

Future markets for renewable gases: what would the optimal regulation

Machiel Mulder

Professor of Regulation of Energy Markets Faculty of Economics and Business University of Groningen

Joint work with **Jose L. Moraga** and **Peter Perey** (University of Groningen), conducted on request by **CERRE**, Brussels

Link to CERRE Report

Online seminar Sector coupling and energy Université Paris Dauphine-PSL, Paris 3 March 2021

Background and research questions

In order to reduce carbon emissions, fossil fuels have to be replaced by renewable gases

1) What is the potential role of green gases and hydrogen in Europe?

2) Which policy measures are needed to promote renewable gases in an efficient way?

Contents

Renewables gases

- 1. which types?
- 2. potential supply?
- 3. what are costs / break-even prices?

Regulation

- 4. economic framework
- 5. recommendations for
 - targets
 - certificates
 - grid access
 - support

university of groningen

Types of gases

- Biogas
 - produced through anaerobic digestion (AD)
- Bio-methane
 - produced after the purification of biogas
 - or through thermal gasification (SMR)
- Hydrogen
 - produced from natural gas using CCS/CCU (NG-sourced H₂)
 - produced from the electrolysis of water with renewable electricity (RE-sourced H₂)
- Methane from hydrogen
 - produced after methanation of RE-sourced H₂

Schematic overview supply chain renewable gases and hydrogen

Now: not discussing the interaction between these markets, but just looking at costs, potentials and policies

centre for energy economics research

What is potential supply?

Current situation – biogas and biomethane

Biogas is mostly used to generate electricity, in particular in Germany (35 TWh)

On EU level: 2% of electricity generation

Biomethane production is quite small

(in Europea: 2 bcm)

Compare: total gas use in Europe is about 500 bcm

Current situation - hydrogen

INDUSTRY & MARKET SHARE	KEY APPLICATIONS	SUPPLY SYSTEM	H2 DEMAND
General Industry 1%	 Semiconductor Propellant Fuel Glass Production Hydrogenation of Fats Cooling of electrical Generators 	 Small on-site Tube trailers Cylinders Liquid H2 	LOW >0.07 Mtons
Metal Working 6%	 Iron Reduction Blanketing gas Forming gas 	 Cylinders Tube trailers 	MEDIUM 0.41 Mtons
Refining 30%	HydrocrackingHydrotreating	PipelineLarge On-site	2.1 Mtons
Chemical Chemical 63%	 Ammonia Methanol Polymers Resins 	PipelineLarge On-site	HIGH 4.3 Mtons

Hydrogen is mainly used as feedstock

Potential supply of renewable gases and hydrogen Bio-methane from Anaerobic Digestion

Potential bio-methane from manure constrained by availability of feedstock

within 25 km radius.

Potential biomethane from crop residues constrained by amount of residues that can be harvested sustainably.

Combined potential for countries of interest is 37 bcm.

At the EU-28 level, potential is 68 bcm/year

Potential supply of renewable gases and hydrogen Bio-methane through Thermal Gasification

Bio-methane from thermal gasification can be deployed on larger scale as inputs can be transported over large distances.

Combined potential for countries of interest of 38 bcm.

EU-28 potential is 56 bcm.

Potential supply of renewable gases and hydrogen Bio-methane in total

In total, the potential biomethane for the countries of interests is estimated at 75 bcm

At the EU-28 we come to a large potential: 124 bcm

Potential supply of renewable gases and hydrogen Bio-methane for countries of interest and EU-28 in total

For the countries of interest, the combined potential of bio-methane is equal to roughly 20% of current natural gas consumption.

For EU-28, the potential is roughly 25% of current natural gas consumption.

Potential supply of renewable gases and hydrogen Hydrogen

- Potential of natural-gas-sourced hydrogen can be very large conditional on availability of CCS
- Potential of renewable-electricity-sourced hydrogen is very dependent on climate policy and electrification of other sectors

What are break-even prices?

To understand underlying factors, we look at breakeven prices

Break-even price of hydrogen (euro/kg.)

Anaerobic digestion (AD)

Break-even prices and composition of the costs, per MWh bio-methane

Scale is low (<= 5MW)

The costs of producing biomethane depend heavily on input costs

Break-even prices range from approximately 5 to 200 €/MWh.

Other studies (ENEA, Conzorzio Italiano Biogas, Navigant) find average close to 80 €/MWh.

