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Abstract

This article formally analyzes the various corrective mechanisms that have been proposed and

implemented to alleviate underinvestment in electric power generation. It yields three main analyt-

ical �ndings. First, physical capacity certi�cates markets implemented in the United States restore

optimal investment if and only if they are supplemented with a "no short sale" condition, i.e., pro-

ducers can not sell more certi�cates than they have installed capacity. Then, they raise producers�

pro�ts beyond the imperfect competition level. Second, �nancial reliability options, proposed in

many markets, are e¤ective at curbing market power, although they fail to fully restore investment

incentives. If "no short sale" conditions are added, both physical capacity certi�cates and �nancial

reliability options are equivalent. Finally, a single market for energy and operating reserves subject

to a price cap is isomorphic to a simple energy market. Standard peak-load pricing analysis applies:

under-investment occurs, unless production is perfectly competitive and the cap is never binding.

This analysis highlight the limitations of the corrective mechanisms. This suggest that policy

makers should �rst and foremost control and reduce the exercise of market power, then use these

mechanisms as interim remedial measures.

Keywords: imperfect competition, market design, investment incentives

JEL Classi�cation: L13, L94

1



1 Introduction

An essential objective of the restructuring of the electric power industry in the 1990s was to "push to

the market" decisions and risks associated with investment in power generation, i.e., to have market

forces, not bureaucrats, determine how much investment is required, and to have investors, not rate-

payers, bear the risk of excess capacity, construction cost overruns and delays.

However, since the early 2000s, generation adequacy has become an issue of concern for policy

makers, power System Operators (SOs), and economists. It would appear that, contrary to the initial

belief, the "market" does not necessarily provide for the adequate level of generation capacity. Britain,

that pioneered the restructuring of the electricity industry in 1990, constitutes the most recent and

striking example: Ofgem, the energy regulator warns of possible power shortages around 2015 (Ofgem

(2010)).

Operating and regulatory practices aimed at preventing the exercise of market power are often

considered to be the primary cause of this "market failure". As shown in Marcel Boiteux (1949)�s

seminal analysis, high prices in some states of the world are required to �nance the optimal capacity.

However, in most jurisdictions SOs impose de jure or de facto price caps, that deprive producers of

these high prices. This revenue loss, called "missing money", is considered an important driver of

underinvestment in generation (Joskow (2007)).

Therefore, SOs and policy makers worldwide have designed and implemented a variety of mech-

anisms to correct this apparent "market failure" (Finon and Pignon (2008)). For example, most

US power markets have adopted highly structured and prescriptive physical certi�cates markets, and

many European countries are considering, designing or implementing capacity mechanisms1.

These mechanisms are extremely complex, hence expensive to set up and run. Furthermore, they

constitute a partial reversion towards central planning, which restructuring precisely attempted to

eliminate: using a centralized system reliability model, the SO sets a generation capacity target, and

organizes its procurement. Risk of overcapacity is borne by consumers, while risk of cost overrun is

borne by investors. A rigorous economic analysis of the performance of the various market designs

implemented by SOs to restore investment incentives is therefore required. This is the objective of

1France formally instituted a capacity obligation mechanism in March 2012, to be e¤ective in 2015. Britain, Germany,
and Belgium are designing mechanisms to ensure adequate capacity.
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this article. I am not aware of any previous systematic analytical comparison of these designs.

This work draws on a rich literature, that can be structured along two themes. A �rst group of

articles examines generation investment in restructured power markets. While these works di¤er in

important aspects, most model two stage games: in stage 1, producers decide on installed capacity;

in stage 2 they produce and sell in the spot markets, subject to the installed capacity constraint. For

example, Borenstein and Holland (2005) and Joskow and Tirole (2007), building on Boiteux (1949)

and Crew and Kleindorfer (1976), have developed the "benchmark" model of optimal investment and

production when (i) demand is uncertain at the time the investment decision is made, and (ii) a

fraction of the demand does not react to price. The former article considers the perfect competition

case, while the latter introduces some elements of imperfect competition. Murphy and Smeers (2005)

have developed models of closed- and open-loop Cournot competition at the investment and spot

market stages, and characterized the equilibria of these games. Boom (2009) has examined the impact

of vertical integration on equilibrium investment, while Fabra et al. (2011) have examined the impact of

the structure of the auction in the spot market on the equilibrium investment. A more recent literature

(e.g., Garcia and Shen (2010)) examine multiperiod investment decisions. This article builds on the

two-stage Cournot game formalized in Zöttl (2011).

A second group of works describes and analyzes the possible "corrective" mechanisms2. Stoft

(2002) discusses average Value of Lost Load (V oLL) pricing, Hogan (2005) proposes an energy cum

operating reserves markets, and Cramton and Stoft (2006 and 2008) and Cramton and Ockenfels (2011)

propose a �nancial reliability options mechanism3. Joskow and Tirole (2007) show that a capacity

market and a price cap do not restore the �rst best with more than two states of the world. Chao and

Wilson (2005) examine the impact of options on spot market equilibrium, investment, and welfare.

Zöttl (2011) determines the welfare maximizing price cap in the spot market. However, none of these

works presents a rigorous comparison of these mechanisms in a general and common setting.

This article bridges these two strands of literature, that analyzes the proposals described in the

second group of articles using a rigorous economic model developed in the �rst group: an extension of

the two-stage Cournot model developed by Zöttl (2011) to include both "price reactive" customers and

2Since these mechanisms are described extensively in the article, they are not developped further here.
3Strictly speaking, these options ensure "resource adequacy", not "reliability". Nevertheless, I use the word "reliability

options" as it was the term used in the original Cramton and Stoft articles.
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"constant price customers", the latter being unable to react to spot energy prices and being rationed

in some instances (Borenstein and Holland (2005), Joskow and Tirole (2007), Stoft (2002), and Hogan

(2005)). Its contribution is to propose clear policy recommendations, building on the economic analysis

of these mechanisms. While this work�s primary focus is the electric power industry, the analysis

presented here can serve as a basis to examine (under)investment issues in other industries where

participants must select capacity in the presence of signi�cant demand variability and uncertainty and

limited storage possibilities, for example telecommunications and transport networks.

This article yields three main analytical �ndings. First, I examine the equilibrium of markets

where energy and forward physical installed capacity certi�cates are separately exchanged. This is

the case for example in the Northeast of the United States: 3 to 5 years ahead, the SO procures

from producers physical capacity certi�cates (usually 15 to 20% higher than anticipated peak load

to protect against supply and demand �uctuations). The cost of these purchases is then passed on

to customers. Proposition 1 shows that the SO must impose a "no short sale" requirement, i.e.,

require producers to sell less certi�cates than have installed capacity (or to build as much capacity

as they have sold certi�cates). If she does, a physical capacity certi�cates market restores investment

incentives: the resulting capacity installed is optimal. For a given price cap, social welfare is thus

maximized. However, producers pro�ts are higher than the imperfect competition outcome without

the capacity market. Numerical illustration suggests the additional rent from the capacity market is

not negligible, that ranges ranges between 10 to 16% of the investment cost.

Second, I analyze the equilibrium of another form of forward markets, where producers are required

to sell, through the SO, �nancial call options to customers, covering all the demand up to a certain

level at a given strike price. Option sellers pay customers the di¤erence between the actual spot energy

price and the strike price (Oren (2005), Cramton and Stoft (2006 and 2008), Cramton and Ockenfels

(2011)).

Proposition 2 proves that options sale reduces but does not eliminate market power. Installed

capacity is higher with options sale than without, but still lower than socially optimal. To ensure

optimal investment, the SO must again impose a "no short sale" requirement. If she does, Proposition

3 shows that �nancial reliability options and physical capacity certi�cates with the "no short sale"

conditions are equivalent if the "technical" parameters are identical (e.g., if the option strike price
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equals the wholesale price cap). Reliability options thus also sur-remunerate strategic underinvestment.

While Propositions 2 and 3 are consistent with Chao and Wilson (2005) and Allaz and Villa (1993)�s

theoretical analysis of the interaction between forward and spot markets, they are new to the literature.

Finally, I consider the "energy cum operating reserves market" proposed by Hogan (2005). SOs

procure operating reserves to protect against an unplanned generation outage. Hogan (2005) proposes

the SO balances supply against demand for energy and operating reserves, using the average V oLL

as a price cap. Producers receive additional revenues since: (i) the resulting power price is higher than

when the SO balances supply against demand for energy alone, and (ii) capacity providing operating

reserves �but no energy �is remunerated. This additional revenue is expected to resolve the missing

money problem, hence restores investment incentives. However, Proposition 4 shows this intuition is

invalid: since these additional revenues are already accounted for in the determination of the installed

capacity, the situation is isomorphic to standard peak-load pricing.

Each of these three mechanisms is examined individually in this article, while they may be imple-

mented jointly in practice. For example, most US markets have a physical certi�cate mechanism and

co-procurement of energy and operating reserves.

The analysis yields clear policy recommendations. If policy makers and the SO are con�dent a

market is su¢ ciently competitive, as may be the case in Texas, there is no need to impose a price

cap and set up a forward capacity market (physical or �nancial), which are complex and costly to

administer. Average V oLL pricing or an energy cum operating reserves market are simple to set up

and, if the V oLL used is close enough to the real V oLL, cause limited distortion compared to the

optimum. Furthermore, an energy cum operating reserves market remunerates �exibility, an important

issue which is not covered in this work.

On the other-hand, policy makers may determine that generation is insu¢ ciently competitive in

their jurisdiction. This may be the case in European markets, where in most markets less than 10

generation companies actually compete. This may also be the case where congestion on the trans-

mission grid separates the market in smaller submarkets, and producers may be able to exert local

market power. Then, policy makers should set up a (physical or �nancial) forward capacity market

as an interim measure while removing barriers to competition.
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The article is structured as follows. Section 2 presents the model structure and examines the causes

of underinvestment. Section 3 examines markets for physical installed capacity certi�cates. Section 4

analyzes �nancial reliability options. Section 5 analyzes the "energy cum operating reserves market".

