

How French households value their electricity supply choices

Valuation of the hedonic attributes of electricity

Table of contents

- Introduction
- Research
- Results
- Conclusions & Future work

I. Introduction

French energy sources and uses 2020-2021

GAEL Laboratoire d'Économie Appliquée de Grenoble

There is a European drive to promote renewable energy as a means to achieve a large number of environmental, social and development goals, e.g. EU Directives 2018/2001 & 2019/944; RE $32\% \rightarrow 42.5\%$ @ 2030

France continues to adopt legal and fiscal frameworks¹ to accomodate higher shares of renewables at the individual and collective levels More end uses still need to be electrified!

Consumers are driving the adoption of renewable and local electricity, with implications for future investments and technology choices.

More and more French households are willing to switch to alternative sources of supply

Can their behavior be explained by financial incentives alone, or do they value something else? If so, what and how much?

4 000 000+

Residential consumers subscribed to a 100% "green" electricity offer in 2020, a 152% increase since 2017

144 000+

Self-consumption installations < 9 kW (2022)

296+

Energy communities in 2023

https://www.cre.fr/Documents/Publications/Rapports-thematiques/le-fonctionnementdes-marches-de-detail-francais-de-l-electricite-et-du-gaz-naturel-rapport-2018-2019 https://energie-partagee.org/

Context of the study

The energy transition can be accelerated by understanding the

There is limited research on French households' willingness to pay (WTP) for the hedonic attributes of electricity.

To reveal the WTP of French households for the hedonic attributes of electricity and their sources.

Premise: Individuals are (constrained) rational utility maximizers.

Hypotheses: Electricity perceived as differentiated based on hedonics.

Using a *Discrete Choice Experiment (DCE)* to elicit preferences towards (hypothetical) products and services that contain

ТҮРЕ	CATEGORY	ATTRIBUTE	EXAMPLE	REFERENCE	
		Drice	Selling price, LCOE	Yang et al., 2015 ; Hirsch et al., 2018	
Use	Economic	Price	Opportunity cost	Kirchhoff and Strunz, 2019 ; da Silva et al., 2020	
		Quality	kWh, customer service	Torsten and Mahmudova, 2010 ; Kirchhoff and Strunz, 2019	
Hedonic	Environment	Green	Air pollution, GHG emissions, biodiversity, landscape	Yang et al., 2015 ; Morstyn and McCulloch, 2019 ; Hirsch et al., 2018 ; da Silva et al., 2020 ; Balcombe et al., 2013 ; Groh and Möllendorff, 2019	
	Sociale	Local	Local solidarity, P2P, belonging, short circuits	Morstyn and McCulloch, 2019 ; Tröndle et al., 2019 ; Palm, 2017	
	Psychological	Autonomy	Autarky, independence, self- sufficiency	Ecker et al., 2018 ; Müller et al., 2011 ; Rae and Bradley, 2012 ; Pienkowski & Zbaraszewski, 2019	
			Control	Security, flexibility, data privacy	Ecker et al., 2018 ; Hirsch et al., 2018 ; Cuijpers and Koops, 2012
		Altruism	Philanthropy, moral obligation, "warm glow"	Morstyn and McCulloch, 2019 ; Groh and Möllendorff, 2019 ; Ito et al., 2010 ; Wolske et al., 2017	
		Status	Reputation, conspicuous consumption	Satsiou et al., 2013 ; Krovvidi, 2010 ; Dastrup et al., 2011 ; Hoen et al., 2015 ; Menges et al., 2005	

II. The Research

Laboratoire d'Économie Appliquée de Grenoble

Price Monthly premium assumed positive for attributes and zero by default. Percentage (0 – 30%) and €/m.

Green Percentage (0 – 100%) of renewable electricity supplied from any technology (excluding nuclear).

Local Percentage (0 – 50%) of electricity produced at a distance of up to 40 km.

Autonomy

Percentage (0 – 50%) of total consumption that is self-produced (only generation \pm storage).

