

Using EVs... to do what?

Yannick Perez

CentraleSupélec – Paris

Yannick.perez@centralesupelec.fr

Electric cars save more energy than they daily use

- Size of the battery goes from 24 to 100 kWh
- EV consumes 15-20 kWh per 100 km
- Mean Drivers Daily trips/day is between 24 km -40 km
 - —EVs are very flexible resources (to store or deliver electricity) if needed = Distributed Storage Services (DSS)
 - —Arbitrage between private use (house-building) or other flexibility buyers of DSS (Energy markets / grids)

Arbitrage

Between...

16 services

4	Wholesale	Demand Response– Wholesale	 Manages high wholesale price or emergency conditions on the grid by calling on users to reduce or shift electricity demand 	
		Energy Arbitrage	 Allows storage of inexpensive electricity to sell at a higher price later (includes only wholesale electricity purchase) 	
		Frequency Regulation	 Provides immediate (4-second) power to maintain generation- load balance and prevent frequency fluctuations 	
		Resource Adequacy	 Provides capacity to meet generation requirements at peak loading in a region with limited generation and/or transmission capacity 	
		Spinning/ Non-Spinning Reserves	 Maintains electricity output during unexpected contingency event (e.g., an outage) immediately (spinning reserve) or within a short period (non-spinning reserve) 	
В	Utility	Distribution Deferral	 Provide extra capacity to meet projected load growth for the purpose of delaying, reducing or avoiding distribution system investment in a region 	
		Transmission Deferral	 Provide extra capacity to meet projected load growth for the purpose of delaying, reducing or avoiding transmission system investment 	
		Demand Response– Utility	 Manages high wholesale price or emergency conditions on the grid by calling on users to reduce or shift electricity demand 	
C	tomer	Bill Management	 Allows reduction of demand charge using battery discharge and the daily storage of electricity for use when time of use rates are highest 	
	Cust	Backup Power	 Supplies power reserve for use by Residential and Commercial users when the grid is down 	

Who need flexible electricity storage? Who would buy flexibility provision? Who need to be decarbonized?

1. Electricity markets

- 2. Electricity grids (TSO or DSO)
 - 3. Buildings/ Houses
 - 4. Car manufacturers

1. Electricity Markets

ELECTRICITY MARKETS ORGANIZATION and EV Fleet

Reg : market friendly and transparent rules

But Electricity wholesale market rules are for existing technologies Not for Distributed Storage Services

Market rules are not really ready for EVs

Energy Policy 137 (2020) 111136

Contents lists available at ScienceDirect

Energy Policy

journal homepage: http://www.elsevier.com/locate/enpol

Vehicle-to-Everything (V2X) energy services, value streams, and regulatory policy implications

ENERGY

Andrew W. Thompson^{a, b, c,*}, Yannick Perez^{c, d}

2. For Electricity grids (TSO-DSO)

Example: TSO potential need for EV flexibility is large (manage Renewables)

V2G value could be worth £3.5Bn/year in UK by 2040 (source: Innovate UK)

			Energy system benefit (Ebn/yr)	
	Scenario		Smart Charger	V2G
	Burning platform	(assumes 50% participating vehicles)	0.1	0.15
ÿ	Stepping stone	(assumes 50% participating vehicles)	0.5	1.4
Ø	Future survival	(assumes 80% participating vehicles)	1.1	3.5

EV flexibility is > €1Bn/year market in France (source: RTE)

Figure 18. Gisement de valeur associée au pilotage dans le scénario Crescendo haut (variantes sur le développement du pilotage de la recharge, comparées à une situation sans aucun pilotage de la recharge)

BUT

Need regulatory adaptations

TSO and **EVs**

Renewable and Sustainable Energy Reviews 81 (2018) 605-614

Contents lists available at ScienceDirect

Renewable and Sustainable Energy Reviews

journal homepage: www.elsevier.com/locate/rser

Barriers to entry in frequency-regulation services markets: Review of the status quo and options for improvements

Olivier Borne^{a,1}, Klaas Korte^b, Yannick Perez^{c,d,*,1}, Marc Petit^{a,1}, Alexandra Purkus^b

^a GeePs, CNRS UMR 8507 CentraleSupélec, UPSud and UPMC, 91192 Gif-sur-Yvette, France

^b Department of Economics, Helm holtz Centre for Environmental Research – UFZ, Permoserstr. 15, 04318 Leipzig, Germany

^e Réseaux Innovation Territoire et Mondialisation Université Paris-Sud, 91400 Orsay, France

^d LGI CentraleSupélec, 3 rue Joliot Curie, 91192 Gif-sur-Yvette, France

Same issues Distribution grids

DSS are potential local provision of flexibility where and when it is needed

Evs and DSO: technical barriers to entry

Renewable and Sustainable Energy Reviews 145 (2021) 111060

Contents lists available at ScienceDirect

Renewable and Sustainable Energy Reviews

journal homepage: www.elsevier.com/locate/rser

Active integration of electric vehicles into distribution grids: Barriers and frameworks for flexibility services

Felipe Gonzalez Venegas ^{a,b,*}, Marc Petit^a, Yannick Perez^c

^a Université Paris-Saclay, CentraleSupélec, CNRS, Laboratoire de Génie Electrique et Electronique de Paris, 91192, Gif-sur-Yvette, France

^b Innovation & Advanced Technologies Research Division, Stellantis, 78955, Carrières-sous-Poissy, France

^c Université Paris-Saclay, CentraleSupélec, Laboratoire de Génie Industriel, 91190, Gif-sur-Yvette, France

3. For behind the meter services

Behind the meter and EVs

And the off-grid « solution » VtoL

- New companies propose "off grid green" solution
 - Home Storage + Solar Roof + EV (100kWh) < Energy + networks + taxes + sunkcosts

4. And Net zero for OEMs?

OEMs Deep decarbonization = huge challenges

Net zero emission : Stellantis example

2022 \rightarrow actual 450 millions tonne of CO₂ per year

Scope 1 \rightarrow direct activity emision (5%)

Scope 2 \rightarrow OEM energy use in the making of the cars (15%)

Scope 3 \rightarrow emissions related to usage and suppliers (80%)

Who EVs are going to help?

DRIVERS and Energy Markets / grids / Behind the meter uses / car manufacturers?

Depends on Regulatory decisions and Economic evaluation country / country

- 1. EV and Energy market: Need to change the market rules
- 2. EV and Transmission grid : Need to change the transmission rules
- 3. EV and Distribution grid : Need to change the distribution rules
- 1. Vehicle to buildings = VtoB : Out of regulators scope
- 2. Vehicle to Home = VtoH : Out of regulators scope
- 3. Vehicle to Load (electrification) = VtoL: Out of regulators scope

OEM net zero compatibility

Using EVs to Provide Grid electric Services: Regulatory challenges

Yannick Perez

CentraleSupélec – Paris <u>Yannick.perez@centralesupelec.f</u>