
QUELS SOUTIENS AUX ÉNERGIES RENOUVELABLES ÉLECTRIQUES ?

Revue française d'économie 2015/4, p. 105-140

Philippe Quirion CNRS, CIRED

Electricity from renewables & nuclear, World, 1996-2015

Source: BP Statistical Review of World Energy June 2016

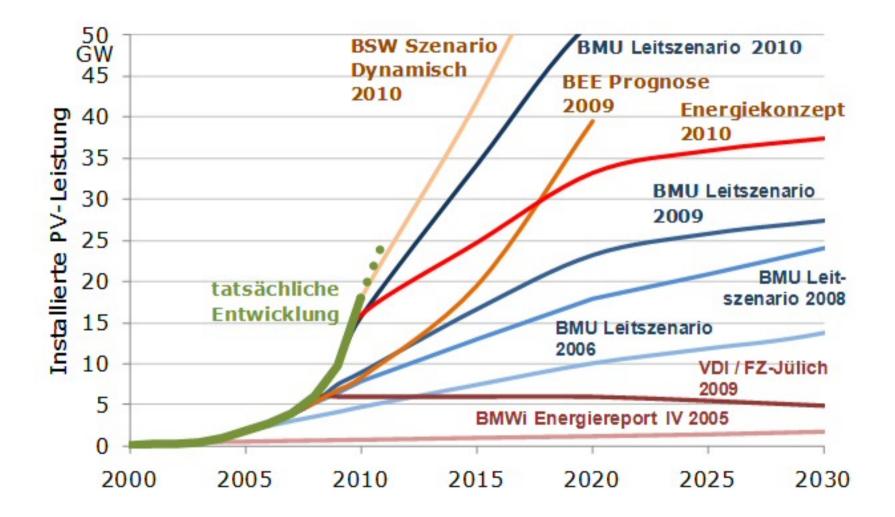
3 main policy instruments for renewables in electricity

- Feed-In-Tariffs (FIT)
 - Electricity bought at a guaranteed price for 10-20 years
 - Boosted wind & PV in Denmark, Germany, Spain, France...
 - More & more limited to small-scale PV

• Feed-In-Premium (FIP)

- Per-unit subsidy added to the market price
- Germany, France moving to FIP (wind)

• Tradable Renewable Quota (TRQ)


- Minimum share of renewables in the power mix; renewable power producers sell "green certificates"
- Aka "Tradable Green Certificates" (TGC), "Renewable Portfolio Standards" (RPS)
- Some US states, Korea, Sweden...

Outline

1. FIT vs. FIP vs. TRQ wrt.

- 1. Uncertainty
- 2. Electricity price variation through time
- 3. Imperfect competition
- 4. Transaction costs
- 2. ≠ support levels for ≠ market segments?
- 3. How to fund the subsidies?
- 4. Auctions in the EU

1.1. Uncertainty (1)

1.1. Uncertainty (2)

• Schmalensee 2012: FIT vs. TRQ

- No explicit externality \rightarrow same exp. renewable prod.
- Uncertain ren. cost
- Same Expected social cost
- FIT: lower variance for ren. producers
- Variance in social cost depends on parameters, likely lower for TRQ
- Decreasing marginal fossil cost & perfect competition: ?
- Narita & Requate 2014: FIT vs. TRQ
 - Externality: CO_2 emissions but internalised by CO_2 tax
 - Uncertain fossil cost: TRQ > FIT... but because price cap!
 - Uncertain ren. cost: depends on parameters

1.1. Uncertainty (3)

• Cornago & Foucart 2014:

- TRQ vs. absolute ren. quota vs. fossil quota.
- Externality: CO₂ emissions
- fossil quota > ren. quota > TRQ (share of ren.)
- Marschinski & Quirion 2014:
 - FIT vs. FIP vs. TRQ
 - Externality: induced technical progress
 - Uncertainty over fossil cost, ren. cost or elec. demand
 - Numerical application to the US
 - General result: FIT > TRQ, FIP > TRQ

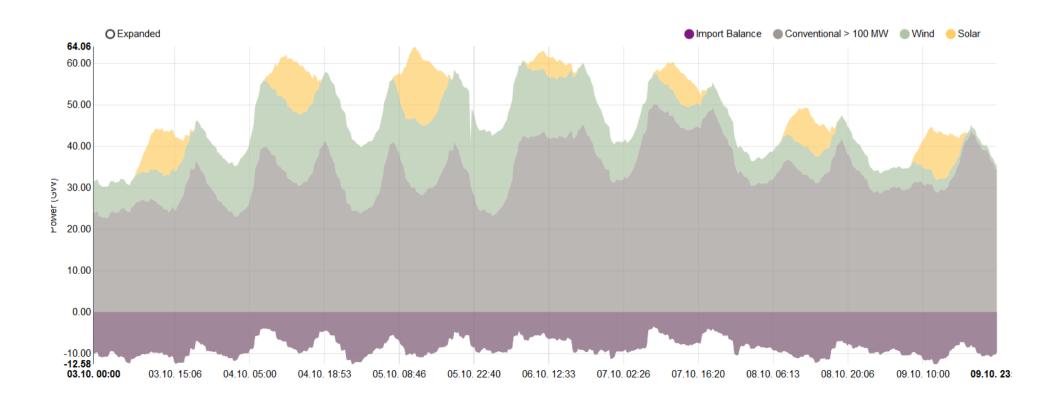
1.1. Uncertainty (4)