Attributes and levels

	CODE			SOURCE			
ALIKIBUTE	CODE	LEVEL	VALUE	Grid	Individual	Collective	
	G1	status quo	25%	•	-	-	
Creen	G2	Low	50%	•	•	•	
Green	G3	Medium	75%	•	•	•	
	G4	High	100%	•	•	•	
	L1	status quo	0 %	•	-	-	
Local	L2	Low	25%	-	•	•	
	L3	Medium	50%	-	•	•	
	A1	status quo	0%	•	-	•	
Autonomy	A2	Low	25%	-	•	-	
	A3	Medium	50%	-	•	-	
	P1	status quo	+0€/m	•	•	•	
	P2	+ 0-5%	+ 0-3 €/m	•	•	•	
Price premium	P3	+ 5-15%	+ 3.1-10 €/m	•	•	•	
	P4	+ 15-30%	+ 10.1-20 €/m	•	•	•	
	P5	> 30%	> 20 €/m	•	•	•	

From 180 choice cards to 10 scenarios

> Full factorial:

```
4^{1 \{\text{green}\}} \cdot 3^{2 \{\text{local+auto}\}} \cdot 5^{1 \{\text{price}\}} = 180
```

- Initially 30 choice cards (scenarios) were produced:
 - ✓ 15 D-error efficient to minimize the correlation between parameters and the standard error¹. Ideal for mixed logit
 - ✓ 15 C-error efficient to minimize the variance of the ratio between 2 parameters. Ideal for estimating WTP
- We reduced from 30 to 10 scenarios using simplifying assumptions on household consumption, quality of supply, transaction costs and local procurement.

Final 10 choice cards (scenarios)

GAE

CARD	GF	RID	COLLECTIVE			INDIVIDUAL			
(scenario)	G	Ρ	G	L	Ρ	G	L	А	Ρ
1	50 %	0 %	50 %	50 %	15 %				
2	75 %	5 %	75 %	25 %	10 %				
3	25 %	0 %				25 %	25 %	25 %	5 %
4	50 %	5 %				75 %	50 %	50 %	15 %
5	75 %	10 %				75 %	50 %	50 %	20 %
6			25 %	25 %	5 %	75 %	25 %	0 %	10 %
7			75 %	50 %	10 %	75 %	50 %	50 %	15 %
8			25 %	25 %	0 %	75 %	25 %	25 %	15 %
9			75 %	25 %	5 %	50 %	50 %	0 %	10 %
10			50 %	50 %	10 %	75 %	50 %	50 %	20 %

¹ This corresponds to the diagonal of the variance-covariance matrix.

Simplifying Assumptions

Household consumption

- 1. The average household electricity consumption remains fixed.
- 2. No household is isolated from the grid (no 100% self-consumption).
- 3. Households with WTP > \leq 30/month are negligible (Shi et al., 2013).
- 4. Self-consumption cannot exceed self-production.
- 5. The default supply (EdF *tarif bleu*) has 25% green, 0% local and 0% autonomy.

Quality of supply

- 6. The quality of supply from all sources is identical.
- 7. Only individual production with storage has all 3 hedonic attributes.

Transaction costs

8. Negligible costs to switch supply (*in practice switch rate > 10%, CRE 2019*).

Local procurement

- 9. Local electricity can be green or fossil.
- 10. Collective self-consumption provides no autonomy to strict consumers, as they are still reliant on third party generators (producers in the community).

Participants were informed of the definitions and characteristics of each attribute and source in advance.

