>2014</sub>.



### NO GAS EMBARGO SCENARIO: MACRO-ECONOMIC IMPACTS

• European GDP: -0.19% in 2025 and -0.16% in 2030

• Welfare cost: -0.79% of household consumption in 2025 (-0.66 in 2030)

Cumulative European welfare cost is evaluated to 1521\$ (2021) per European resident from 2022 to 2030



# FULL EMBARGO SCENARIO

#### Table 4

Full embargo scenario - EU28.

|                                        | 2022   | 2023   | 2024   | 2025   | 2030   |
|----------------------------------------|--------|--------|--------|--------|--------|
| GDP <sup>a</sup>                       | -0.10% | -0.46% | -0.43% | -0.38% | -0.16% |
| Welfare <sup>b</sup>                   | -0.52% | -1.81% | -1.74% | -1.61% | -1.29% |
| Energy consumption <sup>a</sup>        |        |        |        |        |        |
| Coal                                   | 7.9%   | 22.9%  | 24.0%  | 26.2%  | 15.9%  |
| Natural gas                            | -13.4% | -33.2% | -31.9% | -30.4% | -24.3% |
| Petroleum products                     | -0.7%  | -4.1%  | -3.4%  | -2.3%  | 1.1%   |
| Electricity                            | -0.9%  | -2.2%  | -1.7%  | -0.3%  | 1.0%   |
| Wholesale energy price <sup>a</sup>    |        |        |        |        |        |
| Coal                                   | 11.1%  | 36.5%  | 36.6%  | 36.7%  | 37.7%  |
| Natural gas                            | 23.1%  | 76.6%  | 74.4%  | 69.3%  | 63.8%  |
| Petroleum products                     | 2.5%   | 14.1%  | 13.3%  | 11.9%  | 12.3%  |
| Electricity                            | 2.6%   | 7.2%   | 5.4%   | 2.0%   | 1.0%   |
| CO <sub>2</sub> ETS price <sup>c</sup> | 51     | 43     | 61     | 75     | 106    |
| $CO_2$ ESR price <sup>c</sup>          | 0      | 0      | 0      | 0      | 47     |

<sup>a</sup>In percentage wrt to the current policies scenario.

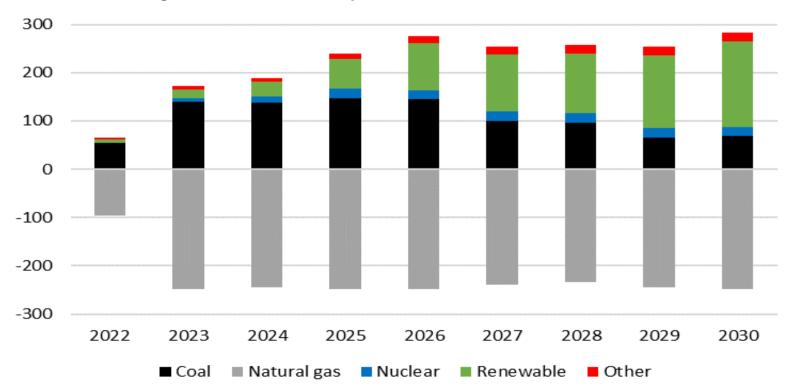
<sup>b</sup>In percentage of households' consumption expenditure.

```
<sup>c</sup>In US$<sub>2014</sub>.
```

13



• Wholesale gas price increase: +69% in 2025, +64% 2030


In 2025, European gas consumption decrease by 134 bcm (87 bcm in 2030): Electricity generation -51, residential -31, energy intensive industries -21, other sectors -31

• Natural gas partly replaced by coal (+26% in 2025) domestically produced and imported