Thermal gasification

Break-even prices and composition of the costs, per MWh bio-methane

Hydrogen

Composition of the costs different production techniques, per MWh H₂

Costs of H2 production depend on natural gas or electricity price

With current prices, costs for natural gassourced H2 (with CCS) are around 40 €/MWh and for renewable-electricitysourced H2 are 85 €/MWh

SMR: required hydrogen price depends on prices of gas and CO_2 when price of gas is 15 euro/MWh and price of CO_2 is 15/euro, price of grey hydrogen needs to be 1.2 euro/kg

blue hydrogen needs price of 1.60 – 2.00 euro/kg.

FU:

Electrolysis: required price of hydrogen depends on prices of electricity and green certificates when electricity price is 45 euro/MWh and CO_2 price is 15/euro, the price of hydrogen should be 3.0 euro/kg

Comparison of break-even prices

Cost vary significantly across technologies, but on average costs of bio-methane and H2 are quite high compared to the natural gas price (2 to 5 times as high).

centre for energy economics research

How to foster renewable gases?

centre for energy economics research

Policy Framework

Economic principles to define optimal regulation

Economic	Categories of regulation								
criteria	Policy targets Certificates		Access to the grid	Support schemes					
		schemes		Production support	Renewable energy obligations				
Allocative efficiency: price=MC			Tariffs per unit should be equal to marginal costs	Support = value of externality – value of other regulatory measures to internalise (e.g. carbon tax)	Imposed cost = value of externality – value of other regulatory measures to internalise				
Dynamic efficiency: sufficient return on investments	Long-term policy commitments	Long-term transparency on certificate scheme	Total regulated revenues should cover fixed costs of grid	Long-term certainty on support schemes	Long-term policy view on obligations				
No market power			Third-party access, unbundling	In case of competitive tendering: many producers required	Retailers should have a choice among producers to buy renewable gas from				
No information asymmetry		Increase trust of consumers by standardisation & public certifier	Capacity and tariffs should be clear to (potential) network users	Competitive tenders in case of many producers; otherwise smart incentive mechanisms, like menus, price caps	Traceability of green gas				
No hold-up			Certainty for network operators about compensation of costs of connecting renewable gas	Governments should not be held-up after the support decision has been made					
Fair distribution			Fees related to actual costs producers cause + actual usage of the network_+ common costs fairly allocated among network users	Support <= actual costs – other revenues	Price certificates <= actual costs – other revenues				
Cost-effective	Choose first lowest-cost options	Information about production characteristics	No discrimination among production technologies; only based on costs	Lowest-cost options should be chosen first	Lowest-cost options should be chosen first				

Current situation regarding targets

Main g 2020	oals for	POLICY								
				Italy	France	Germany	Belgium	Netherlands	UK	EU
% ren	ewable heat i	in total heat		17,1	33	15,5	11,9	8,7	12	-
% ren	ewables in fir	nal electricity		26,4	27	38,6	20,9	37	31	-
% ren	ewable in tra	nsport		10,1	10,5	13,2	10,1	10,3	10,3	10
% ove	erall RES in fi	nal energy cons	umption	17	23	19,6	13	14,5	15	20
Source	e: Renewable	e Enerav Action	Plans of the Eu	ropean Member	States	·				
Main g beyon	oals d 2020									
				Italy	France	Germany	Belgium	Netherlands	UK	EU
2030	% renewab	les in final elect	ricity	55	40	40-60*	17**	-	-	-
	% overall R	ES in final energ	gy cons.	30	32	30	20**	27-35	32	32
	% renewab	le gas in gas coi	nsumption	_	10	_	-	-	-	-
2050	% renewab	les in final elect	ricity	_	_	80	-		-	-
	% overall R	FS in final energy		_	_		\sim	100		100
Sourco	· CEED Statu	s Poviow of Pon		Schomos in Eu		Only Fr	ance			100
*: 2025	5: 40 - 45%	(gross electricity	y consumed); 2	035: 55 -		for rene)		
**: 17% is off-shore wind: 20% excludes off-shore wind					ga	s	-			

Bio-methane targets can be based on a) potential and b) expected gas demand

Assuming constant gas demand: targets: 10% by 2030 and 25% by 2050

If gas demand declines by 30% by 2050, target could be 35% by 2050

If gas demand declines by 50% by 2050, target could be 50% by 2050

Hydrogen targets

- > If there is a strong electrification, electricity prices will be high in many hours....
- so there are maybe not many hours of low prices to produce RE-sourced hydrogen
- the bulk of hydrogen will be produced from natural gas (blue SMR)
- Conditional on this we recommend that 100% of the hydrogen produced by 2050 should be carbon-free

Certification

Market failure

- information asymmetry: users cannot see how the gas is produced
- Result without regulation adverse selection: users will not be prepared to pay extra for products of higher quality (e.g. more renewable)

