

THE DEPLOYMENT OF CCS INFRASTRUCTURES

This time is different (?)

Olivier MASSOL & ADRIEN NICOLLE

PSL* SEMINAR - NOV. 29TH 2023

Introduction

I: Insights from recent works on the economics of CCS

II: CCS in France: recent news from the French front

Some concluding remarks (& challenges ahead)

CCS deployment, a road paved with roses? No! BRAMBLES!

CCS in the literature (so far)

utilization and sequestration (CCUS) pilot and demonstration projects

```
Nan Wang<sup>a,*</sup>, Keigo Akimoto<sup>b</sup>, Gregory F. Nemet<sup>c</sup>
```

```
<sup>a</sup> MUFG Bank, Ltd, Japan
<sup>b</sup> Systems Analysis Group, Research Institute of Innovative Technology for the Earth (RITE), Japan
<sup>c</sup> La Follette School of Public Affairs, University of Wisconsin-Madison, USA
```


Figure 5.12: CO, Emissions in the 450 Stabilisation Case

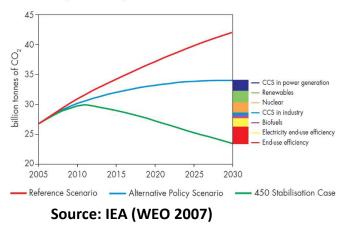
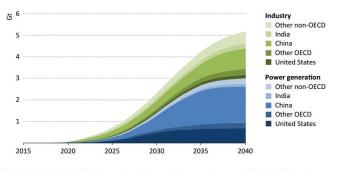



Figure 4.4 > CO₂ captured in the 450 Scenario by sector and region

Note: Industry includes the following sectors: steel, cement (energy- and process-related), chemicals and paper production; oil refining; coal-to-liquids, gas-to-liquids and natural gas processing

Source: IEA (WEO 2015, Special Report)

CCS deployment: this time is different?

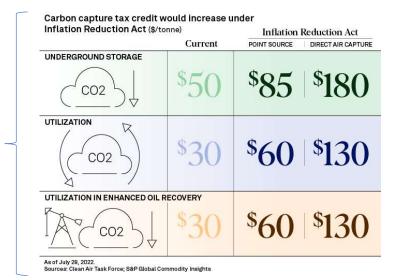
🔵 Demand-side (

Changing focus

o (from powergen to industrial emitters)

& New policies for a Technology Pull

- The U.S Inflation Reduction Act (2022)
- In Europe
 - Higher CO₂ price levels
 - The EU's Carbon Border Adjustment Mechanism (CBAM)
 - The EU's Net Zero Industry Act


Storage

4

o A clarified regulatory framework

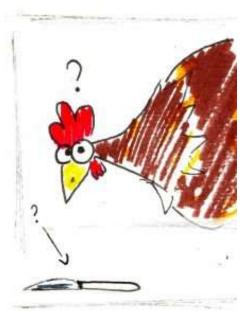
Infrastructures

Herzog (2011): a chicken and egg problem

I – Insights from recent works

Existing regulatory frameworks

Table 1: Review of regulatory initiatives in early-adopter regions for CCS pipeline transportation infrastructures


	UK	U.S.	U.S.	Norway	EU
		Interstate	Intrastate		
Regulatory agency or rates and access	Ofgem likely to be appointed (BEIS 2022a)	Unclear regulatory mandate for pipelines crossing some federal lands and for pipelines not crossing federal lands	No agency, except for common carriers in Texas and Colorado	No agency, but the state intervenes as a project leader and as a stakeholder of the transportation infrastructure (Gassnova SF 2022)	Silent legislation
on-discriminatory ccess prices	Yes	Mandatory for common carriers	Generally mandatory for common carriers	Yes (informational discussion)	Yes
Pricing scheme	Rate-of-retum regulation combined with performance incentives (BEIS 2022a)	Project-dependent (STB intervenes in case of a dispute, see discussion in Appendix A)	Project-dependent	Two-tariff structure: (i) a user-specific maritime component based on distance, and	Silent regulation
				(ii) a non- discriminatory access charge to the Norwegian onshore receiving terminal, the offshore pipeline, and the storage site	

Nicolle, A., Cebreros, D., Massol, O., & Jagu Schippers, E. (2023). Modeling CO2 Pipeline Systems: An Analytical Lens for CCS Regulation. *Economics of Energy & Environmental Policy*, 12(2).