Finally, Section 6 suggests future research directions. Technical proofs are included in the Appendix.

2 Underinvestment

The model used throughout this article is developed in Léautier (2013), building on the analysis

presented by Zöttl (2011). This Section presents its main features and conclusions. The interested

reader is referred to Léautier (2013) for a comprehensive presentation of the model.

2.1 Model structure

Uncertainty Uncertainty is an essential feature of power markets. In this work, demand uncertainty

is explicitly modeled, while production uncertainty is taken into account implicitly through operating

reserves (presented in Section 5). This representation is suitable for markets that rely mostly on

controllable generation technologies, such as thermal and nuclear (see for example Chao and Wilson

(1987)). Extension to markets where intermittent sources constitute an important portion of the

generation portfolio is left for further work.

The number of possible states of the world is in�nite, and these are indexed by t 2 [0;+1). The

functions f (t) and F (t) are respectively the ex ante probability and cumulative density functions of

state t. Since all market participants have the same information about future demand projections and

construction plans, f (t) and F (t) are common to all stakeholders.

Supply This article considers a single generation technology, characterized by marginal cost c > 0

and investment cost4 r. A single technology is su¢ cient to analyze total installed capacity, that

depends solely on the characteristics of the marginal technology (see for example Boiteux (1949) for

the perfect competition case and Zöttl (2011) for the imperfect competition case).

Underlying demand
4Both are expressed in e=MWh. r is the annual capital cost expressed in e=MW=year divided by 8; 760 hours. It

includes the cost of risk.
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Assumption 1 All customers have the same underlying demand D (p; t) in state t, where p the electric

power price, up to a scaling factor.

Assumption 1 greatly simpli�es the derivations, while preserving the main economics insights.

Inverse demand is P (q; t) de�ned by D (P (q; t) ; t) = q, and gross consumers surplus is S (p; t) =R D(p;t)
0 P (q; t) dq. P (q; t) is downward sloping: Pq (q; t) < 0. States of the world are ordered by

increasing demand: Pt (q; t) > 0.

Constant price customers, curtailment, and Value of Lost Load Only a fraction � > 0 of

customers face and react to real time wholesale price ("price reactive" customers), while the remain-

ing fraction (1� �) of customers face constant price pR in all states of the world ("constant price"

customers).

Since a fraction of customers does not react to real time price, there may be instances when the

SO has no alternative but to curtail demand, i.e., to interrupt supply. As discussed for example in

Joskow and Tirole (2007), there exists multiple rationing technologies. Curtailment is represented by

a serving ratio  2 [0; 1]:  = 0 represents no serving (i.e., all energy to all consumers is curtailed),

while  = 1 represents full serving (i.e., no customer is curtailed). D (p; ; t) is the demand for price

p and serving ratio  in state t, S (p; ; t) =
R D(p;;t)
0 P (q; ; t) dq is the gross consumer surplus, and

P (q; ; t) is the inverse demand for a given serving ratio : D (P (q; ; t) ; ; t) = q.

Assumption 2 The SO has the technical ability to curtail "constant price" consumers while not

curtailing "price reactive" customers.

Assumption 2 holds only partially today: most SOs can only organize curtailment by geographical

zones, and cannot di¤erentiate by type of customer. However, most price reactive customers are large

enough that they are connected directly to individual transformers or to the high voltage grid, hence

they need not be curtailed when the SO curtail constant price customers. Assumption 2 will hold fully

in a few years, when "smart meters" are rolled out, as is mandated in most European countries and

many US states. SOs will then be able to di¤erentiate among adjacent customers, on the basis of the

information provided by power suppliers.

When consumers are curtailed, the marginal Value of Lost Load (V oLL) represents the value they
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place on an extra unit of electricity (Joskow and Tirole (2007), Stoft (2002)), formally de�ned as

v (p; ; t) =

@S
@

@D
@

(p; ; t) :

If the SO knew the V oLL for every rationing technology and state of the world (and each customer

class), the second best (as de�ned in the next Section) would be achieved. In reality, regulators, SOs

and economists have little idea of the V oLL. Estimation is extremely di¢ cult, because the V oLL

varies drastically across customer classes, states of the world, and duration and conditions of outages.

Estimates vary in an extremely wide range from 2 000 $=MWh in the British Pool in the 1990s to

200 000 $=MWh (see for example Cramton and Lien (2000) and Praktiknjo and Erdmann (2012)). In

practice, the SO uses her best estimate of the average V oLL, and prioritizes curtailment by geographic

zones (economic activity, political weight, network conditions, etc.), thus implementing a third best.

Both approaches produce downward sloping demand curves, hence are analytically equivalent. In

this work, I assume the SO knows exactly the V oLL. While this assumption is highly unrealistic, it

constitutes a useful analytical benchmark.

2.2 Socially optimal consumption and investment

Optimal consumption The residual inverse demand curve with possible curtailment of constant

price customers is

� (Q; t) = P

 
Q� (1� �)D

�
pR; �; t

�
�

; t

!
; (1)

where � is the optimal serving ratio in state t for production Q.

Price reactive customers face the wholesale spot price � (Q; t), hence are never curtailed at the

optimum. O¤-peak, demand is low, and production Q (t) is determined by � (Q (t) ; t) = c. On-peak,

demand is set by installed capacity K, and the wholesale price is � (K; t).

As long as � (K; t) � v
�
pR; 1; t

�
, constant price customers are not curtailed in state t. If � (K; t) >

v
�
pR; 1; t

�
, then � < 1 is set to equalize constant price customers�V oLL and the wholesale price

v
�
pR; �; t

�
= � (K; t) :
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De�ne bt (K) the �rst state of the world when curtailment may occur5. If curtailment never occurs,bt (K) ! +1. With a slight abuse of notation, de�ne �q = 1
�Pq

�
Q�(1��)D(pR;t)

� ; t

�
if no rationing

occurs, and �q =
@v
@K = @v

@
@�

@K if rationing occurs. Léautier (2013) derives su¢ cient conditions for

� (Q; t) to be well-behaved, even when curtailment occurs.

As an illustration, suppose (i) inverse demand is linear with constant slope: P (q; t) = a (t) � bq,

and (ii) rationing anticipated and proportional: S (p; ; t) = S (p; t) and D (p; ; t) = D (p; t). If no

rationing occurs,

� (Q; t) =
a (t)� bQ� (1� �) pR

�
: (2)

Since rationing is anticipated and proportional,

v
�
pR; ; t

�
=
S
�
pR; t

�
D (pR; t)

= a (t)� b
D
�
pR; t

�
2

=
a (t) + pR

2
:

Optimal investment The marginal social value capacity is

	(K; c) =

Z +1

�t(K;c)
(� (K; t)� c) f (t) dt;

where �t (K; c) is the �rst state of the world such that price (weakly) exceeds the marginal cost for

production K

� (K; �t (K; c)) � c:

	(K; c) is decreasing in both arguments. If � (0; 0) > c + r, the optimal capacity K� is the unique

solution to

	(K�; c) = r: (3)

O¤-peak, as long as capacity is not constrained, price equals marginal cost, hence marginal capacity

generates no economic pro�t. On-peak, when capacity is constrained, price exceeds marginal cost. The

optimal capacity is set such that the marginal social value capacity is exactly equal to the marginal

capacity cost r.

If � is small, rationing of constant price customers may occur at the optimal capacity, an issue

5bt is a function of all the parameters. The notation bt (K) is used since the dependency on installed capacity K is the
most important in this analysis.

9



known as the Theoretical (capacity) Adequacy Problem (TAP ). With the speci�cation summarized

in Appendix A, Léautier (2013) �nds that rationing occurs at the optimal capacity until � = 3:9%

if the price elasticity of demand � = �0:01, and � = 13:9% if � = �0:1. This result may seem

counter-intuitive: a less elastic demand results in less curtailment! The intuition is that, for a given

�, capacity is higher when demand is more inelastic, hence, curtailment is less frequent.

If the presence of constant price customers was the only imperfection in power markets, an energy

only market design, sometimes referred to as average V oLL pricing, would be e¢ cient (Stoft (2002),

Oren (2005)): when constant price customers are curtailed, the SO pays energy at the V oLL, which

yields optimal investment (conditional on the V oLL). If the SO knew exactly the V oLL, this would

achieve a second best. Otherwise, this would yield a third best.

However, power markets are subject to other imperfections. First, competition among producers

is less than perfect. Second, producers may be risk averse, which reduces their investment. Finally,

investment decisions are dynamic and long-lived, more complex than a simple static model suggests.

This article focusses on the �rst imperfection, that examines the performance of corrective mechanisms

in a static model where agents are risk neutral. Extensions to a dynamic model and risk-averse agents

are left for further work.

2.3 Imperfect competition, price cap, and underinvestment

Consider now N producers, that play a two-stage game: in stage 1, producer n installs capacity kn; in

stage 2 he produces qn (t) � kn in the spot market in state t. Producers are assumed to compete à la

Cournot in the spot markets, facing inverse demand � (Q; t) de�ned by equation (1). Stage 2 can be

interpreted as a repetition of multiple states of the world over a given period (for example one year),

drawn from the distribution F (:).

The game is solved by backwards induction: producers �rst compute pro�ts from a Nash equilib-

rium in the energy spot market for each state of the world t, given installed capacities
�
k1; :::; kN

�
; then they make their investment choice in stage 1 based on the expectation of these spot market

pro�ts.

Aggregate production in state t and aggregate installed capacity are respectively Q (t) =
NX
n=1

qn (t)
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and K =
NX
n=1

kn. Producer�s n pro�t for the two-stage game is �n (kn;k�n) .

