Introduction	Model	Estimation	Results	Conclusions
	000 0000 00000	00 00		

The effects of oil price shocks in a new-Keynesian framework with capital accumulation

Verónica Acurio Vásconez, Gaël Giraud, Florent Mc Isaac, Ngoc-Sang Pham

CES, PSE, Université Paris I, BETA, Chair Energy and Prosperity

Séminaire de recherches PSL en économie de l'énergie June 10th 2015

• Recall the difference between oil's output elasticity and oil's cost share.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 臣国 のへぐ

Introduction	Model 000 0000 00000	Estimation 00 00	Results	Conclusions
		Purpose		

- Recall the difference between oil's output elasticity and oil's cost share.
- Analyze the effects of oil shocks in the U.S economy

 \Rightarrow A theoretical study with DSGE model

 \Rightarrow An empirical approach with U.S data (1984:Q1-2007:Q1)

Introduction	Model	Estimation 00	Results	Conclusions
	00000	00		
		Purpose		

- Recall the difference between oil's output elasticity and oil's cost share.
- Analyze the effects of oil shocks in the U.S economy

 \Rightarrow A theoretical study with DSGE model

 \Rightarrow An empirical approach with U.S data (1984:Q1-2007:Q1)

• Analyze the role and evolution of oil dependency.

Introduction	Model 000 00000 00000	Estimation 00 00	Results	Conclusions
		Outline		

Introduction

Model

Estimation

Results

Conclusions

▲□▶ <圖▶ < E▶ < E▶ E|= のQ@</p>

Introduction

Model 000 0000 00000 Estimation 00 Results

Conclusions

The 1970s' oil shocks

	Year	Change
Real (2013-2014) Oil Price	1973 – 1974	+150%
	1978 – 1980	+100%
Inflation	1973–1974	+4.3 %
	1979–1980	+5.9 %
Unemployment rate	1973 – 1974	+3.6 points
	1979 – 1982	+3.8 points
Growth	1973–1975	-6%
	1979–1980	-5.8%
Real Wages	1973–1975	-2.7%
	1979–1980	-1.3%

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

****	-		-		-	
 LI.	v		-	s		

Estimation

Results

◆□▶ ◆□▶ ◆□▶ ◆□▶ 三回□ のQ@

Conclusions

Literature: The correlation between oil shocks and the business cycles

- Hamilton (1983, 1986,1989)
- Gisser & Goodwin (1986)
- Dotsey & Reid (1992)

		н						
-		-11	TD 8		H	17		n
	~	-	-	-	-		-	

Estimation

Results

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□□ のへの

Conclusions

Literature: The correlation between oil shocks and the business cycles

- Hamilton (1983, 1986,1989)
- Gisser & Goodwin (1986)
- Dotsey & Reid (1992)

A correlation **challenged** by:

• Bernanke, B., et al. (1997): The role of monetary policy.

Introduction

Model

Estimation

Results

Conclusions

The 2000s' oil shock

	Year	Change
Real (2013-2014) Oil Price	1973 – 1974	+150%
	1978 – 1980	+100%
	2002 – 2007	+147%
Inflation	1973–1974	+4.3 %
	1979–1980	+5.9 %
	2002-2007	+1.3%
Unemployment rate	1973 – 1974	+3.6 points
	1979 – 1982	+3.8 points
	2002-2007	+1.2 points
Growth	1973–1975	-6%
	1979–1980	-5.8%
	2002-2007	+2.7% (average)
Real Wages	1973–1975	-2.7%
	1979–1980	-1.3%
	2002-2005	-0.4%

Introduction

Model 0000 00000 Estimation

Results

Conclusions

The debate

Barsky & Kilian	Hamilton (2009)	Blanchard & Galí (2009)
(2004)		Blanchard & Riggi (2013)
overstated link be-	different causes, but	
tween oil price changes and	similar consequences	 the reduction of oil share in production;
performance		 the flexibilization of real wages and;
		 the improvements in monetary policy.

Introduction	Mo
	00

Estimation 00 00 Results

◆□▶ ◆□▶ ◆□▶ ◆□▶ 三回□ のQ@

Conclusions

Research Questions

- Do we really understand how oil shocks spread in the economy?
- Is the U.S economy really invulnerable to oil shocks? If so, what change in the U.S to make the economy immune?
- What kind of policy could be implemented to help to lessen effects of oil shocks?