Three main types:

- 1. The explicit approach (e.g., the UK)
- 2. State intervention (e.g., Norway)
- 3. The fuzzy approach (e.g., U.S., E.U.)

Back to basics: Technology 101

Insights from the simplest pipeline system

- Point-to-point pipeline (length *L*) & a pumping station
- \circ 2 inputs (capital K, energy, E) & 1 output Q
- CO₂ transported in a "dense phase" state
- Engineering equations

Production function

7

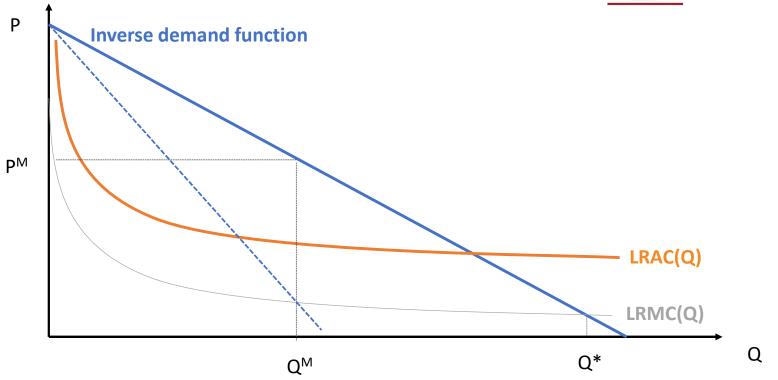
$$Q^{\beta} = K^{\alpha} E^{1-\alpha}$$

with
$$\beta = \frac{9}{11}$$
 and $\alpha = \frac{8}{11}$

Nicolle, A., Cebreros, D., Massol, O., & Jagu Schippers, E. (2023). Modeling CO2 Pipeline Systems: An Analytical Lens for CCS Regulation. *Economics of Energy & Environmental Policy*, 12(2).

Quantity

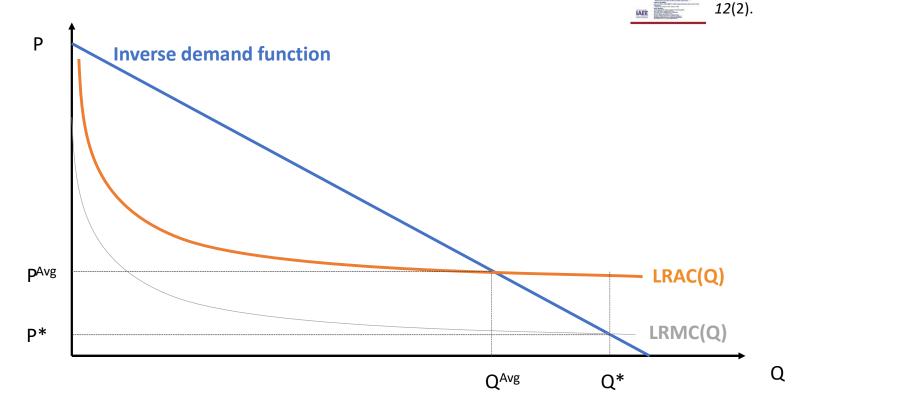
Insight #1: costs are subadditive in the long-run => a natural monopoly


Insight #2: K is irreversible + LR economies of scale

=> **Building ahead of demand** can lower the intertemporal cost (Chenery, 1952; Manne, 1961)

Insight #1: The case of an unregulated monopolist

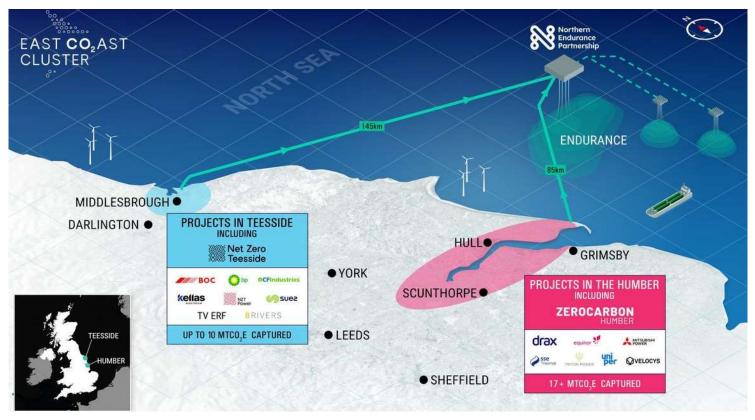
Nicolle, A Schippers Systems: A Economics 12(2).