The results presented in this article hold for other forms of imperfect competition in the spot

market, as long they yield an equilibrium price higher than the marginal cost c, and a pro�t function

�n (kn;k�n) with the required concavity. Cournot competition is used as it provides simple analytical

expressions that can be illustrated numerically.

To limit the exercise of market power, the SO imposes a cap �pW on the wholesale power price6,

assumed to satisfy

c+ r � �pW � � (0; 0) : (4)

A price cap lower than the full marginal cost of the �rst unit of energy would block any investment.

A cap higher than the value of the �rst unit of energy consumed would have limited e¤ectiveness.

tN (K) is the �rst on-peak state of the world under imperfect competition, i.e., where the marginal

revenue for production K equals marginal cost:

�
�
K; tN (K)

�
+
K

N
�q
�
K; tN (K)

�
= c:

The aggregate capacity constraint may be binding before or after the price cap constraint in the

relevant range, i.e., tN (K) � �t
�
K; �pW

�
or tN (K) > �t

�
K; �pW

�
. Introducing constant price customers

makes tN (K) > �t
�
K; �pW

�
is a distinct possibility, in particular if the residual demand � (Q; t) is very

inelastic, i.e., if � or j�j are very low.

Léautier (2013) proves that, if certain technical su¢ cient conditions are met, the equilibrium

capacity KC
�
�pW
�
is characterized by



�
KC ; �pW

�
= r;

where 

�
K; �pW

�
is de�ned piecewise as follows:

6 In practice, most SOs in the United States impose a cap on bids into the wholesale markets, not a cap on wholesale
price. A wholesale price cap simpli�es the analysis, while preserving the main economic insights.
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1. If generation produces at capacity before the cap is reached,



�
K; �pW

�
= 
1

�
K; �pW

�
=

Z �t(K;�pW )

tN (K)

�
� (K; t) +

K

N
�q (K; t)� c

�
f (t) dt+

Z +1

�t(K;�pW )

�
�pW � c

�
f (t) dt:

2. If the price cap is reached before generation produces at capacity,



�
K; �pW

�
= 
2

�
K; �pW

�
=

Z +1

�t(K;�pW )

�
�pW � c

�
f (t) dt:

This result illustrates the two distortions that reduce investment. First, if generation produces at

capacity before the cap is reached, imperfect competition reduces the marginal value of capacity by

two terms: the reduction in pro�t on the inframarginal units as in all Cournot competition models�
K
N

R �t(K;�pW )
tN (K)

�q (K; t) f (t) dt

�
, but also the lost margin (� (K; t)� c) in the states of the world t 2�

�t (K; c) ; tN (K)
�
. Both e¤ects are negative. Second, whether the cap or the generation capacity

constraint is reached �rst, the price cap reduces the marginal value, since the SO values energy at

� (K; t), while producers receive only �pW < � (K; t). This is the "missing money" discussed for example

by Joskow (2007), and Cramton and Stoft (2006).

Léautier (2013) then computes the resulting capacity, and proposes su¢ cient conditions for the

existence of price cap that maximizes investment. The latter result extends Zöttl (2011) result to the

presence of constant price customers (� 2 (0; 1)). Taking these constant price customers into account

yields investment maximizing price caps that are much higher than those observed in most markets.

Thus existing price caps will lead to underinvestment, hence the need for corrective mechanisms.

3 Physical capacity certi�cates

The SO imposes price cap �pW on the energy markets and procures at least K� physical capacity

certi�cates from producers. To simplify the notation and analysis, operating reserves are ignored: as

will be proven in Section 5, including them would not modify the economic insights. All units (old

and new) receive the same compensation in the physical certi�cates markets.

The timing is as follows:

1. The SO designs the rules of the energy and capacity markets. All parameters are set
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2. Producers sell physical capacity certi�cates to the SO, according to the rules set up previously

3. Producers build new capacity if needed

4. The spot markets are played. In each state, producers compete à la Cournot facing � (Q; t),

given their installed capacity and their physical capacity obligation. The SO pays the physical

certi�cates to the producers, and passes the cost of purchase to customers. To simplify the

analysis, this pass-through is assumed not to distort consumption decisions in the spot market,

e.g., the pass-through is proportional to the size of the meter.

Steps 2 and 3 can be inverted or simultaneous: generators �rst build the plants, then sell physical

capacity certi�cates, or build and sell simultaneously7.

�n and � =
NX
m=1

�m are respectively the certi�cates sold by producer n and the aggregate volume

of certi�cates sold. In practice, SOs o¤er a "smoothed" (inverse) demand curve:

H (�) =

8>>>><>>>>:
r if � � K�

h (�) if K� < � < K� +� �K

0 if � � K� +� �K

where (i) r, the capital cost of capacity, is the maximum price the SO is o¤ering for capacity, (ii)

� �K > 0 is an arbitrary capacity increment, and (iii) h (:) is such that H (:) is C2, except maybe at

K� and K� +� �K, h
0
(�) < 0, 2h0 (�) + �h00 (�) < 0 for all �, and

���h0 (K�)
��� � Nr

K� : (5)

As will be discussed below, condition (5) simpli�es the exposition, but is not essential. It is met in

practice. For example, Cramton and Ockenfels (2011) suggest a linear form for h (:) with � �K
K� = 4%.

Condition (5) is then equivalent to N � �K
K� � 1, and holds as long as less than 25 producers compete.

E¢ ciency of the physical certi�cates market is conditional on the quality of the SO�s estimate

of the optimal capacity K�. Assuming the SOs knows perfectly K�, equilibrium is characterized as

follows:
7The formal proof can be found in a previous version of this article, available at

http://idei.fr/doc/wp/2012/visible.pdf.
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Proposition 1 The SO must impose and monitor that the installed capacity exceeds the capacity

certi�cates sold by each generator: kn � �n. Then (i) producers issue as many credits as they in-

stall capacity, and (ii) K�is the unique symmetric equilibrium investment level. Compared to the no

installed capacity market situation, producer�s pro�t and overall welfare are increased.

Proof. The full proof is presented in Appendix B. Existence of a physical capacity certi�cates market

alone does not alter investment incentives. The SO must impose kn � �n, otherwise KC remains the

installed capacity.

If she does, producers sell exactly as many certi�cates as they have installed capacity since incre-

mental capacity is unpro�table unless it collects capacity markets revenues. Then, since kn = �n at

the equilibrium, producer n program is:

max
kn
�nCM (k

n ;k�n; ) = �
n (kn ;k�n) + knH (K)

Given the shape of the inverse demand function H (:), kn = K�

N for all n is the unique symmetric

equilibrium, and producers�pro�t is:

�nCM

�
K�

N
; :::;

K�

N

�
= �n

�
K�

N
; :::;

K�

N

�
+
K�

N
r:

Then, since �n (k; :::; k) is concave and KC � K�,

�n
�
KC

N
; :::;

KC

N

�
� �n

�
K�

N
; :::;

K�

N

�
+

�
KC �K�

N

�
@�n

@k

�
K�

N
; :::;

K�

N

�

,

� = �nCM

�
K�

N
; :::;

K�

N

�
��n

�
KC

N
; :::;

KC

N

�
� �K

C

N

@�n

@k

�
K�

N
; :::;

K�

N

�
+
K�

N

�
@�n

@k

�
K�

N
; :::;

K�

N

�
+ r

�
> 0

since @�n

@k

�
K�

N ; :::;
K�

N

�
< 0 and @�n

@k

�
K�

N ; :::;
K�

N

�
+ r = 
(K�) > 0.

Producers� pro�ts increase compare to the no installed capacity market situation. Finally, since

overall welfare W (K) increases up to to K = K�, W (K�) �W
�
KC
�
.

Capacity markets do not automatically restore investment incentives. In the model, producers

exercise market power by reducing capacity ex ante, and not by withholding output on-peak. The SO

14



must therefore ensure that producers cannot sell short, i.e., sell more certi�cates than their installed

capacity.

This observation is not original to this work, for example it has been articulated by Wolak (2006).

Yet it remains an important practical challenge for SOs, that monitor that existing generation assets

providing certi�cates are still operational, and that planned capacity having received certi�cates has

indeed be installed. SOs then impose a penalty on producers that, when requested, do not o¤er in the

spot market energy up to the certi�cates they have sold forward. This process is still evolving. For

example, ISO New England recently proposed new rules for its forward market to ensure producers

have incentives to produce8. The ban on short-selling is not universal: demand-side resources can

e¤ectively sell-short in most US markets.

Physical capacity markets increase overall welfare, and also increase transfers from customers to

producers. This result is very general. Denote KE (not necessarily equal to K�) the equilibrium

capacity including the certi�cates markets. As long as �n (K; :::;K) is concave, and KE > KC ,

the marginal value of capacity for the producers at KE is negative: @�n

@k

�
KE

N ; :::; K
E

N

�
< 0. The

equilibrium price in the capacity market (r in this case) must compensate for this negative marginal

value, otherwise KE would not be an equilibrium: @�n

@k

�
KE

N ; :::; K
E

N

�
+ r � 0. This is su¢ cient for

the proof.

Although I had never seen its formal proof, this result is intuitive: producers must receive a rent

to induce them to invest beyond the oligopoly capacity. The illustrative model developed by Léautier

(2013) provides an estimate of this additional rent �. It varies slightly with the price cap �pW and

the proportion of price reactive customers �. To simplify, I provide the average value of � over all

admissible values of �pW and for � = 5%, which appears appropriate for most markets. For � = �0:01

the average rent is around 5; 100 e=MWh, approximately 10% of investment cost; for � = �0:1

the average rent is around 8; 400 e=MWh, approximately 16% of investment cost. These estimates

illustrate that the rent created by the capacity market is not trivial.