CARD (scenario)	GRID		COLLECTIVE			INDIVIDUAL			
	G	Р	G	L	Р	G	L	А	Р
1	50 %	0 %	50 %	50 %	15 %				
2	75 %	5 %	75 %	25 %	10 %				
3	25 %	0 %				25 %	25 %	25 %	5 %
4	50 %	5 %				75 %	50 %	50 %	15 %
5	75 %	10 %				75 %	50 %	50 %	20 %
6			25 %	25 %	5 %	75 %	25 %	0 %	10 %
7			75 %	50 %	10 %	75 %	50 %	50 %	15 %
8			25 %	25 %	0 %	75 %	25 %	25 %	15 %
9			75 %	25 %	5 %	50 %	50 %	0 %	10 %
10			50 %	50 %	10 %	75 %	50 %	50 %	20 %

Offer type	Offer A	Offer B	PRESENT
Supply type	Collective self-consumption	Individual self-consumption	Supplier (national grid)
Green	25 %	75 %	25 %
ကိုျိုကိုျိုး Local	25 %	25 %	0 %
- +) Autonomy	0 %	25 %	0 %
Price premium	+0 % (<mark>0 €/</mark> m)	+15 % (10.2 €/m)	+ 0 % (<mark>0 €/</mark> m)

Survey development

Descriptive statistics

HOUSEHOLD	Value	No.	%	Reference
Type of dwalling (TVDE)	House	157	31.2	49.9 %
Type of dwelling (TTPE)	Apartment	346	68.8	49.1 %
	Owner	309	61.4	58.8 %
Tenure (PROP)	Tenant	185	36.8	39.1 %
	Shared	9	1.8	N/A
Occupancy (OCCUP)	Mean no. of residents	503	2.6	2.19
Electricity bill (BILL)	€/month, stated	455	70.5	184 (200)
Electricity bill (EST_BILL)	€/month, estimated	503	82.7	184 (200)
Power consumption (EST CONS)	kWh/month, estimated	503	321.8	451.4
	Regular supplier	421	83.7	N/A
Comment a sector of (CONT)	Green supplier	45	8.9	N/A
Current contract (CONT)	Self-production	3	0.6	N/A
	Other	34	6.8	N/A
Main heating (HEAT)	Percentage electric heating	131	26.0	26.2 - 32.4 %
Water heating (WHIE AT)	Percentage electric water	193	38.4	46.5 %
water heating (WHEAT)	heating			
DEMOGRAPHIC	Value	No.	%	Reference
Age (AGE)	Mean (2022 – year of birth)	503	43.5 y	N/A
Conden (CEN)30	Male	144	29.1	48.6 %
Gender (GEN) ³⁰	Female	351	70.9	51.4 %
Education (EDU)3	High school or below	113	22.5	47.9 %
Education (EDU) ³¹	Advanced degree	390	77.5	31.8 %
	Self-employed	29	5.8	4.7 %
	Mid-level professionals	173	34.4	24.6 %
	Employees	175	34.8	15.6 %
Employment (JOB) ³²	Blue collar worker	4	0.8	12.4 %
	Intermediate occupation	63	12.5	15.2 %
	Retired	35	7.0	27 %
	Unemployed	24	4.8	15.7% (2020)
Household income <i>(INC)</i> Mean (ϵ/m)		503	3 346	1 884 (2019)

Sources: INSEE, 2018-2021; ADEME 2016; MonExpert, 2021

III. Results

« Multinomial logit»

Individual-specific characteristics

 $\boldsymbol{U}_{ii} = \boldsymbol{\gamma}_i \boldsymbol{w}_{ii} + \boldsymbol{\varepsilon}_{ii}$

« Random utility models »

Observed & random elements $U_{ij} = \theta \mathbf{z}_{ij} + \varepsilon_{ij} ; \quad \theta \to [\boldsymbol{\beta}_i, \boldsymbol{\gamma}_j]; \ \mathbf{z}_{ij} \to [\mathbf{x}_{ij}, \mathbf{w}_{ij}]$ $U_{ij} = \boldsymbol{\alpha}_j + \boldsymbol{\beta}_i \mathbf{x}_{ij} + \boldsymbol{\gamma}_j \mathbf{w}_{ij} + \varepsilon_{ij}$

where:

 U_{ijk} utility derived by individual *i* from choosing option *j* under distribution *k*