General principles for regulation

- users need to trust the whole process of certification
- certification need to give all relevant information on product characteristics
- long-term certainty about organization of system

Certification

Current situation

- Various national systems
- restricted international trade
- international trade based on mass-balancing

Dutch system

Certification

Recommendations

- improve international standardization of renewable gas •
- make certificates internationally interchangeable ٠
- make certificates interchangeable with ETS and electricity •
- process of certification should be done by public agencies ٠
- reconsider need for mass balancing in international trade (book-and-claim?) ٠

Access to the grid

Market failure

- grid is natural monopoly
- result without regulation: monopolistic behavior, high tariffs, lower quality of network services

General principles for regulation

- variable tariffs equal to marginal costs
- total network revenues sufficient to cover total network costs
- `fair' distribution of fixed/common costs
- equal treatment of various technologies
- independent network operator (i.e. unbundling)

Access to the grid

Current situation

- general EU principles regarding cost recovery and reasonable tariffs •
- incentive/tariff regulation implemented on national scale ٠
- European regulation does not allow TSO's to charge different tariffs for ٠ renewable gases, due to non-discriminatory issues.

Recommendations

- same principles for renewable and natural gas ٠
- but two exceptions possible ٠
 - renewable gas producers could be given discount in fixed fees because of • negative externality of natural gas
 - priority access in case of congestion

Market failure

- negative environmental externality: greenhouse gas emissions of natural gas
- result without regulation:
 To much use of natural gas / to less of renewable gas

General principles for regulation

- support for renewable gas should be equal to (marginal) value of negative externality
- support should not be higher than surplus costs of renewable gas (compared to natural gas) minus support through other mechanisms (e.g. tax exemption)
- support scheme should give incentives for innovation, cost reduction
- lowest-cost options should be chosen first

Current situation

- various designs in Member States
 - production support: feed-in-tariff, feed-in-premium,
 - renewable energy obligations
 - investment aids

		Italy	France	Germany	Belgium	Netherlands	UK
Supply							
	Feed-in tariffs (FITs)	yes	yes	yes	-	-	yes
	Feed-in premiums (FIPs)	yes	yes	yes	yes*	yes	-
	Investment grants	-	yes	yes	yes	-	-
Demand	Tax exemptions	-	-	-	-	yes	yes
	Obligations	-	yes	yes	yes	-	-

*: because certificates have fixed prices, de facto similar to FIPs

Source: CEER Status Review of Renewable Support Schemes in Europe

Current situation

various support levels •

	FITs	FIPs	Duration support
UK	5.50 €ct/MWh if V<40 GWh		20 years
	3.24 €ct/MWh if 40 <v<80 gwh<="" td=""><td></td><td></td></v<80>		
	2.50 €ct/MWh if V>80 GWh		
NLs		4.5 €ct/kWh	12
BE		9,3 €ct/kWh***	10
FR	9.5 €ct/kWh for K<500 kW		10-20 years
	4.5 €ct/kWh for K>3.5 MW		
DE*	7.44 €ct/kWh for K<500kW		20 years
	6.5 €ct/kWh for 500kW <k<20 mw<="" td=""><td></td><td></td></k<20>		
IT		6,46 €ct/kWh***	

What should be maximum support level?

 maximum support levels based on the break-even constraint, for various levels of production costs and in relation to the value of carbon taxes to be paid by consumers

Gas price was 20 euro/MWh over past 10 years

If carbon tax is 10 euro/MWh, consumer price is 30 euro/MWh

If costs are 60 euro/MWh, 30 euro/MWh subsidy required

Recommendation on design

- Incentives for efficiency by for instance •
 - competitive tendering (offshore wind) •
 - degression mechanism (UK) •
 - budget constraints (NED) •
 - declining reserve bids (FR) •

Summarizing main recommendations

Certificates

- EU standards for renewable gas
- international interchangable
- compatible with ETS and electricity
- operated by public agencies
- reconsider need for mass-balancing

Grid access

- same economic principles for renewable gas as for natural gas
- 2 exceptions conceivable:
 - discount on contribution to fixed network costs
 - priority access in case of congestion

Support schemes

- based on value negative externality
- controlling for all kinds of support and break-even constraint
- estimate: 40-50 euro/MWh
- no support for RES hydrogen if renewable electricity is supported
- design: incentives for dynamic efficiency

Contact details:

Prof. Machiel Mulder Centre of Energy Economics Research (<u>CEER</u>) Faculty of Economics and Business University of Groningen

Homepage: http://www.rug.nl/staff/machiel.mulder