Is there an optimal structure to the physical certi�cates market? With the above design, the

only parameter that can be modi�ed in the price cap �pW . I choose as an objective function the

net surplus from consumption, therefore transfers from consumers to producers do not impact social
8http://www.iso-ne.com/committees/comm_wkgrps/mrkts_comm/mrkts/mtrls/2012/nov162012/fcm_performance_white_paper.pdf
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welfare. Then, since the resulting capacity is K� for all admissible �pW , the latter has no impact on the

resulting capacity. However, increasing �pW always increases welfare, as it reduces the probability of

curtailment: when the cap is binding, no customer can respond to price, hence the SO must curtail.

Thus, there exists no optimal binding price cap with a capacity market as modeled here.

Finally, if condition (5) is not met, the aggregate capacity at the unique symmetric equilibrium is

KC
CM 2

�
K�;K� +� �K

�
. Welfare increases if and only if � �K is small enough that W

�
K� +� �K

�
�

W
�
KC
�
.

4 Financial reliability options

Financial contracts constitute another mechanism used in power markets. This Section examines �-

nancial reliability options, proposed by Oren (2005), Cramton and Stoft (2006 and 2008), and more

recently Cramton and Ockenfels (2011). Options and not forward contracts are the �nancial instru-

ments analyzed here, since Chao and Wilson (2005), that examine a slightly di¤erent option design,

argue that options are in general preferable. These options constitute an insurance against spot energy

prices higher than a pre-agreed strike price �pS , sold by producers to customers. If the spot price p (t)

is lower than �pS , producer n does not make any payment. If p (t) > �pS , producer n pays
�
p (t)� �pS

�
times a fraction of the realized demand equal to his fraction of the total options sale.

The SO does not impose a cap on wholesale prices, and runs an auction for �nancial reliability

options. �n and � =
NX
m=1

�m are respectively the options sold by producer n and the aggregate volume

of options sold. The timing and notation are identical to the capacity market case, except that the

subscript RO is added when appropriate. A very simple auction setup is assumed, similar to the

one suggested by Cramton and Stoft (2008): the SO determines the volume she desires to purchase,

assumed to be K�, sets the capital cost of capacity r as the reserve price for the auction, and proposes

a downward sloping inverse demand curve for options:

HRO (�) =

8>>>><>>>>:
r if � � K�

hRO (�) if K� < � < K� +� �KRO

0 if � � K� +� �KRO

where (i) � �KRO > 0 is an arbitrary capacity increment, and (ii) hRO (:) is such that HRO (:) is C2,
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except maybe at K� and K� + � �K, h
0
RO (�) < 0, 2h0RO (�) + �h

00
RO (�) < 0 for all �, and hRO (:)

veri�es condition (5). To limit the potential exercise of market power, Cramton and Ockenfels (2011)

propose the SO impose �n � kn: all capacity must be committed forward through option sales.

When the spot price exceeds the strike price, price-reactive consumers then pay �pS as the e¤ective

price, i.e., they know when making their consumption decision they receive rebatemax
�
� (Q; t)� �pS ; 0

�
per unit of energy purchased. Then, actual demand does not depend on the spot price, which leads

to rationing.

�t
�
K; �pS

�
is the �rst state of the world such that the spot price exceeds the strike price, and is

de�ned by �
�
K; �t

�
K; �pS

��
� �pS . We assume �pS satis�es

	
�
KC

�
�pS
�
; �pS
�
� r: (6)

Condition (6) simpli�es the exposition, as it guarantees that � = K� is the unique equilibrium of the

options market, however it is not essential. As shown in Appendix C, 	
�
KC (p) ; p

�
is decreasing in

p, and and 	
�
KC (p) ; p

�
! 0 as p stops binding. Thus, condition (6) is met for �pS su¢ ciently high.

Chao and Wilson (2005) examine a slightly di¤erent market structure: they consider physical

options paired (or not) with a complementary price insurance, and compute the linear supply function

equilibrium for options forward sales and power spot sales. Their �ndings are aligned with those

presented below.

4.1 Expected pro�ts with �nancial reliability options

The producers pro�t function is characterized below:

Lemma 1 The expected pro�t of producer n is

�nRO (k
n ; �n ;k�n;��n) = �nHRO (�) + �

n (kn ;k�n) +

�
kn � �

n

�
K

�
	
�
K; �pS

�
; (7)

with the convention that �pS acts as the price cap in �n.

Proof. Producer n receives the revenues from options sale �nHRO (�), plus pro�ts from the energy

market. Suppose �rst tN (K) � �t
�
K; �pS

�
. First, the producer receives pro�t �n (kn ;k�n) previously
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computed, assuming �pS as price cap. Second, since there is no price cap, he receives the di¤erence

between the spot price � (K; t) and the cap �pS for every unit produced when the price exceeds �pS. Since

tN (K) � �t
�
K; �pS

�
, he produces his entire capacity kn, hence he receives kn

R +1
�t(K;�pS)

�
� (K; t)� �pS

�
f (t) dt =

kn	
�
K; �pS

�
.

Finally, when the spot price exceeds the strike price �pS, each generator must pay
�
� (K; t)� �pS

�
times his fraction �n

� of the total demand. Since tN (K) � �t
�
K; �pS

�
, total demand is equal to total

capacity K and the payment is proportional to �n

� K. Total expected payment from generator n is thus:

�n

� K
R +1
�t(K;�pS)

�
� (K; t)� �pS

�
f (t) dt = �n

� 	
�
K; �pS

�
. Summing these terms yields equation (7).

Appendix C proves that Equation (7) also obtains if �t
�
K; �pS

�
< tN (K).

The pro�t realized in states higher than �t
�
K; �pS

�
is �nRO (K; t) = k

n
��
1� �n

�
K
kn

�
� (K; t) + �n

�
K
kn �p

S � c
�
.

Producers face a weighted average of the spot price and the option price, hence are less sensitive to

an increase in spot price. Consistent with Allaz and Villa (1993) and Chao and Wilson (2005), a

producer holding forward contracts faces lower incentives to exert market power in the spot market.

4.2 Equilibrium capacity with �nancial reliability options

Proposition 2 Reliability options reduce but do not eliminate the underinvestment problem. KC
RO,

the unique symmetric equilibrium of the options and investment game, veri�es

KC
�
�pS
�
� KC

RO < K
�;

with equality occurring when N = 1.

Proof. Appendix C proves that, if producers invest �rst then sell options, there exists a unique

symmetric equilibrium that satis�es:

@�nRO
@kn

�
KC
RO

N
; :::;

KC
RO

N

�
= 


�
KC
RO; �p

S
�
� r + N � 1

N
	
�
KC
RO; �p

S
�
= 0 (8)

Then,



�
KC
RO; �p

S
�
= r � N � 1

N
	
�
KC
RO; �p

S
�
� r:
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Hence KC
RO � KC

�
�pS
�
. Then,

@�nRO
@kn

�
K�

N
; :::;

K�

N

�
= �

Z tN (K)

�t(K;c)
(� (K�; t)� c) f (t) dt+ K

�

N

Z �t(K;�pS)

tN (K)
�q (K

�; t) f (t) dt

� 1
N
	
�
K�; �pS

�
< 0:

Then K� > KC
RO since we prove in Appendix C that �

n
RO

�
K
N ; :::;

K
N

�
is concave.

A previous version of this work, available at http://idei.fr/doc/wp/2012/visible.pdf, shows that the

result also holds if producers sell certi�cates, then invest, or sell certi�cates and invest simultaneously.

For N > 1, reliability options curb the exercise of market power: the resulting installed capacity is

higher than the Cournot capacity. Thus, they are more e¤ective than physical certi�cates alone, that

have no impact on installed capacity without the "no short sale" obligation.

However, reliability options are not su¢ cient to completely eliminate market power and restore

optimal investment incentives. This result may appear surprising, since reliability options impose

a penalty of
�
� (K; t)� �pS

�
on each unit a producer is "short" energy. However, a closer exami-

nation of the mechanism reveals that, at the symmetric equilibrium, this penalty represents only

N�1
N

�
� (K; t)� �pS

�
, which is not su¢ cient to fully compensate for the "missing money"

�
� (K; t)� �pS

�
.

Proposition 2 mirrors Allaz and Villa (1993) analysis of the interaction between spot and forward

markets: assuming Cournot competition in both, they show that introducing forward markets reduces

but does not eliminate market power, and has not impact on a monopoly (N = 1).

4.3 Equivalence between physical certi�cates and �nancial reliability options when

"no short sale" conditions are added

If the SO cannot impose a "no short sale" condition, Proposition 2 above proves that �nancial relia-

bility options yield higher investment. Which one should the SO choose if she can impose a "no short

sale" condition? Proposition 3 below shows that both mechanisms are equivalent, if the technical

parameters are equivalent:
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Proposition 3 Suppose (i) the SO imposes and monitors that the installed capacity exceeds the op-

tions sold by each generator: kn � �n, (ii) the wholesale price cap in the capacity market is set

equal to the strike price of the reliability option
�
�pS = �pW

�
and satis�es condition (6), and (iii) the

demand functions for reliability options and for capacity credits are identical and satisfy condition (5).

Then, �nancial reliability options yield the same equilibrium as a capacity market with a no short-sale

condition.

Proof. Since the SO imposes �n � kn (all capacity must be committed) and �n � kn, producers chose

�n = kn Equation (7) then yields

�nRO (k
n ;k�n) = �

n (kn ;k�n) + knHRO (K) :

If �pS = �pW and HRO (:) = H (:), then, with the no short sale conditions, �nRO = �nCM . Thus the

equilibria are identical.

As mentioned earlier, since producers sell exactly as many options as their installed capacity

(or install as much capacity as they sold options), the pro�t net of the payment on the option is

equivalent to a cap on prices. Therefore, if the "technical parameters" are identical, both approaches

are equivalent.

5 Energy cum operating reserves market

SOs must secure operating reserves to protect the system against catastrophic failure. Hogan (2005)

suggests that remuneration of these operating reserves can solve the missing money problem.