Introd	luction	

Estimation 00 00 Results

◆□▶ ◆□▶ ◆□▶ ◆□▶ 三回□ のQ@

Conclusions

What have we done?

To the best of our knowledge, no dynamic general equilibrium model was available that captures the next two stylized facts:

- 1. The stagflationary impact of sharp oil real price rise.
- 2. The various impacts of capital accumulation:
 - Hysteresis effect
 - The potential role of capital as a new channel for monetary policy
 - The role of capital energy efficiency in dampening the impact of an oil price rise

Introduction	

Estimation 00 Results

◆□▶ ◆□▶ ◆□▶ ◆□▶ 三回□ のQ@

Conclusions

What have we done?

The present paper introduces oil into a DSGE model in the same way as Blanchard & Galí (2009) and Blanchard & Riggi (2013), to which it adds capital accumulation.

Introduction	

Estimation

Results

◆□▶ ◆□▶ ◆□▶ ◆□▶ 三回□ のQ@

Conclusions

What have we done?

The present paper introduces oil into a DSGE model in the same way as Blanchard & Galí (2009) and Blanchard & Riggi (2013), to which it adds capital accumulation.

The oil's output elasticity

Introduction	

Estimation

Results

◆□▶ ◆□▶ ◆□▶ ◆□▶ 三回□ のQ@

Conclusions

What have we done?

The present paper introduces oil into a DSGE model in the same way as Blanchard & Galí (2009) and Blanchard & Riggi (2013), to which it adds capital accumulation.

The oil's output elasticity \neq oil's cost share

In	÷.,	0	ы	 ~	٠	÷	0	-
	•	~	ы	~	•		~	

Estimation

Results

Conclusions

Why add capital in the model?

- 1. More realistic.
- 2. More reliable empirical estimation.
- 3. Separate oil from other types of capital.

$$\max_{x} Y(x) - p \cdot x \tag{1}$$

Conclusions

leads to:

$$\varepsilon_i := \frac{x_i}{Y(x)} \times \frac{\partial Y}{\partial x_i}(x) = \frac{p_i x_i}{p \cdot x}$$

Introduction	Model	Estimation	Results	Conclusion
	000	00		
	0000	00		

$$\max_{x} Y(x) - p \cdot x$$
(2)
s.t. $f(x) = 0$

Introduction	Model	Estimation	Results	Conclus
	000	00		

$$\max_{x} Y(x) - p \cdot x$$
(2)
s.t. $f(x) = 0$

$$\varepsilon_i = \frac{x_i \left(p_i - \lambda \frac{\partial f(x)}{\partial x_i} \right)}{p \cdot x - \lambda x_i \frac{\partial f(x)}{\partial x_i}}.$$

Introduction	Model	Estimation	Results	Conclus
	000	00		
	0000	00		

$$\max_{x} Y(x) - p \cdot x$$
(2)
s.t. $f(x) = 0$

$$\varepsilon_i = \frac{x_i \left(p_i - \lambda \frac{\partial f(x)}{\partial x_i} \right)}{p \cdot x - \lambda x_i \frac{\partial f(x)}{\partial x_i}}.$$

$$\lambda \to +\infty \Rightarrow \varepsilon_i \to 1$$

$$\max_{x} Y(x) - p \cdot x$$
(2)
s.t. $f(x) = 0$

$$\varepsilon_i = \frac{x_i \left(p_i - \lambda \frac{\partial f(x)}{\partial x_i} \right)}{p \cdot x - \lambda x_i \frac{\partial f(x)}{\partial x_i}}.$$

$$\lambda \to +\infty \Rightarrow \varepsilon_i \to 1$$

 ε may take any real value between $-\infty$ and $x_i p_i / x \cdot p$ whenever $0 < \lambda < (p \cdot x) \frac{\partial x_i}{\partial f(x)}$

	1	
Introduction	roductio	on

So that a large share $x_i p_i / x \cdot p$ is compatible with a small ε !