- z_{ij} Observed characteristics of individual *i* and option *j*
- *θ* vector of unobserved coefficients
- α_i nominal fixed factor (intercept) associated to the base scenario
- β_i Unobserved generic coefficients for individual i
- γ_i Unobserved alternative *j*-specific coefficients
- x_{ij} Observed attributes of choice *j* evaluated by individual *i*
- w_{ij} Observed characteristics of individual *i* making choice *j*
- σ_k standard deviation of distribution k
- ε_{ii} Unobserved i.i.d random error component

« Mixed logit »

Individual and choice-specific coefficients as random distributions

Random coefficientsEmphasis on preference variations $U_{ijk} = \beta_{ik} x_{ij} + \varepsilon_{ij}$ random $\beta_{ik} \sim N(mean_k, cov_k)$

Error components Emphasis on attribute correlations $U_{ijk} = \beta_i x_{ij} + \gamma_j w_{ij} + \varepsilon_{ij}$ random $\gamma_i = \gamma \sim N(0, \sigma_k)$ « Conditional logit» Choice-specific attributes $U_{ij} = \beta_i x_{ij} + \varepsilon_{ij}$

Willingness to Pay

- ⇒ WTP is estimated as the marginal rate of substitution (MRS) between a coefficient β_{ij} and the price coefficient β_P .
- 51.5% of respondents had a WTP = 0 and the average WTP for the rest was +8.9%.
- To obtain the WTP in €/month multiply the MRS by the bill.

Example: the average premium to increase by 25% the supply from an EC is +6.25% (4.41 - 12.50 €/m) $CaP_{ij} = -\frac{\beta_{ij}}{\beta_P} = -\frac{1,100}{(-0,176)} = 6.25$

	Attribute	WTP +%/m	Stated bill (70.5 €/m)	Est. bill (82.7 €/m)
β_1	Collective	6.25%	4.41	5.17
β_2	Individual	2.43%	1.71	2.01
β_3	Green	11.80%	8.32	9.75
eta_4	Local	-5.32%	-3.75	-4.40
β_5	Autonomy	12.18%	8.59	10.07

Laboratoire d'Économie Appliquée de Grenoble

Average WTP for green electricity in 80 studies identified in the literature: 12.89 USD/m PPP

- Mixed logit takes into account the characteristics of choices and individuals.
- ✓ A total of 40 questions with 146 choices were included in the survey.
- Zero-inflated models* make it possible to identify statistically significant variables within a large set of variables whose coefficients are close to zero.

```
U_{ij} = \alpha_j + \boldsymbol{\beta}_i \boldsymbol{x}_{ij} + \boldsymbol{\gamma}_j \boldsymbol{w}_{ij} + \varepsilon_{ij}
```

```
U_{ij} = \alpha_j + \beta_i CHOICE_{ij} + \gamma_j INDIV_{ij} + \varepsilon_{ij}
```

$$\alpha_{j} = SOURCE_{GRID} \{ P_{0\%} + G_{25\%} + L_{0\%} + A_{0\%} \}$$

$$\beta_{i}CHOICE_{ij} = \beta_{i} \{ P_{ij} + G_{ij} + L_{ij} + A_{ij} \}$$

$$\boldsymbol{\gamma}_{j} INDIV_{ij} = HH_i \left\{ \gamma_{1j} \dots \gamma_{9j} \right\} + PSY_i \left\{ \gamma_{10j} \dots \gamma_{13j} \right\} + DEM_i \left\{ \gamma_{14j} \dots \gamma_{18j} \right\}$$

* In this study Zero-Inflated Poisson (ZIP) and Negative Binomial (NB) models were used.

Stat. Significant	Not Significant
Household	Household
Own_share ***/***	Bill, €/m <mark>UR</mark>
Supply_PV ***/**	Type (house/apt) UR
	Occupancy
	Area
	Heating
	Water heating UR
Psychological	Psychological
Influence_Price ***/***	Influence_belong
Influence_Green ***/**	Affinity_storage
Influence_Local ***/**	Affinity_neighbor
Influence_Auto ***/*	Identity_enviro
Affinity_PV ***/*	Familiarity_green_other
Opinion_green_exp **/*	Know_other
Know_coop ***/*	
Demographic	Demographic
Gender ***/* OR	Age
	Educational attainment OR
	Occupation
	Revenue OR

OR/UR: Over/Under-represented in sample 21

What did we learn?