The representation of operating reserves is that of Borenstein and Holland (2005). For simplicity,

only one type of reserves is considered, the non-spinning one (i.e., plants that are not running, but can

start up and produce energy within a short pre-agreed time frame). Since the plant is not running,

the marginal cost of providing reserves is normalized to zero. In reality, SOs run multiple markets

for operating reserves, for example, spinning, 10-minutes, 30-minutes. The economic insights are not

modi�ed, as long as the no-arbitrage condition presented below holds.

Hogan (2005) proposes that the SO runs a single market for energy and operating reserves. Gener-

ating units called to produce receive the wholesale price w (t), generating units that provide operating
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reserves receive the wholesale price w (t) less the marginal cost of generation c, assumed to be per-

fectly known by the SO. Generators are therefore indi¤erent between producing energy or providing

reserves, an essential condition (Borenstein and Holland (2005)). When an unscheduled generation

outage occurs, operating reserves produce energy and receive the full price w (t).

Operating reserves requirements are expressed as a percentage of demand, denoted h (t), and taken

as given here9. De�ning the optimal h (t) requires advanced network analysis, hence is beyond the

scope of this work. Joskow and Tirole (2007) show the optimal reserve ratio increases with the state

of the world; hence h (t) is assumed to be nondecreasing.

The retail price p (t) must be higher than wholesale price w (t) to cover generators�revenues from

the operating reserves market. A natural choice is to directly include the cost of reserves in the retail

price faced by "price reactive" customers10:

p (t) = w (t) + h (t) (w (t)� c)

,

p (t)� c = (1 + h (t)) (w (t)� c) (9)

Throughout this section, the retail and wholesale prices are assumed to be related by equation (9).

The notation and model structure are identical to the previous Sections, except that the subscript OR

is added when appropriate.

Only the fraction 1
1+h(t) of installed capacity is used to meet demand in state t, hence

K
1+h(t) and

not K is the output appearing in the function � (:; t) (a formal proof is presented in Appendix D).

Thus, the marginal social value of capacity in state t is

w (K; t)� c = p (t)� c
1 + h (t)

=
�
�

K
1+h(t) ; t

�
� c

1 + h (t)
:

9 In practice, various metrics for operating reserves are used, including absolute values expressed in MW . Expressing
reserves as a percentage of peak demand simpli�es the analysis while preserving the main economic intuition.
10Borenstein and Holland (2005) show it to be the perfect competition outcome.
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The marginal social value of capacity is

	OR (K) =

Z +1

�tOR(K;c)

�
�

K
1+h(t) ; t

�
� c

1 + h (t)
f (t) dt;

where �tOR (K; c) is uniquely de�ned11 by �
�

K
1+h(t) ;

�tOR (K; c)
�
= c.

The socially optimal capacity is thus uniquely de�ned by

	OR (K
�
OR) = r: (10)

Consider now the producers�problem. By construction, producers are indi¤erent between produc-

ing energy or providing reserves. In state t, they o¤er sn (t) into the energy cum operating reserves

market. S (t) =
PN
n=1 s

n (t) is the total o¤er. Energy available to meet demand is Q (t) = S(t)
1+h(t) . The

SO then (i) veri�es that sn (t) � kn, and (ii) allocates each sn (t) between energy qn (t) and reserves

bn (t). Producer n pro�t is then

�n (t) = (qn (t) + bn (t)) (w (t)� c)

=
sn (t)

1 + h (t)

�
�

�
S (t)

1 + h (t)

�
� c
�
;

since (i) energy and operating reserves receive same net revenue by construction, and (ii) wholesale

(w (t)) and retail
�
�
�

S(t)
1+h(t)

��
prices are linked by equation (9). The problem is then isomorphic to

standard peak load pricing, except that sn(t)
1+h(t) replaces production q

n (t).

tNOR (K), the �rst on-peak state of the world under imperfect competition, is uniquely de�ned
12 by

�
�

K
1+h(t) ; t

�
+ 1

N
K

1+h(t)�q

�
K

1+h(t) ; t
�
= c.

The SO imposes a wholesale price cap v equal to her best estimate of V oLL. �tOR (K; v), the �rst

state of the world where the cap may be binding, is uniquely de�ned by �
�

K
1+h(t) ;

�tOR (K; v)
�
= v.

For simplicity, v is assumed to be binding after the capacity constraint under imperfect competition:

11Since h (t) is nondecreasing, m1 (K; t) = �
�

K
1+h(t)

; t
�
is increasing in t: @m1

@t
= ��q

Kh0(t)
(1+h(t))2

+ �t > 0.
12Similarly, m2 (t) = �

�
K

1+h(t)
; t
�
+ 1

N
K

1+h(t)
�
�

K
1+h(t)

; t
�

is increasing in t since m0
2 (t) =

�
�
N+1
N
�q +

1
N

K
1+h(t)

�qq

�
Kh0(t)

(1+h(t))2
+ �t > 0.
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tNOR (K) � �tOR (K; v). The inverse demand function for producers is then: �
�

K
1+h(t) ; t

�
as long as

price cap is not reached, and a horizontal inverse demand at v afterwards.

Following the steps of the "standard" peak load analysis, the marginal value of capacity for a

producer at the symmetric equilibrium is


OR (K) =

Z �tOR(K;v)

tNOR(K)

�
�

�
K

1 + h (t)
; t

�
+
1

N

K

1 + h (t)
�q

�
K

1 + h (t)
; t

�
� c
�
f (t) dt+

Z +1

�tOR(K;v)

v � c
1 + h (t)

f (t) dt;

and there exists a unique symmetric equilibrium for which each generator invests K
C
OR
N de�ned by:


OR
�
KC
OR

�
= r: (11)

Proposition 4 Suppose the SO runs an energy cum operating reserves market and imposes a price

cap v. The problem is isomorphic to standard peak load pricing. KC
OR < K

�
OR unless (i) generation is

perfectly competitive (N ! +1), and (ii) the price cap is never binding (�tOR (K; v)! +1).

Proof. The result follows immediately from equations (11) and (10).

Including an operating reserve market leads to the same investment incentives as average V oLL

pricing. This result is surprising: one would have expected the operating reserves market to alleviate

the missing money problem, since (i) all producing units receive a higher price, and (ii) units providing

capacity but not energy are remunerated.

However, the discussion above shows these two e¤ects are already included in the determination of

the socially and privately optimal capacities K�
OR and K

C
OR. Then, units providing reserve capacity

receive the same pro�t (w (t)� c) as units producing electricity, to avoid arbitrage between markets.

No additional pro�t is generated. The operating reserves market remunerates reserves, which are

needed, not capacity investment.

6 Conclusion

This article formally analyzes the various corrective mechanisms that have been proposed and im-

plemented to alleviate underinvestment in electric power generation. It yields three main analytical

�ndings. First, physical capacity certi�cates markets implemented in the United States restore optimal
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investment if and only if they are supplemented with a "no short sale" condition, i.e., producers can

not sell more certi�cates than they have installed capacity. Then, they raise producers�pro�ts beyond

the imperfect competition level. Second, �nancial reliability options, proposed in many markets, are

e¤ective at curbing market power, although they fail to fully restore investment incentives. If "no

short sale" conditions are added, both physical capacity certi�cates and �nancial reliability options

are equivalent. Finally, a single market for energy and operating reserves subject to a price cap is

isomorphic to a simple energy market. Standard peak-load pricing analysis applies: under-investment

occurs, unless production is perfectly competitive and the cap is never binding.

This analysis highlight the limitations of the corrective mechanisms. This suggest that policy

makers should �rst and foremost control and reduce the exercise of market power, then use these

mechanisms as interim remedial measures.

These results provide a sound basis for policy makers decision making. Di¤erent avenues for

further work would increase their applicability. First, expand the economic models to other types

of technologies: (i) intermittent and uncontrollable production technologies such as photovoltaic and

on- and o¤-shore wind mills, which will provide an increasingly important share of power supply;

(ii) reservoir hydro production, which has almost zero marginal cost, but limited overall production

capacity, and (iii) voluntary curtailment, i.e., consumers reducing their consumption upon the SO�s

request.

Second, expand the model to multiple investment periods. Observation suggests the power in-

dustry, like many capital-intensive industries, displays cycle of over- and under-investment ("boom

bust" cycles). Understanding how various market designs perform in a dynamic setting is therefore

extremely important.
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A Numerical illustration

Inverse demand is P (q; t) = a0� a1e��2t� bq, states of the world are distributed according to f (t) =

�1e
��1t, and rationing is anticipated and proportional. a0; a1, � = �1

�2
, and bQ1 where Q1 = a0�p0

b is

the maximum demand for price p0, are the parameters to be estimated. � is estimated by Maximum

Likelihood using the load duration curve for France in 2010. The same load duration curve provides

an expression of a0 and a1 as a function of bQ1. The average demand elasticity � is then used to

estimate bQ1. Two estimates of demand elasticity at price p0 = 100 e=MWh are tested: � = �0:01

and � = �0:1, respectively the lower and upper bound proposed by Lijesen (2007). The resulting

estimates are

for � = �0:18>>>>>>><>>>>>>>:

bQ1 = 1 873 e=MWh

a0 = 1 973 e=MWh

a1 = 1 236 e=MWh

� = 1:78

; and

for � = �0:018>>>>>>><>>>>>>>:

bQ1 = 18 727 e=MWh

a0 = 18 827 e=MWh

a1 = 12 360 e=MWh

� = 1:78

:

Generation costs are those of a gas turbine, c = 72 e=MWh and r = 6 e=MWh as provided by

the International Energy Agency, IEA (2010). The regulated energy price is pR = 50 e=MWh, from

Eurostat13.