• Lecuyer & Quirion 2016:

- Externality: CO₂ emissions
- Interaction with EU ETS; ETS emission cap may bind or not
- Uncertainty over fossil cost, ren. cost or elec.
 demand
- Numerical application to the EU
- General result: FIT > FIP > TRQ

1.1. Uncertainty (5)

- Risk for ren. producers
 - Lower with FIT: Couture & Gagnon 2010, Fagiani et al. 2013, Kitzing 2014, Marschinski & Quirion 2014, Schmalensee 2012...
 - Gavard 2016, wind in Dk:
 FIP @ 27 € /MWh ~ FIT support @ 21€/MWh
- Lower risk \rightarrow investment by smaller players
- But risk for conventional producers higher with FIT (Marschinski & Quirion 2014)


1.2. Electricity price variation (1)

- Negative prices:
 - Few occurrences
 - Social cost only if Abs[price]>fossil externality
 - Can be tackled by any support scheme

1.2. Electricity price variation (2)

- Schmidt *et al.* 2013, Roques *et al.* 2010, Reichelstein & Sahoo 2015: production maximisation ≠ value maximisation
- Implies FIP > (fixed) FIT

1.3. Imperfect competition

- Dressler 2015; Tamás *et al.* 2010
 - FIP vs. FIT, Cournot oligopoly
 - FIP may increase market power
- Verbruggen 2009 (Belgium), Tanaka & Chen 2013
 - TRQ: distortions on green certificates market
 - Interaction between electricity and green
 certificates markets → more distortions
 - ~ Reclaim in 2000-1 (Kolstad & Wolak 2008)

1.4. Transaction costs

- Langniss 2003, Finon & Perez 2007: FIT ≻ TRQ
 - German FIT: 1.3%, Texas TRQ: 2.9%
 - Swedish TRQ: 18% (Mundaca 2013)
- FIP: transaction costs for selling power (Gawel & Purkus 2013: 460 million € in Germany).
- Clear ranking: FIT > FIP > TRQ

2. ≠ support levels for ≠ market segments?

- Market segment: techno, location, size...
- EU guidelines: "technology neutral"
- Practice: differentiation (exchange rates or separate targets for TRQ)
- Dilemma:
 - Tech neutral \rightarrow differential rent
 - Differentiation \rightarrow higher social cost (Requate 2015)
- Empirical studies: higher rent for TRQ
 - Jaraitė & Kažukauskas 2013, Kwon 2015, Verbruggen 2009, Bergek & Jacobsson 2010
- My viewpoint: differentiation unavoidable but should be based on clear principles

3. How to fund the subsidies?

- Most cases in Europe: tax on electricity
 - Clearly more cost-effective than public budget (Goulder 2013)
 - Lower tax rate for electricity-intensive industry (competitiveness concerns)
 - More efficient tools exist (e.g. tax on consumption of energy-intensive goods)

4. Auctions in the EU (1)

- Late 1990s: first auctions in Ireland, France & the UK
- Abandoned: low realisation rate & high transaction costs (Menanteau *et al.* 2003)
- "Back to the future" (del Río et Linares 2014): Auctions in most European & many developing countries

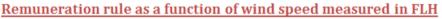
4. Auctions in the EU (2)

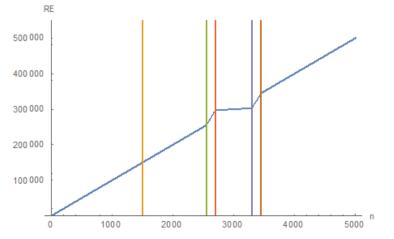
		1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
FR	Onshore Wind																				
	Offshore Wind PV / CSP																				
DE	All RES-E technologies PV / CSP																				
DK	All RES-E technologies Offshore Wind																				
NL	All RES-E technologies Offshore Wind				¢			·			_			•							
IE	All RES-E technologies	•																			
UK	All RES-E technologies	0																		_	
IT	All RES-E technologies PV / CSP									•											
РТ	All RES-E technologies Wind																				

- Tariff Fixed/ Premium set administratively
- Tariff set under auction mechanism
- Quota

O Li

.


- Liberalization of the electrcity market
- Change of the system


Ola Hanafi, Master thesis, CIRED, 2016

source: European Commission, 2013; IRENA, 2012

4. Auctions in the EU (3)

- EU 2014 guidelines :
 - from 2017, "aid is granted in a competitive bidding process on the basis of clear, transparent and non-discriminatory criteria"
 - "aid is granted as a premium in addition to the market price"
 - aim: "cost-effective delivery through market-based mechanisms"
- Non-discriminatory? French auctions for offshore wind & PV include clear protectionist rules
- **Transparent**? Little information on prices & realisation rate; ½ of criteria qualitative.
- **Cost-effective**? For offshore, "competitive dialogue" to avoid duplication of feasibility studies. High transaction costs.
- **Cost-effective**? For offshore, potentially distorting risk mitigation features.
- Cost-effective? Premium rather than tariff

Conclusion

- Tradable renewable quota dominated by tariff or premium for many reasons
- Move from premium to tariff questionable
- Details may matter more (funding, differentiation...)
- Move towards auctions questionable for onshore wind & PV in Europe