Nonrenewable and intermittent renewable energy sources: Friends and foes?

> Julien Jacqmin

Introduction

Theoretica model

Empirica model

Robustness checks

Conclusion

Non-renewable and intermittent renewable energy sources: Friends and foes?

Edmond Baranes, Julien Jacqmin and Jean-Christophe Poudou

HEC-ULG, University of Liège and LAMETA/Labex Entreprendre, Université Montpellier 1 julien.jacqmin@ulg.ac.be

December 16, 2015

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Introduction Motivations

Nonrenewable and intermittent renewable energy sources: Friends and foes?

> Julien Jacqmin

Introduction

Theoretical model

Empirical model

Robustness checks

Conclusion

Starting point: Study the interactions which are both adverserial and cooperative between renewables and non-renewable (especially natural gas) energies :

- Renewables (wind and solar): Free input (no need to go to the market) but not flexible intermittent and unstorable
- Natural gas: Very flexible (+ less CO2 compared to other fossil fuels) but at a cost as you need to go to the market!

<u>Main question</u>: How does an increase in the price of natural gas (p_{ng}) influence renewable capacity investments (k)?

- $dk/dp_{ng} > 0$: (gross) substitutes ?
- $dk/dp_{ng} < 0$: (gross) complements ?
- ...or it depends \Rightarrow Non-linear relationship!
 - \Rightarrow Empirical result with theoretical explanation!

Introduction Suggestive evidences (49 U.S. States/years 1998-2012) : non-linear

relationship?

Source: U.S. Energy Information Administration (2014)

Introduction Main results

Nonrenewable and intermittent renewable energy sources: Friends and foes?

> Julien Jacqmin

Introduction

Theoretica model

Empirical model

Robustness checks

Conclusion

Empirical results:

- Non-linear relationship: Before a threshold, they are substitutes and after they are complements!
- Using aggregate U.S. state-level data (from EIA(2014)) \Rightarrow robust to different approaches and specifications

Theoretical explanation:

• Trade-off between benefit derived from input price differential and opportunity cost due to intermittency of renewables

Policy implications:

- Indirect consequences of policy decisions (Ukranian crisis, TTIP, shale gas, fall in oil prices, etc.) on the renewable sector
- Call for a comprehensive approach!

Introduction Literature review

Nonrenewable and intermittent renewable energy sources: Friends and foes?

> Julien Jacqmin

Introduction

Theoretical model

Empirical model

Robustness checks

Conclusion

Empirical literature:

- On determinants of investments/generation in renewable energies: which policies to implement?
- Few on the impact of natural gas price on renewable investments (only used as control variable and linearly):
 - Marques et al. $(2010) \Rightarrow$ Substitutes
 - Shrimali and Kniefel (2011) \Rightarrow Complements
 - Economical, technical, environmental and political considerations (Lee et al. (2012))

Theoretical literature:

- Ambec and Crampes (2012), Bouckaert and De Borger (2013) or Garcia and Alzate (2010)
- Main focus: demand/supply uncertainty and decentralization

Theoretical model Presentation

Nonrenewable and intermittent renewable energy sources: Friends and foes?

> Julien Jacqmin

Introduction

Theoretical model

Empirical model

Robustness checks

Conclusion

<u>Goal</u>: Obtain and explain a non-linear relationship between renewable capacity investment k and natural gas price p_{ng} Context:

- Model the decision to invest in k of a risk-averse state-level representative energy company
- Aggregate approach
- Need to secure the supply at all cost
- If there is no wind/sun, k produces nothing and we need to use gas turbines to supply the market
- Assume infinite natural gas production capacities

Theoretical model Main theoretical results

Nonrenewable and intermittent renewable energy sources: Friends and foes?

> Julien Jacqmin

Introduction

Theoretical model

Empirica model

Robustness checks

Conclusion

Trade-off faced by the state-level representative energy company when investing an additional unit of $k(p_{ng})$:

- marginal benefit of having capacity available to produce electricity for free (input price differential)
- marginal cost of having to buy natural gas on the market (opportunity cost of intermittency)

 \Rightarrow Non-linear relationship due to a convexity in the opportunity cost function with intermittence and risk-aversion for high natural gas prices.

 \Rightarrow Inverted U-shape curve if CARA and DARA utility function!

Empirical model Methodology

Nonrenewable and intermittent renewable energy sources: Friends and foes?

> Julien Jacqmin

Introduction

Theoretical model

Empirical model

Robustness checks

Conclusion

U.S. state level data from 1998 to $2012 \Rightarrow 732$ observations

- Dependent variable: Annual renewable capacity investment
- Explanatory variables: Natural gas price (linear+ quadratic term)
- Control variables:
 - Electricity market: State size, wind/sun availability, growth in electricity sales, electricity price, production % renew. energy/nuclear energy/natural gas and experience with ISO/RTO
 - Socioeconomic context: Population, GDP per capita, democrat governor and LofCV indicator
 - Policy/tax factors: Policy and tax

Sources: EIA, DSIRE, U.S. census and BEA (2014)

Empirical model Methodology

Nonrenewable and intermittent renewable energy sources: Friends and foes?