B Physical capacity certi�cates

B.1 No short sale condition

Suppose �rst the SO imposes no condition on certi�cates sales. Producer n�s expected pro�t, including

revenues from the capacity market is: �nCM
�
kn ; �n ;k�n;��n

�
= �n (kn ;k�n) + �nH (�). Since �n

does not enter �n (kn ;k�n),

@�nCM
@kn

�
K

N
; :::;

K

N

�
=
@�n

@kn

�
K

N
; :::;

K

N

�
:

13Table 2 Figure 2 from http://epp.eurostat.ec.europa.eu/statistics_explained/images/a/a1/Energy_prices_2011s2.xls
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the certi�cate market has no impact on equilibrium investment.

Suppose now the SO imposes kn � �n . Consider the case where producers �rst sell credits, then

install capacity. When selecting capacity, each producer maximizes ��nCM (kn;k�n) subject to kn � �n .

The �rst-order condition is then
@Ln
@kn

=
@ ��n

@kn
+ �n1 ;

where �n1 is the shadow cost of the constraint kn � �n . Suppose �rst �̂
n
< k̂n 8n, then �n1 = 0 8n

and k̂n = KC

N at the symmetric equilibrium. When selecting the amount of credits sold, the producers

then maximize �nH (�). Given the shape of H (:), the symmetric equilibrium is �̂
n � K�

N . But then,

KC > � � K�, which is a contradiction, hence �̂
n
= k̂n .

Since kn = �n at the equilibrium, producer n program is

max
kn
�nCM (k

n ;k�n; ) = �
n (kn ;k�n) + knH (K)

We prove below that
�
K�

N ; :::;
K�

N

�
is the unique symmetric equilibrium.

B.2 Equilibrium investment if generation produces at capacity before the cap is

reached

Suppose tN (K) � �t
�
K; �pW

�
. As observed by Zöttl (2011), the pro�t function �n

�
k1; :::; kn ; :::; kN

�
is

not concave in kn , so one must separately consider a positive and negative deviation from a symmetric

equilibrium candidate to prove existence of the equilibrium. Consider �rst a negative deviation, i.e.,

k1 < K�

N while kn = K�

N for all n > 1. Since K = k1 + N�1
N K� < K�,

@�1CM
@k1

�
k1 ;

K�

N
; :::;

K�

N

�
=
@�1

@k1

�
k1 ;

K�

N
; :::;

K�

N

�
+ r:
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Analysis of the two-stage Cournot game (Zöttl (2011) for � = 1, Léautier (2013) for � 2 (0; 1)) yields:

@�1

@k1

�
k1 ;

K�

N
; :::;

K�

N

�
=

Z tN (K)

t1

 
�
�
Q̂ (k1 ; t)

�
+ k1�q

�
Q̂ (k1 ; t)

� @Q̂
@k1

� c
!
f (t) dt (12)

+

Z �t(K;�pW )

tN (K)

�
� (K) + k1�q (K)� c

�
f (t) dt

+

Z +1

�t(K;�pW )

�
�pW � c

�
f (t) dt� r;

where t1 is the �rst state of the world where producer 1 is constrained, Q̂ (k1 ; t) = k1+(N � 1)�N (k1 ; t)

is the aggregate production, and �N (k1 ; t) is the equilibrium production from the remaining (N � 1)

identical producers, that solves

�
�
k1 + (N � 1)�N (k1 ; t)

�
+ �N (k1 ; t) �q

�
k1 + (N � 1)�N (k1 ; t)

�
= c:

�N (k1 ; t) � k1 for t 2
�
t1; tN (K)

�
: lower-capacity producer 1 is constrained, while the (N � 1)

higher capacity producers are not. Since quantities are strategic substitutes, @�
N

@k1 < 0 and

0 <
@Q̂

@k1
= 1 + (N � 1) @�

N

@k1
< 1:

�
�
Q̂
�
+k1�q

�
Q̂
�
�c =

�
k1 � �N

�
�q

�
Q̂
�
@Q̂
@k1 � 0 for t 2

�
t1; tN (K)

�
. �
�
K; tN (K)

�
+k1�q

�
K; tN (K)

�
=

c, and �t (K) + k
1�qt (K) � 0, hence � (K) + k1�q (K)� c � 0 for t � tN (K). Therefore

@�1

@k1

�
k1 ;

K�

N
; :::;

K�

N

�
+ r > 0

for k1 < K�

N : no negative deviation is pro�table.

Consider now a positive deviation, i.e., kN > K�

N while kn = K�

N for all n < N . Since K =

kN + N�1
N K� > K� :

@�NCM
@kN

�
K�

N
; :::;

K�

N
; kN

�
=
@�N

@kN

�
K�

N
; :::;

K�

N
; kN

�
+ kNH

0
(K) +H (K) ;
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and

@2�NCM
(@kN )2

�
K�

N
; :::;

K�

N
; kN

�
=
@2�N

(@kN )2

�
K�

N
; :::;

K�

N
; kN

�
+ kNH

00
(K) + 2H

0
(K) :

Zöttl (2011) shows that, for kN > K
N ,

@2�N

@ (kN )2

�
KC

N
; :::;

KC

N
; kN

�
=

Z �t(K;�pW )

tN

h
2�q

�
K̂; t

�
+ kN�qq

�
K̂; t

�i
f (t) dt (13)

+kN�q

�
K̂; �t

�
K; �pW

��
f
�
�t
�
K; �pW

�� @�t �K; �pW �
@kN

< 0:

Thus,
@�NCM
@kN

�
K�

N
; :::;

K�

N
; kN

�
<
@�N

@kN

�
K�

N
; :::;

K�

N

�
+
K�

N
H

0
(K�) + r < 0

since condition (5) implies K
�

N H
0
(K�) + r < 0.

Hence,
�
K�

N ; :::;
K�

N

�
is a symmetric equilibrium. Finally, no other symmetric equilibrium exists

since �n
�
K
N ; :::;

K
N

�
+ K

NH (K) is concave.

B.3 Equilibrium investment if the cap is reached before generation produces at

capacity

Suppose �t
�
K; �pW

�
< tN (K). To simplify the exposition, generators are ordered by increasing capacity

k1 � ::: � kN , and suppose that the price cap is reached before the �rst generator produces at capacity.

Léautier (2013) proves that the expected equilibrium pro�t is

�n (kn;k�n) =

Z ~t0

0

Q̂ (t)

N

�
�
�
Q̂
�
� c
�
f (t) dt+

�
�pW � c

� n�1X
i=0

Z ~ti+1

~ti
~qi+1 (t) f (t) dt+ kn

�
1� F

�
~tn
��!

�rkn ;

(14)

where Q̂ (t) is the unconstrained Cournot output in state t, ~t0 is the �rst state of the world such that

the price cap is reached, de�ned by �
�
Q̂
�
~t0
�
; ~t0
�
= �pW , ~ti+1 for i = 0; :::; (N � 1) is the �rst state of

the world such that producer (i+ 1) is constrained, de�ned by �
�Pi

j=1 k
j + (N � j) ki+1; t

�
= �pW ,
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and ~qi+1 (t) is de�ned on
�
~ti; ~ti+1

�
by

�

0@ iX
j=1

kj + (N � j) ~qi+1 (t) ; t

1A = �pW :

For t � ~t0, unconstrained Cournot competition takes place. For t � ~t0, the Cournot price

would exceed the cap, hence wholesale price is capped at �pW . All generators play a symmetric

equilibrium characterized by �
�
N ~q1 (t) ; t

�
= �pW : When t reaches ~t1 generator 1 produces its capac-

ity. For t � ~t1, the remaining (N � 1) generators play a symmetric equilibrium characterized by

�
�
k1 + (N � 1) ~q2 (t) ; t

�
= �pW . This process continues until all generators produce at capacity. ~tN is

such that �
�PN

j=1 k
j ; ~tN

�
= �pW , hence ~tN = �t

�
K; �pW

�
previously de�ned. For t > ~tN , since wholesale

price is �xed at �pW and generation is at capacity, the SO must curtail constant price consumers.

Di¤erentiation of equation (14) yields

@�n

@kn

�
k1 ; :::; kN

�
=

Z +1

~tn

�
�pW � c

�
f (t) dt� r; (15)

and
@2�n

(@kn)2
�
k1 ; :::; kN

�
= �

�
�pW � c

�
f
�
~tn
� @~tn
@kn

< 0:

�n
�
k1 ; :::; kN

�
is concave in kn. The previous analysis then shows that

�
K�

N ; :::;
K�

N

�
is the unique

symmetric equilibrium.

B.4 Producers extra pro�ts from the capacity markets

Léautier (2013) shows that, for common values of the parameters, �t
�
K; �pW

�
< tN (K). This is the

case considered to evaluate �. At a symmetric equilibrium, equation (14) yields

�n
�
K

N
; :::;

K

N

�
=
1

N

0B@ R ~t0
0 Q̂ (t)

�
�
�
Q̂ (t) ; t

�
� c
�
f (t) dt+

�
�pW � c

� R �t(K;�pW )
~t0

~Q (t) f (t) dt

+K
��
�pW � c

�
(1� F (�t))� r

�
1CA ;

� = �n
�
K�

N ; :::;
K�

N

�
+ rK

�

N ��n
�
KC

N ; :::; K
C

N

�
is then estimated numerically.
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C Financial reliability options

The equilibrium is solved by backwards induction. In the second stage, producers solve the equilibrium

of the option market, taking (kn;k�n) as given.

We assume that including the option market does not decrease investment, i.e., K � KC
�
�pS
�
. As

suggested by Cramton and Ockenfels, the SO imposes the restriction that all capacity is sold forward:

�n � kn . This restriction is made operational by conditioning pro�ts from the option market to

�n � kn . Since these pro�ts are positive, �n � kn is a dominant strategy, hence holds.