Introduction	Model	Estimation	Results	Conclusions
	000 0000 00000	00		

Outline

Introduction

Model

Households Firms GDP, Monetary Policy and Shocks

Estimation

Results

Conclusions

Introduction

Model

Estimation

Results

Conclusions

General Structure

Domestic Economy

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 臣国 のへぐ

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 臣国 のへぐ

Introduction	Model	Estimation	Results	Conclusions
	000 0000 00000	00		

Introduction	Model	Estimation	Results	Conclusions
	000 0000 00000	00 00		

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 臣国 のへぐ

Introduction	Model	Estimation	Results	Conclusions
	000 0000 00000	00 00		

Introduction	Model	Estimation	Results	Conclusions
	000 0000 00000	00 00		

Introduction	Model	Estimation	Results	Conclusions
	000 0000 00000	00 00		

Introduction	Model	Estimation	Results	Conclusions
	000 0000 00000	00 00		

◆□▶ ◆□▶ ◆□▶ ◆□▶ 三回□ のQ@

◆□▶ ◆□▶ ◆□▶ ◆□▶ 三回□ のQ@

◆□▶ ◆□▶ ◆□▶ ◆□▶ 三回□ のQ@

	- 1			

Estimation

Results

Conclusions

Households

$$C_t(j) := \Theta_x C_{e,t}^x(j) C_{q,t}^{1-x}(j)$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Estimation

Results

Conclusions

Households

$$C_t(j) := \Theta_x C_{e,t}^x(j) C_{q,t}^{1-x}(j)$$

$$\downarrow$$

$$\Theta_x := x^{-x} (1-x)^{-(1-x)}$$

Households

$$C_{q,t}(j) := \left(\int_0^1 C_{q,t}(i,j)^{1-\frac{1}{\epsilon_p}} di\right)^{\frac{\epsilon_p}{\epsilon_p-1}}$$

$$C_t(j) := \Theta_x C_{e,t}^x(j) C_{q,t}^{1-x}(j)$$

$$\Theta_x := x^{-x} (1-x)^{-(1-x)}$$

Model 00● 0000 Estimation

Results

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 臣国 のへぐ

Conclusions

Optimization

Household's Optimal Expenditure Allocation

Estimation 00 00 Results

◆□▶ ◆□▶ ◆□▶ ◆□▶ 三回□ のQ@

Conclusions

Optimization

◆□▶ ◆□▶ ◆□▶ ◆□▶ 三回□ のQ@

Model 000 0000 00000 Estimation

Results

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 三日■ のへで

Conclusions

Final Good Producers

Final Good Firm

Model 000 0000 Estimation

Results

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 臣国 のへぐ

Conclusions

Final Good Producers

Model 000 0000 Estimation

Results

Conclusions

Final Good Producers

Estimation

Results

Conclusions

Final Good Producers

◇□> <□> <=> <=> <=> <=> <=> <□>

Estimation

Results

Conclusions

Final Good Producer Problem

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Model 000 0000 Estimation 00 Results

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 三日■ のへで

Conclusions

Intermediate Good Firms

Intermediate Firms

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 三日■ のへで

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 臣国 のへぐ

◆□▶ ◆□▶ ◆□▶ ◆□▶ 三回□ のQ@

Estimation

Results

Conclusions

Price Optimization

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 臣国 のへぐ

◆□> <畳> <目> <目> <目> <目> <<=>

Blanchard & Galí (2009) and Blanchard and Riggi (2013) define implicit GDP deflator $(P_{y,t})$ by:

$$P_{q,t} := P_{y,t}^{1-\alpha_e} P_{e,t}^{\alpha_e}$$

which yields to:

$$P_{y,t} = P_{q,t}^{\beta} P_{e,t}^{1-\beta}, \quad \beta > 1$$

◆□> <畳> <目> <目> <目> <目> <<=>

Blanchard & Galí (2009) and Blanchard and Riggi (2013) define implicit GDP deflator $(P_{y,t})$ by:

$$P_{q,t} := P_{y,t}^{1-\alpha_e} P_{e,t}^{\alpha_e}$$

which yields to:

$$P_{y,t} = P_{q,t}^{\beta} P_{e,t}^{1-\beta}, \quad \beta > 1$$

We assume however that:

$$P_{y,t} = P_{c,t}$$

◆□> <畳> <目> <目> <目> <目> <<=>

Introduction	Model	Estimation	Results	Conclusion
	000 0000 00000	00 00		

Government

Government

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 三日■ のへで

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 臣国 のへぐ

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 見目 のQQ

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 臣国 のへぐ

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 臣国 のへぐ

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 臣国 のへぐ

Introduction	

Estimation

Results

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Conclusions

Outline

Introduction

Model

Estimation Setting Estimation Results

Results

Conclusions

Introduction	Model	Estimation	Results	Conclusions
	000	• 0 00		
	00000			
		Data		
		1984:Q1-2007:Q1		

