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Research questions and contribution

Sector coupling as a strategy to

* (i) decarbonize other sectors

* (ii) provide flexibility to the power sector
- potentially useful for integration of variable renewable energy sources
- often under-represented in energy models
- cp. Lépez Prol & Schill 2021, Annual Reviews of Resource Economics,
doi: 10.1146/annurev-resource-101620-081246

Focus here: green hydrogen

* Domestic (German) H, production and distribution, use for fuel-cell electric vehicles

We determine least-cost hydrogen supply chains
* Considering differences in energy efficiency, investment costs, and storage capabilities

* Considering electricity sector interactions = main contribution
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Model: extension of DIETER

This calls for a numerical model

* Extension of open-source model DIETER: https://gitlab.com/diw-evu/dieter_public

* Here, co-optimization of power and hydrogen sector https://gitlab.com/diw-
evu/dieter public/dietergms/-/tree/1.4.0, or https://doi.org/10.5281/zenodo.3693306

New hydrogen module

* Four channels for distributing H, to filling stations
* On-site (decentralized) electrolysis
* Central + gaseous H,

¢ Central + liquified H,
* Central + LOHC @—%—@4(;:1@

Applied to 2030 scenario for Germany
* RES shares between 65% and 80%
* Hydrogen demand: 0, 5%, 10%, 25% of passenger road traffic (0, 9, 18, 45 TWh,,,)

https://commons.wikimedia.org/wiki/File:Dibenzyltoluene V1.svg
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Overview of hydrogen supply chains in the model
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Results: hydrogen supply chains and H, supply costs
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Res63
generation capacity changes (GW)

Res75 Res70
generation capadty changes (GW)

generation capadty changes (GW)

Res80
generation capacity changes (GW)

Effects on generation capacity (vs. baseline without hydrogen)

Dem3

Demli0

Dem25

05+GH; O5+LH; O5+LOHC

05+GH; O5+LH; O5+L0OHC

O5+GH; O5+1H; O5+LOHC

05+GH; O5+LHz O5+LOHC

_ -

O54GH;  DS:lH:  OS+LOHC OS4GH;  OS+LH:  OS+LOHC
O54GH;  DS:lH:  OS+LOHC O5+4GH:;  OS+LH:  OS+LOHC
I Lignite I Hard coal Natural gas
mmm Onshore wind mmm Offshore wind PV

. Li-ion

O5+GH: O5+LH; 05+LOHC

el

Pumped hydro

05+GH; O5+LH: O5+L0OHC

05+GH: O5+LHz O5+L0OHC

——

05+GH: O5+LH: O5+L0OHC

mm Cther conventional

mmm Other renewable

—> Larger effects with growing hydrogen
demand

—> Smaller effects with growing RES
penetration (better utilization)

— Hydrogen favors PV deployment

111 BERLIN



Res63
yearly generation changes (TWh)

8

Res70

yearly generation changes (TWh)

8

Res?.

yearly generation changes (TWh)

Res80
yearly generation changes (TWh)
: 5

Effects on yearly generation and curtailment (vs. baseline w/o hydrogen)

Dem35 Demli0 Dem25

g

8

—> Flexible H, supply chains integrate RES that
would otherwise be curtailed

5 & 3
reduction of RES curtailment (TWh)

a

w = LOHC has the largest capability for this

g

8

3

- ,Mixed blessing of flexibility“:
also helps integrating lignite

&

=]

reduction of RES curtailment (TWh)

¥ 5 8 8 8

o
i
i}
reduction of RES curtzilment {TWh)

O5+GH O5+LH; O5+LOHC O5+GH; O5+LH; O5+LOHC 05+GH; O5+Hy O5+HLOHC

I Lignite I Hard coal Matural gas [ Other conventional m B E R LI N

 Onshore wind I Offshore wind PV mmm Other renewable
- | i-ion Pumped hvdro e RES curtailment

reduction of RES curtailment (TWh)

ed




Two complementary metrics of CO, emission intensity

Additional System Emission Intensity of Hydrogen (ASEIH)
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Two complementary hydrogen cost metrics
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Effects of hydrogen on system costs of electricity (vs. baseline w/o hydrogen)
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Sensitivity analyses (Supplementary Information)

Effects of central parameter assumptions
* Lower transportation distances: GH, and LOHC relatively improve
¢ Cavern storage: GH, becomes dominant

* LOHC would benefit from free waste heat, existing transportation and storage infrastructure
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Summary and conclusion

Trade-off between energy efficiency and temporal flexibility

* Energy-efficient decentral electrolysis optimal for lower RES shares

* Less energy-efficient but more flexible centralized electrolysis better for higher RES shares

Possible co-benefits of green H, for RES integration
* Depend on storage capability of supply chain
* ,Mixed blessing“: additional flexibility may also benefit dirty generators

* Different cost metrics raise complementary insights

Limitations
* Results driven by renewable surplus, no competing sector coupling options
* Limits to RES capacity deployment in Germany (and Europe)

* Hydrogen imports: export of power sectors benefits

Optimal supply chains and power sector benefits of green hydrogen
Schill, October 12, 2021
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Optimal supply chains and power
sector benefits of green hydrogen