C.1 Derivation of the pro�t function if the strike price is reached before generation

produces at capacity

If reliability options are in e¤ect, the price cap is eliminated. For simplicity, assume that the strike price

is reached before the �rst generator produces at capacity, and denote ~t0 this state of the world. For

t � ~t0, consumers consume as if the price was �pS , since they internalize the impact of the reliability

option. As long as total generation is not at capacity, the wholesale price is indeed �pS , and the

equilibrium is identical to the previous one. When total generation reaches capacity, since consumers

consume using constant price �pS , the SO must curtail constant price consumers. The wholesale price

reaches the V oLL. Generators must then rebate the di¤erence between the wholesale price and the

strike price, in proportion to the volume of options sold.

The resulting equilibrium pro�t is

�nRO (k
n;k�n) =

Z ~t0

0

Q̂ (t)

N

�
�
�
Q̂
�
� c
�
f (t) dt

+
�
�pS � c

� n�1X
i=0

Z ~ti+1

~ti
~qi+1 (t) f (t) dt+ kn

Z �t(K;�pS)

~tn
f (t) dt

!

+

Z +1

�t(K;�pS)

�
kn (� (K; t)� c)� �

n

�
K
�
� (K; t)� �pS

��
f (t) dt� rkn

= �n (kn;k�n) +

Z +1

�t(K;�pS)

�
kn (� (K; t)� c)� �

n

�
K
�
� (K; t)� �pS

�
� kn

�
�pS � c

��
f (t) dt

= �n (kn;k�n) +

�
kn � �

n

�
K

�Z +1

�t(K;�pS)

�
� (K; t)� �pS

�
f (t) dt

= �n (kn;k�n) +

�
kn � �

n

�
K

�
	
�
K; �pS

�
:
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C.2 Equilibrium in the options market

We �rst establish that d	
dp

�
KC (p) ; p

�
< 0 and limp!�p	

�
KC (p) ; p

�
= 0, where �p is the maximum

price cap reached in equilibrium. Di¤erentiation with respect to p yields

d	

dp

�
KC (p) ; p

�
=

Z +1

�t(KC(p);p)

�
�q
dKC

dp
� 1
�
f (t) dt:

Suppose tN (K) > �t
�
K; �pW

�
. Then, KC (p) is de�ned by

Z +1

�t(KC(p);p)
(p� c) f (t) dt = (p� c)

�
1� F

�
�t
�
KC (p) ; p

���
= r:

Full di¤erentiation with respect to p yields

(1� F (�t))� (p� c) f (�t)
�
@�t

@p
+
@�t

@K

dKC

dp

�
= 0

,
@�t

@p
+
@�t

@K

dKC

dp
=

1� F (�t)
(p� c) f (�t) :

Di¤erentiation of � (K; �t (K; p)) = p yields @�t
@K = ��q

�t
and @�t

@p =
1
�t
. Thus,

1� �q
dKC

dp
=

�t
p� c

1� F (�t)
f (�t)

> 0;

therefore d	
dp (K

c (p) ; p) < 0.

Suppose now tN (K) � �t
�
K; �pW

�
. KC (p) is de�ned by

Z �t(KC(p);p)

tN (KC(p))

�
�
�
KC (p) ; t

�
+
KC (p)

N
�q
�
KC (p) ; t

�
� c
�
f (t) dt+

Z +1

�t(KC(p);p)
(p� c) f (t) dt = r:

Full di¤erentiation with respect to p yields

I
dKC

dp
+
KC

N
�q

�
@�t

@p
+
@�t

@K

dKC

dp

�
+ (1� F (�t)) = 0;
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where I =
R �t
tN

�
N+1
N �q +

KC

N �qq

�
f (t) dt < 0. Substituting in @�t

@K and @�t
@p yields:

�I�t
dKC

dp
� K

C

N
�q

�
1� �q

dKC

dp

�
= �t (1� F (�t))

,

1� �q
dKC

dp
=
�t
�
�q (1� F (�t)) + I

�
I�t � KC

N �2q
> 0;

therefore d	
dp (K

c (p) ; p) < 0.

Finally,KC (p) converges when p! �p, thus (P (Kc (p) ; t)� c) is bounded, thus limp!�p	(K
c (p) ; p) =

0 since limp!�p�t (K
c (p) ; p) = 0.

We now prove that �n = K�

N � kn for all n is a symmetric equilibrium if condition (6) holds.

Di¤erentiation of equation (7) yields:

@�nRO
@�n

(�n ;��n) = HRO (�) + �nH
0
RO (�)�

�� �n
�2

K	
�
K; �pS

�
;

and
@2�nRO
(@�n)2

(�n ;��n) = 2H
0
RO (�) + �

nH
00

RO (�) + 2
�� �n
�3

K	
�
K; �pS

�
:

For � � K�,
@2�nRO
(@�n)2

(�n ;��n) = 2
�� �n
�3

K	
�
K; �pS

�
> 0:

@�nRO
@�n is increasing, thus the only equilibrium candidates are �n = K�

N and �n = kn. Furthermore,

@2�nRO
@�n@�m

(�n ;��n) =

�
2
�� �n
�3

+
�n

�2

�
K	

�
K; �pS

�
> 0;

thus
@�nRO
@�n

(�n ;��n) �
@�nRO
@�n

�
k1 ; :::; kN

�
:

Then,

@�nRO
@�n

�
k1 ; :::; kN

�
= r � K � kn

K2
K	

�
K; �pS

�
> r �	

�
K; �pS

�
� r �	

�
KC

�
�pS
�
; �pS
�
> 0

35



since K � KC
�
�pS
�
by assumption. Thus, if condition (6) holds, @�

n
RO

@�n (�n ;��n) > 0 for all �n such

that �n � kn and � � K�. In particular, if �n = K�

N for all n > 1, no negative deviation �1 < K�

N is

pro�table.

Consider now a positive deviation, i.e., �N > K�

N � kN while �n = K�

N for all n < N . We have:

@�NRO
@�N

�
K�

N
; :::;

K�

N
; �N

�
= h (�) + �Nh

0
(�)� �� �

N

�2
K	

�
K; �pS

�
:

By construction, � = �N + N�1
N K� > K� and �N � �

N = N�1
N

�
�N � K�

N

�
> 0, therefore

HRO (�) + �NH
0
RO (�) < HRO (�) +

�

N
H

0
RO (�) < HRO (K

�) +
K�

N
H

0
RO (K

�) < 0

by condition (5), hence @�
N
RO

@�N

�
K�

N ; :::;
K�

N ; �
N
�
< 0 for all �N > K�

N . No positive deviation is pro�table.

�n = K�

N for all n is therefore an equilibrium.

We now prove �n = K�

N � kn for all n is the unique symmetric equilibrium. Since @�
n
RO

@�n (�n ;��n) >

0, no equilibrium exists for �n such that �n � kn and � � K�.

Finally, consider the case �n = �
N > K�

N for all n:

@�nRO
@�n

�
�

N
; :::;

�

N

�
= h (�) +

�

N
h
0
(�)� N � 1

N

K

�
K	

�
K; �pS

�
< 0:

There exists no symmetric equilibrium with �
N > K�

N .

C.3 Equilibrium investment

In the �rst stage, producers decide on capacity, taking into account the equilibrium of the options

market. Denote V n (kn ;k�n) producer n pro�t function:

V n (kn ;k�n) = �
n
RO

�
kn ;

K�

N
;k�n;

K�

N

�
= �n (kn ;k�n; ) +

K�

N
r +

�
kn � K

N

�
	
�
K; �pS

�
:

Di¤erentiation with respect to kn yields

@V n

@kn
=
@�n

@kn
+
N � 1
N

	
�
K; �pS

�
+

�
kn � K

N

�
@	

@K
: (16)
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A necessary condition for a symmetric equilibrium kn = K
N is:

@V n

@kn

�
K

N
; :::;

K

N

�
=
@�n

@kn

�
K

N
; :::;

K

N

�
+
N � 1
N

	
�
K; �pS

�
@V n

@kn

�
K
N ; :::;

K
N

�
is decreasing since @�

n

@kn

�
K
N ; :::;

K
N

�
is decreasing and @	

@K < 0. @V
n

@kn (0; :::; 0) =
@�n

@kn (0; :::; 0)+

N�1
N 	

�
0; �pS

�
> 0 since (i) @�

n

@kn (0; :::; 0) > 0 and (ii) 	
�
0; �pS

�
> 0 by construction. limK!+1 @V n

@kn (K) =

�r < 0. Hence, there exists a unique KC
RO > 0 such that

@�nRO
@kn

�
KC
RO
N ; :::;

KC
RO
N

�
= 0. This is equation

(8). We prove in the main text that KC
�
�pS
�
� KC

RO < K
�.

We prove below that kn = KC
RO
N for all n is an equilibrium, distinguishing the two cases tN (K) �

�t
�
K; �pS

�
and tN (K) > �t

�
K; �pS

�
.