• Embargo moderates CO2 ESR price, and have less impact on CO2 ETS price



# FULL EMBARGO SCENARIO: ENERGY IMPACTS EU ELECTRICITY GENERATION TOWARDS RENEWABLES

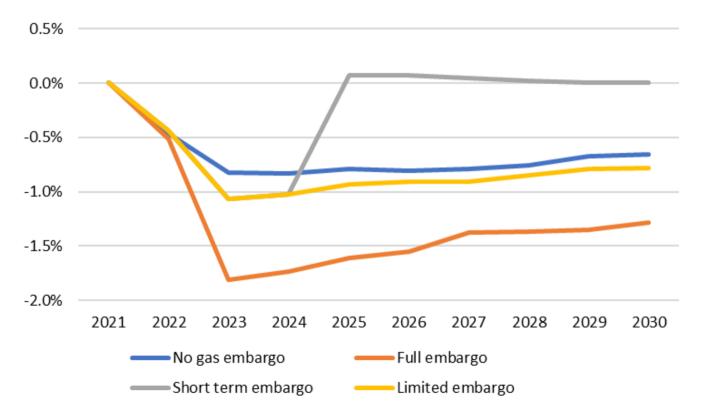


Change in TWh wrt to current policies scenario



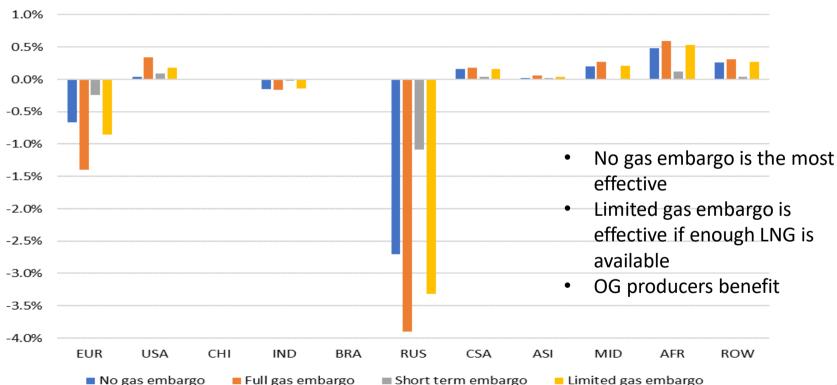
### FULL EMBARGO SCENARIO: MACRO-ECONOMIC IMPACTS

• European GDP: -0.38% in 2025 and -0.16% in 2030


• Welfare cost: -1,61% of household consumption in 2025 (-1,29% in 2030)

Cumulative European welfare cost is evaluated to 3205\$ (2021) per European resident from 2022 to 2030



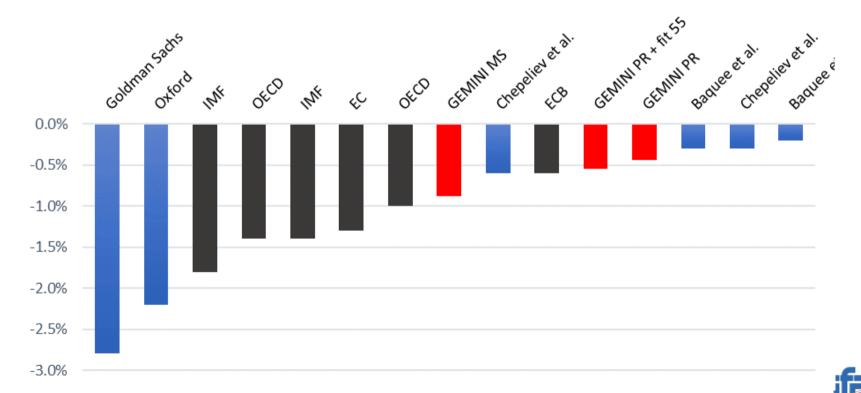

# COMPARISON BETWEEN SCENARIOS

**European welfare change in % of household consumption** 





# WELFARE CHANGE IN OTHER REGIONS




Cumulative welfare change in % of Households consumption



## COMPARISON WITH OTHER STUDIES

**Short term European GDP loss in %** 



### MAIN FINDINGS AND POLICY IMPLICATIONS

- The cost of current EU 5th and 6th energy restriction packages is substantial (=1521 \$2021 per European resident)
- An embargo on natural gas doubles this cost
- Coal plays a significant role in short term especially in electricity generation due to substitution
- Embargo is always detrimental to Russia but full gas embargo costs more to EU than to Russia

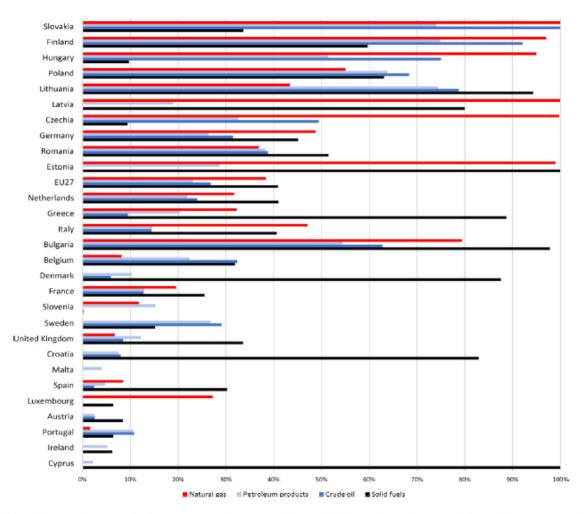
#### Policy implications

- Supply side: Diversification & overcoming bottlenecks  $\rightarrow$  investment in natural gas infrastructure
- Demand side: Demand adjustment
- Solidarity between Member States
- Weaponisation but cutting as well as by reestabishing
- Limits and going further:
  - Cost burden sharing introduction
  - Infrastructure bottlenecks introduction








PARIS REINFORCE final event, Sorbonne, Paris, November 15, 2022

#### The cost of phasing out Russian fossil fuels

Marc Vielle, Sigit Perdana (*Ecole Polytechnique Fédérale de Lausanne*) and Maxime Schenckery (*IFPEN*)



www.paris-reinforce.eu





22 | © 2021 IFPEN

Fig. 1. Share of Russian imports in fossil energy imports by country (%) year 2020 (sorted according to total share of Russian energy imports). Source: Eurostat Database.

### LINK TO ARTICLE

https://www.sciencedirect.com/science/article/pii/S2211467X22002000