Nicolle, A., Cebreros, D., Massol, O., & Jagu Schippers, E. (2023). Modeling CO2 Pipeline Systems: An Analytical Lens for CCS Regulation. *Economics of Energy & Environmental Policy*, 12(2).

The case of a private monopolist operator

=> Absent any regulation, the amount of CO_2 captured will fall short of Q*

Insight #1: LRMC pricing cannot recoup the cost



Nicolle, A., Cebreros, D., Massol, O., & Jagu Schippers, E. (2023). Modeling CO2 Pipeline

Systems: An Analytical Lens for CCS Regulation. Economics of Energy & Environmental Policy,

Uniform (non-dicriminatory) prices => the use of a second-best solution (Q^{Avg}, P^{Avg})
 But Q^{Avg} ≈ 0.7 Q^{*} => 2 conflicting objectives
 Max Q stored vs. Preserve non-discriminatory prices

Insight #2: The design problem

(Source: East Coast cluster's website)

Insight #2: The design problem

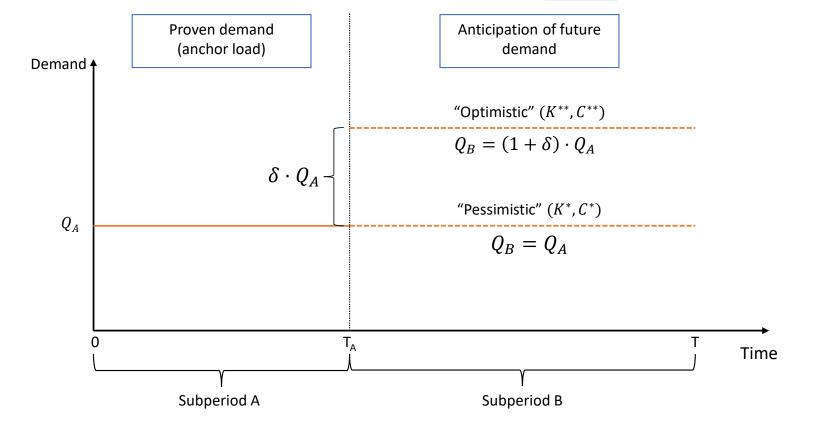
ENERGY POLICY

Nicolle, A., & Massol, O. (2023). Build more and regret less: Oversizing H2 and CCS pipeline systems under uncertainty. *Energy Policy, 179*

From a regulator's perspective

• How can it distinguish between two types of project planner:

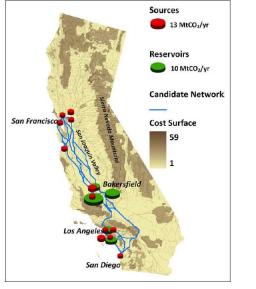
A project planner that **oversizes** its infrastructure to respond to future demand

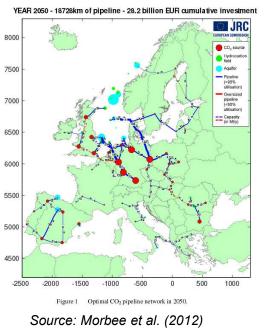

(and that eventually misjudges its forecasts and ends up with an overcapitalized infrastructure) A project planner that **voluntarily overcapitalizes** to exploit regulatory flaws

(A-J effect, fuzziness of regulation)

Insight #2: The design problem Shall we build ahead of demand?

ENERGY POLICY


Nicolle, A., & Massol, O. (2023). Build more and regret less: Oversizing H2 and CCS pipeline systems under uncertainty. *Energy Policy*, *179*


Insights from a MiniMax Regret decision rule:

Building ahead of demand is regret-minimizing!

Insight #3: CO₂ transportation as a club good

Network optimization models

The tale of a benevolent planer

Min total cost of pipeline infrastructure

s.t. node balance constraintspipeline capacity constraintsstorage capacity constraints

Candidate network for California example.