> Julien Jacqmin

Introduction

Theoretica model

Empirical model

Robustness checks

Conclusion

Three issues with the data generating process:

- High degree of censorship (445/732 are zero's)
- Not normally distributed (right-skewed and non-normal kurtosis)
- 3 Timing of investment
- Main econometric approach:
 - Panel tobit model
 - Inverse hyperbolic sine transformation
 - Consider one-year lag

Robustness checks:

- Tobit with (unconditional) fixed effect, probit, fixed effect, (production) tobit and piece-wise linear model
- 2 log(1+x)
- Obust without lag and with 2/3 lags

Empirical model

Renewable capacity investments: Panel tobit model

Non- renewable and intermittent renewable energy sources:							
Friends and		(1)	(2)	(3)	(4)	(5)	(6)
toes?	Natural gas price	5.908***	1.758***	1.339**	1.326**	2.161**	-0.014
Julien		(0.623)	(0.569)	(0.629)	(0.625)	(0.888)	(0.284)
Jacqmin	Natural gas price (squared)	-0.422***	-0.148***	-0.123**	-0.115**	-0.171***	-
		(0.053)	(0.046)	(0.048)	(0.048)	(0.066)	-
Introduction	Electricity market factors	No	Yes	Yes	Yes	Yes	Yes
	Socioeconomic factors	No	No	Yes	Yes	Yes	Yes
Theoretical	Policy/tax factors factors	No	No	No	Yes	Yes	Yes
	Year fixed effects	No	No	No	No	Yes	Yes
Empirical	Log likelihood	-1150.952	-1038.216	-1033.531	-1018.926	-978.084	-982.644
model			4.4	dedede a sec			

Robust standard errors in parentheses, * p < 0.1, ** p < 0.05, *** p < 0.01

Sample: 732 observations - 49 states - period 1998-2012 (including 441 left-censored observations)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Conclusion

Robusteness Checks

Nonrenewable and intermittent renewable energy sources: Friends and foes?

> Julien Jacqmin

Introduction

Theoretica model

Empirical model

Robustness checks

Conclusion

- (Unconditional) state fixed effects (biased and inconsistent due to incidental parameter problem)
- Dichotomous renewable capacity investment (probit)
- Additional renewable generation
- Average petroleum price
- Panel fixed effect with log(a + k) as dependent variable (a=constant)

• Semi-parametric piecewise linear approach (spline)

Robustness checks

Non-

renewable and							
intermittent	Dependent variable	(6)	(7)	(8)	(9)	(10)	(11)
renewable	Renewable Capacity	Capacity	Capacity	Production	Capacity	Capacity	Capacity
sources:	Investment	Tobit	Probit	Tobit	Tobit	FE	Spline
Friends and	Natural gas price	1.790**	0.488*	2.173*		1.249***	
foes?		(0.720)	(0.281)	(1.188)		(0.354)	
Julien	Natural gas price (squared)	-0.142***	-0.045**	-0.157*		-0.112***	
Jacqmin		(0.055)	(0.020)	(0.085)		(0.027)	
	Average petroleum price				0.188**		
Introduction					(0.085)		
	Natural gas price spline 1						0.626**
Theoretical							(0.293)
	Natural gas price spline 2						-0.848**
Empirical							(0.342)
model	Electricity market factors	Yes	Yes	Yes	Yes	Yes	yes
Robustness	Socioeconomic factors	Yes	Yes	Yes	Yes	Yes	yes
checks	Policy/tax factors factors	Yes	Yes	Yes	Yes	Yes	Yes
	Year fixed effects	Yes	Yes	No	Yes	Yes	Yes
Conclusion	State fixed effects	Yes	No	No	No	Yes	No
	Log likelihood	-883.912	-272.866	-1318.176	-978.593	/	-977.868

Robust standard errors in parentheses, * p < 0.1, ** p < 0.05, *** p < 0.01

Robustness checks Endogeneity

Nonrenewable and intermittent renewable energy sources: Friends and foes?

> Julien Jacqmin

Introduction

Theoretica model

Empirical model

Robustness checks

Conclusion

Reverse causality:

- One year lag between dependent and independent variables
- Use yearly (marginal) investment \Rightarrow very small share of the production in total (average = 1%)
- Not short run dispatch data but long-run investment data Omitted variable bias:
 - Control for time-invariant unobserved factors in tobit with (unconditional) fixed effect

▲□▼▲□▼▲□▼▲□▼ □ ● ●

Conclusion

Nonrenewable and intermittent renewable energy sources: Friends and foes?

> Julien Jacqmin

Introduction

Theoretical model

Empirical model

Robustness checks

Conclusion

Our main results:

- Renewable energies and natural gas: friends and foes!
- Non-linear relationship between the price of natural gas and renewable capacity investments
- Economic (no input price) and technological (intermittent) trade-off
- Need for comprehensive policy approach

Next on the research agenda:

- Use another (complementary) approach to treat zeros: Heckman's self selection model
- Impact on the imperfect possibility to store electricity

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