C.3.1 Generation produces at capacity before the strike price is reached

Consider �rst a negative deviation: k1 < KC
RO
N while kn = KC

RO
N for all n > 1. Total installed capacity

is K = k1 + N�1
N KC

RO < K
C
RO. Substituting expression (12) for

@�n

@kn

�
k1 ;

KC
RO
N ; :::;

KC
RO
N

�
into equation

(16)

@V 1

@k1

�
k1 ;

KC
RO

N
; :::;

KC
RO

N

�
=

Z tN (K)

t1

 
�
�
Q̂ (k1 ; t)

�
+ k1�q

�
Q̂ (k1 ; t)

� @Q̂
@k1

� c
!
f (t) dt

+

Z �t(K;�pS)

tN (K)

�
� (K) + k1�q (K)� c

�
f (t) dt

+

Z +1

�t(K;�pS)

��
�pS � c

�
+
N � 1
N

�
� (K; t)� �pS

�
+

�
k1 � K

N

�
�q (K; t)

�
f (t) dt� r:
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Substituting in equation (8), observing that tN (K) < tN
�
KC
RO

�
and �t

�
K; �pS

�
< �t

�
KC
RO; �p

S
�
since

K < KC
RO, and rearranging yields

@V 1

@k1

�
k1 ;

KC
RO

N
; :::;

KC
RO

N

�
=

Z tN (K)

t1

 
�
�
Q̂
�
+ k1q�

�
Q̂
� @Q̂
@k1

� c
!
f (t) dt

+

Z tN(KC
RO)

tN (K)

�
� (K) + k1q� (K)� c

�
f (t) dt

+

Z �t(K;�pS)

tN(KC
RO)

�
� (K) + k1q� (K)�

�
�
�
KC
RO

�
+
KC
RO

N
�q
�
KC
RO

���
f (t) dt

+

Z �t(KC
RO;�p

S)

�t(K;�pS)

0B@ �pS � �
�
KC
RO; t

�
� KC

RO
N �q

�
KC
RO

�
+N�1

N

�
� (K; t)� �pS + �q (K; t)

�
k1 � KC

RO
N

��
1CA f (t) dt

+
N � 1
N

Z +1

�t(KC
RO;�p

S)

�
� (K; t)� �

�
KC
RO; t

�
+ �q (K; t)

�
k1 � K

C
RO

N

��
f (t) dt:

Each term is positive:

1. �
�
Q̂
�
+ k1q�

�
Q̂
�
@Q̂
@k1 � c =

�
k1 � �N

�
�q

�
Q̂
�
@Q̂
@k1 � 0 for t 2

�
t1; tN (K)

�
2. �

�
K; tN (K)

�
+ k1q�

�
K; tN (K)

�
= c, and �t (K) + k

1�qt (K) � 0, hence � (K) + k1q� (K)� c � 0

for t 2
�
tN (K) ; tN

�
KC
RO

��
3. �q (Q) + q�qq (Q) < 0, hence � (K) + k

1�q (K) � � (K) +
KC
RO
N �q (K) � �

�
KC
RO

�
+
KC
RO
N �q

�
KC
RO

�
for t 2

�
tN
�
KC
RO

�
; �t
�
K; �pS

��
4. �

�
KC
RO; t

�
� �pS for t � �t

�
KC
RO; �p

S
�
and � (K; t) � �pS for t � �t

�
K; �pS

�
, hence

�
�pS � �

�
KC
RO; t

�
� K

C
RO

N
�q
�
KC
RO

�
+
N � 1
N

�
� (K; t) � �pS

��
� 0

for t 2
h
t�p
S
(K) ; t�p

S �
KC
RO

�i
5. K � KC

RO, yields � (K; t) � �
�
KC
RO; t

�
for all t

Thus, @�
1
RO

@k1

�
k1 ;

KC
RO
N ; :::;

KC
RO
N

�
> 0: a negative deviation is not pro�table.

Consider now a positive deviation, kN > KC
RO
N while kn = KC

RO
N for all n < N . K = kN+N�1

N KC
RO >

KC
RO.
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@2V N

(@kN )2

�
KC
RO

N
; :::;

KC
RO

N
; kN

�
=

@2�N

(@kN )2
+ 2

N � 1
N

@	

@K
+

�
kN � K

N

�
@2	

(@K)2

=
@2�N

(@kN )2
+
N � 1
N

Z +1

�t(K;�pS)

�
2�q (K; t) +

�
kN � K

C
RO

N

�
�qq (K; t)

�
f (t) dt

�
�
kN � K

N

�
�q
�
K; �t

�
K; �pS

��
f
�
�t
�
K; �pS

�� @�t �K; �pS�
@K

:

Substituting in @2�N

(@kN )2
from equation (13),

@2V N

(@kN )2

�
KC
RO

N
; :::;

KC
RO

N
; kN

�
=

Z �t(K;�pS)

tN

h
2�q

�
K̂; t

�
+ kN�qq

�
K̂; t

�i
f (t) dt

+
N � 1
N

Z +1

�t(K;�pS)

�
2�q (K; t) +

�
kN � K

C
RO

N

�
�qq (K; t)

�
f (t) dt

+
K

N
�q
�
K; �t

�
K; �pS

��
f
�
�t
�
K; �pS

�� @�t �K; �pS�
@K

< 0:

A positive deviation is not pro�table. Therefore
�
KC
RO
N ; :::;

KC
RO
N

�
constitutes an equilibrium. Further-

more,

@2V n

@ (kn)2

�
K

N
; :::;

K

N

�
=

Z t�p
S

tN

�
2�q (K; t) +

K

N
�qq (K; t)

�
f (t) dt+ 2

N � 1
N

Z +1

t�p
S
�q (K; t) f (t) dt

+
K

N
�q
�
K; �t

�
K; �pS

��
f
�
�t
�
K; �pS

�� @�t �K; �pS�
@K

< 0

hence
�
KC
RO
N ; :::;

KC
RO
N

�
is the unique symmetric equilibrium.

C.3.2 The strike price is reached before generation produces at capacity

Substituting expression (15) for @�
n

@kn

�
k1 ; :::; kN

�
into equation (16) yields

@V n

@kn
=

Z +1

~tn

�
�pS � c

�
f (t) dt+

N � 1
N

Z +1

�t(K;�pS)

�
� (K; t)� �pS

�
+

�
kn � K

N

�
@	

@K

�
K; �pS

�
� r:
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Suppose k1 = ::: = kN�1 = KC
RO
N . Then,

@2V N

@ (kN )2
= �

�
�pS � c

�
f
�
~tN
� @~tN
@K

+
N � 1
N

Z +1

�t(K;�pS)

�
2�q (K; t) +

�
kN � K

C
RO

N

�
�qq (K; t)

�
f (t) dt

�N � 1
N

�
kN � K

C
RO

N

�
�q
�
K; �t

�
K; �pS

��
f
�
�t
�
K; �pS

�� @�t �K; �pS�
@K

:

Thus, if kN < KC
RO
N , @2V N

@(kN )2
< 0: a negative deviation is not pro�table.

Consider now a positive deviation, kN >
KC
RO
N . Since producer N is the last producer to be

constrained, ~tN = �t
�
K; �pS

�
. Substituting equation (15) into equation (16) yields

@V n

@kn

�
KC
RO

N
; :::;

KC
RO

N
; kN

�
=

Z +1

�t(K;�pS)

��
�pS � c

�
+
N � 1
N

��
� (K; t)� �pS

�
+

�
kN � K

C
RO

N

�
�q (K; t)

��
f (t) dt

�
Z +1

�t(KC
RO;�p

S)

��
�pS � c

�
+
N � 1
N

�
�
�
KC
RO; t

�
� �pS

��
f (t) dt

= �
Z �t(K;�pS)

�t(KC
RO;�p

S)

�
�pS � c

�
f (t) dt

+
N � 1
N

266664
R +1
�t(K;�pS)

�
� (K; t)� �

�
KC
RO; t

��
f (t) dt

�
R �t(K;�pS)
�t(KC

RO;�p
S)

�
�
�
KC
RO; t

�
� �pS

�
f (t) dt

+
�
kN � KC

RO
N

� R +1
�t(K;�pS) �q (K; t) f (t) dt

377775 :

SinceK > KC
RO, then �t

�
K; �pS

�
> �t
�
KC
RO; �p

S
�
and � (K; t) < �

�
KC
RO; t

�
; hence the �rst three terms are

negative. The last term is negative since kN > KC
RO
N and �q < 0. Thus,

@V n

@kn

�
KC
RO
N ; :::;

KC
RO
N ; kN

�
< 0:

a positive deviation is not pro�table.
�
KC
RO
N ; :::;

KC
RO
N

�
is therefore an equilibrium. Furthermore,

@2V n

@ (kn)2

�
K

N
; :::;

K

N

�
= �

�
�pS � c

�
f (�t)

@�t

@K
+ 2

N � 1
N

Z +1

�t(K;�pS)
�q (K; t) f (t) dt < 0

hence
�
KC
RO
N ; :::;

KC
RO
N

�
is the unique symmetric equilibrium.

D Energy cum operating reserves market

De�ne the total surplus

�S (p; ; t) = �S (p (t) ; t) + (1� �)S (p; ; t)
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and total demand

�D (p; ; t) = �S (p (t) ; t) + (1� �)D (p; ; t) :

The social planner�s program is:

max
fp(t);(t)g;K

E
n
�S (p (t) ;  (t) ; t)� c�D (p (t) ;  (t) ; t)

o
� rK

st : (1 + h (t)) �D (p (t) ;  (t) ; t) � K (� (t))

The associated Lagrangian is:

L = E
n
�S (p (t) ;  (t) ; t)� c�D (p (t) ;  (t) ; t) + � (t)

h
K � (1 + h (t)) �D (p (t) ;  (t) ; t)

io
� rK

and: 8>>>><>>>>:
@L
@p(t) = fp (t)� [c+ (1 + h (t))� (t)]g

@�D
@p(t)

@L
@(t) =

n
vt

h
�D (p (t) ;  (t)) ;  (t)

i
� [c+ (1 + h (t))� (t)]

o
@�D
@(t)

@L
@K = E [� (t)]� r

First, o¤-peak � (t) = 0 and  (t) = 1. Then p (t) = c = w (t). This holds as long as �
�

Q
1+h(t) ; t

�
= c

for Q � K , t � �tOR (K; c).

Second, on-peak, if constant price customers are not curtailed, (1 + h (t)) �D (p (t) ; 1; t) = K hence

� (t) > 0 and  (t) = 1. Then p (t) = c+� (t) (1 + h (t)) = �
�

K
1+h(t) ; t

�
and � (t) = w (t)�c = p(t)�c

1+h(t) >

0.

Finally, constant price customers may have to be curtailed, (1 + h (t)) �D (p (t) ; � (t) ; t) = K for

� (t) < 1 such that (1 + h (t)) �D (�v; � (t) ; t) = K. Then (1 + h (t))� (t) = �
�

K
1+h(t) ; t

�
� c as before.

The optimal capacity K�
OR is then de�ned by E [� (t)] = r which yields equation (10).
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