Fabian Stéckl™”, Wolf-Peter Schill** & Alexander Zerrahn®

Green hydrogen can help to decarbonize parts of the transportation sector, but its power sector
interactions are not well understood so far. it may contribute to integrating variable renewable energy
sources if production is sufficiently flaxible in time. Using an open-source co-optimization model of the
power sector and four options for supplying hydrogen at German filling stations, we find a trade-off
between energy efficiency and temporal flexibility. For lower shares of renewables and hydrogen,
more energy-efficient and less flexible small-scale on-site electrolysis is optimal. For higher shares

bles and, ydrogen, flexible but Im energyeﬁ'lclem large-scale hydrogen supply
importance, as they allow to p gen production from demand
wvia storage. Liguid hydrogen emerges as pamcularly beneficial, [ollowed by liguid organic hydrogen
«carriers and gaseous hydrogen. Large-scale hydrogen supply chains can deliver substantial power
sector benefits, mainly through reduced renewable curtailment. Energy modelers and system planners
should consider the distinct flexibility characteristics of hydrogen supply chains in more detail when
assessing the role of green hydrogen in future energy transition scenarios. We also propose two
alternative cost and emission metrics which could be useful in future analyses.

The increasing wse of renewable energy sources in all end -use sectors 1s 2 main strategy to reduce greenhouse
gas emissions”. This not only apphies to the power sector, but also to other sectors such as transportation. There,
energy demand may be satisfied etther directly by renewable electricity or indirectly by hydrogen and dertved
synthetic fuels produced with renewable elect “* The potenttal role of hydrogen-based electrification for
dr:e'p decarbonization 15 widely acknowledged”™

Yet, a central aspect 1s less understood so far: Iww hydrogen-based electrification interacts with the power
sector. Hydrogen supply chains use different types of storage, which allow to temporally disentangle electricity
demand for hydrogen production from the time profile of final hydrogen demand. Similar to other flexibility
options in the power sector, such as load shifting or electricaty storage, this increases the femporal flexibiity of the
power sector. Such flexibility can help make better use of variable renewable energy from wind and solar Pyl
This, in turn, tmpacts the optimal electricity generation and storage capacities in the power sector, thetr hourly
use, carbon emissions, and costs. Yet more flexible hydrogen supply chains may be less energy-efficient as they
Incur more converston steps >4, Thus, the overall power system impacts of different hydrogen supply chains,
constdering both their flexibility and energy efficiency characteristics, are a prion unclear.

We address this research gap on the power sector Interactions of green hydrogen by investigating different
supply chains of hydrogen for road-based passenger mobitlity for future scenartos with high shares of variable
renewable electricity. Spectfically, we determine least-cost options for the supply of electrolysis-based hydrogen
at filling stations, while explicitly constdering how they interact with the power sector. To this end, we use an
open-source cost-minimization model with a technology-rich well-to-tank perspective that co-optimizes the
power sector and four relevant hydrogen supply chains dertved from the lterature: small-scale on-site dectrolysls
at the filling station as well as three large-scale hydrogen production and distribution options.

As outhined in more detail in “Literature review”, many previcus power sector analyses that include bryd;
for mobality lack detall with respect to the representatton of hydrogen production and distribution options
In contrast, studies that include more techno-economic detalls of supply chains for hydrogen mobility often rely
on exegenous electricity price inputs, Include only rudimentary power sectors, tie hydrogen production to the
avallability of surplus electricity generation, and/or are restricted to a single supply chain'®1420-2% Yet, none of
these studies examines the interactions between hydrogen supply chains and power sectors with high shares of
renewable energy sources in detall.

In this paper, we develop and apply an integrated hydrogen and power sector model to fill this gap in the
literature. It minimizes overall system costs by endogenously optimizing electricity generation and storage
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Ongoing and future work on green hydrogen

Some aspects we are interested in

Reconversion to electricity in settings with high VRE shares

Include PtG and PtL

Road transport:
E-trucks vs. H,-trucks vs. E-Fuel-Trucks

Interactions with other sector coupling

Coupling to global hydrogen model

Schill, October 12, 2021
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Filling Station
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Electricity sector

Data and scenarios

Lithium-ion batteries; 2.0 GW
Pumped-hydro storage; 9.5 GW
Brownfield scenario for 2030

Capacities bounded by current grid PV: 913 GW

development plan (NEP)
Maximum investment into thermal
plants, minimum investments into
renewables and storage

Time series provided by Open
Power System Data & ENTSO-E
Exogenous minimum renewables
share of 65%, 70%, 75%, 80%

Wind offshore;
17.0 GW

Hydrogen infrastructure

Fully ,,greenfield”

Lignite; 9.3 GW
Hard coal; 9.8 GW

CCGT; 17.6 GW

OCGT; 17.6 GW

Oil; 3.2 GW
Other; 4.1 GW

Run-of-river;...

Biomass; 6.89 GW

Wind onshore; 81.5 GW

* H, demand for mobility: 0, 5%, 10%, 25% of passenger road traffic in Germany (0, 9, 18, 45 TWh,,,)

* General assumptions: each fuel station can only offer H, from one channel
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