Observed Variable	Transformation
labobs	$ln\left(\frac{\textit{Averagehours*CE16OVIndex}}{\textit{LNSIndex}}\right)*100 - mean\left(ln\left(\frac{\textit{Averagehours*CE16OVIndex}}{\textit{LNSIndex}}\right)*100\right)$
infobs	$ln\left(\frac{GDPDEF}{GDPDEF(-1)} ight)*100 - mean\left(ln\left(\frac{GDPDEF}{GDPDEF(-1)} ight)*100 ight)$
iobs	$\left(\ln\left(1+\frac{\textit{FEDFUND}}{400} ight)-\textit{mean}\left(\ln\left(1+\frac{\textit{FEDFUND}}{400} ight) ight) ight)*100$
eobs invobs	$ \begin{array}{l} ln\left(\frac{TotalSAOil}{LNSIndex}\right) * 100 - mean\left(ln\left(\frac{TotalSAOil}{LNSIndex}\right) * 100\right) \\ detrend\left(ln\left(\frac{\frac{PFI}{CDPDEF}}{LNSIndex}\right) * 100\right) \end{array} $
yobs	detrend $\left(ln \left(\frac{GDPC09}{LNSIndex} \right) * 100 \right)$

Estimation 00 Results

Conclusions

Calibrated Parameters

β	β δ		ω	x	
0.99	0.025	8	0.18	0.023	

Table: Calibrated Parameters

Estimation 00 00 Results

Conclusions

Identification Analysis

Lack of consensus over the value of oil's output elasticity.

|--|

Model

Estimation 00 00 Results

◆□> <畳> <目> <目> <目> <目> <<=>

Conclusions

Identification Analysis

Lack of consensus over the value of oil's output elasticity.

 \Rightarrow we perform an identification analysis

I	r	1	t	r	0	d	ι	c	t	i	0	n

Model

Estimation 00 00 Results

◆□> <畳> <目> <目> <目> <目> <<=>

Conclusions

Identification Analysis

Lack of consensus over the value of oil's output elasticity. $\Rightarrow \text{ we perform an identification analysis}$ Result:

|--|

Model 000 00000 Estimation 00 00 Results

◆□▶ ◆□▶ ◆□▶ ◆□▶ 三回□ のQ@

Conclusions

Identification Analysis

Lack of consensus over the value of oil's output elasticity.

 \Rightarrow we perform an identification analysis

Result:

If the chosen prior for the output elasticity parameter is high, the price Calvo parameter looses identification strength.

Table: Prior and Posterior Distribution of Structural Parameters

Parameter		Prior	Posterior distribution				
	distribution —		Mode	Mean	10%	90%	
θ estimated							
Capital elasticity	α_k	IGamma(0.1,2)	0.3728	0.3599	0.3380	0.3822	
Labor elasticity	α_ℓ	IGamma(0.4,2)	0.6424	0.6411	0.6111	0.6745	
Oil elasticity	α_e	IGamma(0.6,2)	0.1234	0.1254	0.1051	0.1460	
Inverse Frisch elasticity	ϕ	IGamma(1.17,0.5)	0.6209	0.6308	0.4736	0.8019	
Taylor rule response to inflation	ϕ_{π}	Normal(1.2,0.1)	1.2235	1.2253	1.0686	1.3558	
Taylor rule response to output	ϕ_y	Normal(0.5,0.1)	0.8020	0.7882	0.6884	0.8876	
Calvo price parameter	θ	Beta(0.5,0.1)	0.9812	0.9812	0.9380	0.9883	
θ calibrated							
Capital elasticity	α_k	IGamma(0.2,2)	0.3918	0.3809	0.3624	0.3989	
Labor elasticity	α_ℓ	IGamma(0.4,2)	0.5947	0.5966	0.5622	0.6305	
Oil elasticity	α_{e}	lGamma(0.5,2)	0.1132	0.1177	0.0915	0.1434	
Inverse Frisch elasticity	ϕ	IGamma(1.17,0.5)	1.2562	1.2625	0.9073	1.6069	
Taylor rule response to inflation	ϕ_{π}	Normal(1.2,0.1)	1.5236	1.5307	1.3883	1.6722	
Taylor rule response to output	ϕ_y	Normal(0.5,0.1)	0.0265	0.0214	0.0001	0.0402	

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Introduction	Model	Estimation	Results	Conclusions
	000 0000 00000	00 00		