We tested the hypothesis of whether (and how much) French households are WTP for 3 hedonic attributes of electricity and their sources.

We conducted a DCE on 503 households from the ARA region and processed the data using various models.

We found statistically significant WTP values for all hedonic attributes and sources.

Main Results II

Green electricity

- Refers to electricity
 produced from renewable
 sources such as hydro,
 wind, solar or biomass.
- Households are WTP +11.8 % (~ 9 €/m) for
 - a 25% increase in the

green attribute.

Local electricity

- Refers to electricity
 produced near its place
 of consumption (ca. 40
 km) with any technology.
- With a negative value,
 <u>households need a</u>

discount of -5.3%

<u>(~ 4 €/m)</u>to accept

25% more of it.

Autonomy

- Refers to the degree of self-sufficiency a household enjoys due to its self-production and storage.
- It is the most highly valued with a <u>WTP of</u> +12.2 % (~ 9.3 €/m)

for a 25% increase.

And irrespective of their attributes...

Individual self-consumption

- Limited to residential solar PV systems +/- storage
- WTP of +2.4 % (~ 1.8 €/m) for a 25% increase in self-produced electricity
 - Probably not enough to finance a PV system, but may signal support for the technology (Dastrup S. et al., 2012).

Collective self-consumption

- Joining a nearby energy community as consumer or prosumer.
- WTP of +6.3 % (~ 4.8 €/m) for a
 25% increase in energy from an energy community
- Raises the possibility that additional underlying factors may be at play.

IV. Conclusions and future work

Laboratoire d'Économie Appliquée de Grenoble

- Price is not the main barrier preventing households from investing in alternative energy sources, but it sets a boundary on their WTP for specific attributes.
- Communications strategies should <u>emphasize autonomy & green</u> attributes to raise the odds of persuading households to switch.
- Psychological characteristics appear to dominate household and demographic characteristics in explaining individual preferences – thus expanding the size of the potential market.
- The maximization of value (rather than the minimization of cost) can be a legitimate optimization goal if electricity is a differentiated good and the market is segmented (e.g., an energy community).

Additional lines of research I

General

- ✓ **Expand the research boundaries** to assess households' energy consumption preferences:
 - In different French regions and fuel types (thermal)
 - Explore the robustness of WTP under rising electricity costs
 - Assess the impact of 2022 w.r.t. weaknesses in the electricity generation capacity

✓ Explore the WTP for:

- Additional attributes, e.g., energy security
- Specific technologies, e.g., wind, hydro, bio, storage
- Alternative applications, e.g., energy efficiency, emissions reductions, e-waste
- ✓ **Assess the value of attributes using securities** (certificates) independent of tech or source.
- Cross-validate results with data from <u>revealed preference studies</u>.
- ✓ Assess the <u>cost implications to the grid</u> of the attribute choices presented in this study.

Solution For suppliers

Explore the effect of <u>price discrimination</u> to maximize value or profits by region/department, e.g., EDF *tarif vert*, *vert régional*.

For individual PV

- Reassess the 'autonomy' attribute from a <u>distributed storage (+ EV) perspective</u>
- ✓ Assess the value assigned by households to the <u>'democratizing potential' of DERs</u>
- ✓ Research the **public acceptance** of autonomy-related investments¹

For communities

- Explore options to incentivize household aggregation into Renewable Energy Communities (EU Directive 2018/2001) vs. Citizen Energy Communities (EU Directive 2019/944)
- Explore energy communities as means to <u>signal "solidarity"</u> and advance the ideal of a <u>Social and Solidarity Economy</u>²

THANK YOU

Adrián RUIZ CARVAJAL

www.nexus3.consulting

contact@nexus3.consulting

+33 (0) 6 52 42 38 58

Special thanks to Stéphane Robin, Margaux Sinceux, Aurélie Level and Cédric Lanu of GAEL