Source: Kuby et al. (2011)


However, CO₂ transportation is a club good

- => Do emitters obtain a fair share of the benefits?
- => a need for a **cooperative game theoretic approach**

Insight #3: CO₂ transportation as a club good

Energy Policy 171 (2022) 113265

Unlocking CO_2 infrastructure deployment: The impact of carbon removal accounting

```
Emma Jagu Schippers<sup>a, b, c, *</sup>, Olivier Massol<sup>a, b, c, d, e</sup>
```

From the conditions for shared infrastructures

Finding #1: The conditions for a vertically integrated club are identical to the one of an independent pipeline operator

Finding #2: non-discriminatory pricing can kill some projects

Finding #3: when multiple storages are identified, the optimal community can have a **regional scale**

Finding #4: the inclusion of **BECCS** critically depends on carbon removal certification

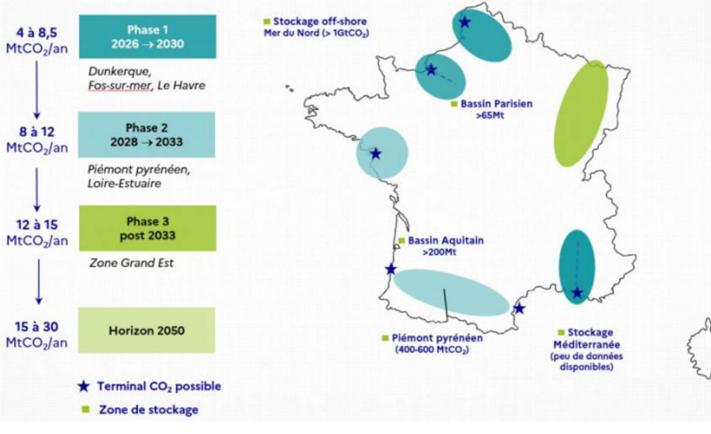
Key messages to take away from these academic studies

I – The current regulatory framework governing CO_2 infrastructures is **<u>fuzzy</u>**

II – Despite the technology's simple nature, economic implications are overlooked

- CO₂ transportation has elements of a natural monopoly
- Regulatory rules and priorities affect environmental performance
- Do we need to impose uniform pricing?

III – Building ahead of demand can be justified


• The knowledge of the technology can help in preventing strategic overcapitalization

IV – A <u>Club perspective</u> yields major insights

- Again non-discriminatory pricing is not justified
- Focusing on simple communities can be preferable
- The feasibility to include BECCS & DACCS critically depend on carbon removal certification

II – Some recent news from the French front

CCS in France: A three phase Rollout

Source: DGEC. (2023)

Phase 1: storage in neighboring countries (Norway and Italy)
→ bilateral agreements

Phase 2: national storage or in neighboring countries

- \rightarrow assessment of the potential of storage by the end of 2023
- → initial seismic tests starting in 2024-2025

Phase 3: 15-30 MtCO₂/year

17

The contemporary discussion in France

Strategy CCUS (July 2023)

- Risk-sharing through "Take or Pay" Contracts
 - → Partial coverage of potential penalties by the State
- Transportation regulated by CRE
 - \rightarrow Third-party access
- Public support through Carbon Contract for Difference (CCfD), awarded by tenders

 \rightarrow Launch date : 2024

Consultation Response (Bellona, Oct 2023)

• Storage objective too low

 \rightarrow Nation-wide potential of 90 MtCO₂/y by 2050

• Supporting CCS and Balancing risk

→ State should take an active role (similar to Norway, Denmark or the Netherlands)

→ Avoid privately owned **natural monopolies**

• CCfD

→ Based on CO₂ reduced, not captured

Remaining questions

I – What policy instruments?

- Subsidies for...
 - ... pipeline/infrastructure ?
 - ... or for capture adopters?
- CCFD: increasingly popular but its economics have to be clarified for some sectors
- State-participation?
- Binding emission mandates?
 - By acknowledging possible differences in the sectors' obligations

II – What regulatory regime for CO2 infrastructures?

- Third-Party access: OK
- Discriminatory pricing?
- Regulated profitability?
- III Clarifying the feasibility of CCS in polluting countries
 - Europe: Germany, Poland
 - ROW: India, Gulf, China, Indonesia, Vietnam?

IV – Clarifying the unknown economics of emerging technologies

- CCS: learning effects?
- BECCS: what incentives?
- CCUS: what business case? What implications?

THANK YOU FOR YOUR ATTENTION

olivier.massol@centralesupelec.fr adrien.nicolle@centralesupelec.fr