Outline

Introduction

Model

Estimation

${\sf Results}$

Conclusions

<ロト < 個ト < 目ト < 目ト 三日 のへで</p>

Response to one Standard Deviation Shock (1.94 %) on Real Price of Oil. Case: θ estimated

Response to one Standard Deviation Shock (1.94 %) on Real Price of Oil. Case: θ calibrated

The Evolution of $\hat{\alpha}_e$ from 1999:Q1 to 2006:Q3 in Bi-annual Frequency

Introduction

Estimation 00 00

Model

Results

Conclusions

The reduction of oil's dependence

◆□> <畳> <目> <目> <目> <目> <<=>

Introduction	Model	Estimation	Results	Conclusions
	000 0000 00000	00 00		
		Outline		

Introduction

Model

Estimation

Results

Conclusions

▲□▶ ▲□▶ ▲□▶ ▲□▶ 三回 のへぐ

Introduction	Model	Estimation	Results	Conclusions
	000 0000 00000	00 00		
		Conclusions		

• The smaller dependency of the economy with respect to oil **significantly reduces** the impact of an oil shock.

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 三日■ のへで

Introduction	Model 000 0000 00000	Estimation 00 00	Results	Conclusions
		Conclusions		

- The smaller dependency of the economy with respect to oil **significantly reduces** the impact of an oil shock.
 - \Rightarrow Reducing the output elasticity of oil is a promising policy recommendation.

- The smaller dependency of the economy with respect to oil **significantly reduces** the impact of an oil shock.
 - \Rightarrow Reducing the output elasticity of oil is a promising policy recommendation.

◆□▶ ◆□▶ ◆□▶ ◆□▶ 三回□ のQ@

• Oil dependency significantly decreased in 1979.

• The smaller dependency of the economy with respect to oil **significantly reduces** the impact of an oil shock.

 \Rightarrow Reducing the output elasticity of oil is a promising policy recommendation.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□□ のへの

- Oil dependency significantly decreased in 1979.
- \Rightarrow The 1979's oil productivity increase explains in part the difference of oil shocks between 2000s' and the one in 1970s'.

• The smaller dependency of the economy with respect to oil **significantly reduces** the impact of an oil shock.

 \Rightarrow Reducing the output elasticity of oil is a promising policy recommendation.

- Oil dependency significantly decreased in 1979.
- \Rightarrow The 1979's oil productivity increase explains in part the difference of oil shocks between 2000s' and the one in 1970s'.
 - **However**, there is no empirical evidence that this has been the case in the 2000s'.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□□ のへの

Introduction	Model	Estimation	Results	Conclusions
	000 0000 00000	00 00		

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 三日■ のへで

Our estimations show:

• Increasing aggregate returns to scale.

Introduction	Model	Estimation	Results	Conclusions
	000 0000 00000	00 00		

Our estimations show:

- Increasing aggregate returns to scale.
- Much higher estimates of oil's output elasticity than with conventional computation based on the cost share (12% and 11% in comparison with 3.5%).

Introduction	Model	Estimation	Results	Conclusions
	000	00		
	00000			

Our estimations show:

- Increasing aggregate returns to scale.
- Much higher estimates of oil's output elasticity than with conventional computation based on the cost share (12% and 11% in comparison with 3.5%).

Oil's output elasticity is larger than the oil's cost share value.

Introduction	Model	Estimation	Results	Conclusions
	000	00		
	00000	00		

Our estimations show:

- Increasing aggregate returns to scale.
- Much higher estimates of oil's output elasticity than with conventional computation based on the cost share (12% and 11% in comparison with 3.5%).

Oil's output elasticity is larger than the oil's cost share value.

 \Rightarrow Oil's cost share and oil's output elasticity are not necessarily equal.

Introduction	Model	Estimation	Results	Conclusions
	000 0000 00000	00 00		

Thank you for your attention!

Household's Optimization

Cost Minimization

◆□▶ <畳▶ <目▶ <目▶ <□▶ <□▶ <</p>

Calvo Price Setting

Calvo Price Setting

▲□▶ ▲圖▶ ▲目≯ ▲目≯ 釣ぬ⊙

Definition of Equilibrium

Equilibrium

Definition of Equilibrium

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

No Ponzi Scheme

Transversality condition (no Ponzi Scheme)

$$\lim_{k\to\infty}\mathbb{E}_t\left(\frac{B_{t+k}}{\prod\limits_{s=0}^{t+k-1}(1+i_{s-1})}\right)\geq 0,\quad\forall t.$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・