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Gas distribution in France
7

In order to carry out its activity, a (gas distribution) network
operator is faced with various operation costs:

- some costs are related to the extension of the network;
- others are related to network security;

- others are related to the maintenance of the network;
- ete.

We want to evaluate the impact of consumer demands on
operation costs.

How can these operation costs be allocated to
consumers 7
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Overview
————

Notations and definitions;

Optimistic design of a network;

The total cost of a network;

Normative approach to cost allocation rules;
Algorithmic approach to cost allocation rules;
Additional content.
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The model

B ——

O N ={a,b,...,n} finite set of

S
/ \ consuiers.
< Consumers are connected to
qp = 1 Ga = 2

a source via pipelines, forming
a tree network P.

< Each i € N has an effective
qde =3 qa=1 qc=3 demand ¢; € N, ¢; < K.

It All effective demands are compiled in ¢ = (qa, - .-, qn)-
I The integer K serves as an upper bound for demands.
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The model

B ——

<& Network design: be able to satisfy any effective demand.

i.e. Each pipeline ¢ € N meets its effective capacity— it can
handle its highest downstream effective demand g;.

S
w3 \us

@ =1 Ga = 2

6623 J (f(l/ J(h_?’

Ge=3 q=1 g =3

I There exist alternatives to this design (not covered here).
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The model

B ——

& A Cost function measures the cost of any pipeline of any

capacity

C:Nx{0,..., K} >Ry,

e.g. The cost of pipeline i sized at capacity j is C(i,7) € R4.

C‘a b ¢ d e

115 2 7 4 5
2110 8 13 9 11
3|15 12 16 13 15

2 C(i1,0) =0 and C(i,5) < C(i,j + 1).
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The model

B ——

< Incremental costs are defined as

Vie NVj< K, AD=C(i,j)—C(i,j—1).

C ‘ a b ¢ d e

1[5 2 7 4 5 A% = C(a,3) — C(a,2)
2110 8 13 9 11 — 15— 10

3115 12 16 13 15 _5

u Ag represents the (additional) operation costs induced by
upgrading pipeline ¢ from capacity j — 1 to j.
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The model

B ——

<& The cost function and the Matrix of incremental costs
are equivalent objects.

Vie NVj <K, AS=C(i,j)—C(i,j—1).

C ‘ a b ¢ d e AC ‘ a b ¢ d e
115 2 7 4 5 1 5 2 7 4 5
2110 8 13 9 11 2 5 6 6 5 5
3115 12 16 13 15 3 5 4 3 4 5
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The model

B ——

<& The total cost of operating the network is computed as the
sum of the costs of all pipelines, where each pipeline meets its
effective capacity.

S C‘a b C d e

/ \3 115 2 7 1 5

2010 8 13 9 10

b a 3015 12 16 13 15
| ks

e d c Total cost = 62.

<& Gas distribution (cost allocation) problem: How to
divide this total cost among consumers?
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Cost Allocation Rules

B ——

<& A gas distribution problem is denoted by (g, AS).

<& To properly define rules, endow each consumer ¢ € N with
the discrete set of demand units {1,...,¢;}.

©
~ K EN

Figure: Demand units of consumer ¢

It The class of all gas distribution problems is denoted by GDP.
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Cost Allocation Rules
e

<& A (cost allocation) rule is a map

f:Gpp —RINK

fal fnl
(@A) = |+
faK an

I Each coordinate fi;(q, A®) € R captures the incremental
allocation assigned to consumer i for an increase in demand
from 5 —1 to j.

X fi; = 0 for each j > ¢;.

14

David LOWING



Cost Allocation Rules

B ——

Recall that g, =2, ¢y =1, ¢ =3, g4 =1 and ¢g. = 3.

fao oo fa fa fa
fa2 0 ch 0 er
0 0 fc3 0 feS

1 The total amount charged to a consumer ¢ € N is given by

Fi(q, A%) =) fij(q, A).

J<q;
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Cost Allocation Rules

Z fcj(q’ Ac)

fcl + fc2 + ch

fcl + fc2

fcl
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Normative approach based on principles.
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Normative approach
E—

<& A rule satisfies the Budget balanced principle and the
Independence to higher demands principle:

(i) Budget balanced principle: a rule recovers the total
cost of operating the network.

(ii) Independence to higher demands principle: the
amount allocated to a demand unit of a consumer is
independent from any other greater demand unit.
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Normative approach
E—

<& 1 propose three cost allocation rules:
» the Connection rule,
» the Uniform rule;
» and the Mixed rules.

<& Each rule is in line with the Budget balanced principle
and the Independence to higher demands principle (by
definition).

<& We introduce two other principles to highlight the
differences between these three rules.
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Normative approach
E—

(iii) Connection principle: a consumer should only be
charged for the costs associated with the specific pipelines
that connect him to the source.

(iv) Uniformity principle: two consumers with the same
demands should be charged the same amount regardless of
their geographical location.

 Clearly, the two principles are incompatible.
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Normative approach
E—

(i) Budget balanced principle

(ii) Independence to higher demands principle
(iii) Connection principle
(iv) Uniformity principle

— The Connection rule
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Normative approach
E—

(i) Budget balanced principle

(ii) Independence to higher demands principle
(iii) Connection principle
(iv) Uniformity principle

— The Uniform rule
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Normative approach
E—

(i) Budget balanced principle

(ii) Independence to higher demands principle

—> The Mixed rules
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Computing the rules
e

< Network design: be able to satisfy any effective demand.

S
)%:/ \qa:?)

@ =1 Ga = 2
Qe:3l (1(1/ \62—3
de =3 qa =1 qc =3

<& Let us build this network step by step to understand how
the rules work.
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Computing the rules
I e

< Step 0: no network.

I No costs, which implies 9

3

—_
N\
o O
OO O o
O OO
O O Q.
o O
<

0 0 0 0
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Computing the rules
I————

<& Step 1: Upgrade a pipeline (let us choose a) capacity by one

unit.
S
/ \O —1

@ =1 Ga = 2

|
qe:3 Q(l:]- qC:3

<& This generates the incremental cost Agl.
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Computing the rules
e
a b c d e
1 /AG/3 0 AG/3 A3 0
Connection rule: ASI ~ 9 ( 0 0 0 0 0)
3 0 0 0 0 0
a b c d e
AD/5 AG/S AG/S AL/S AQG/S
Uniform rule: A W( 0 0 0 0 0
0 0 0 0 0

28
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Computing the rules
I————

<& Step 2: Upgrade the same pipeline’s capacity by one

additional unit.
S
/ ¥ 2

ap =1 Ga = 2

|
¢e=3 q=1 ¢ =3

< This generates the incremental cost AS,.
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Computing the rules
I————

Connection rule: A§2 N

a b c d e
L /AG/3 0 AG /3 AG/3 0
2<A§2/2 0 AS/2 0 0)
3 0 0 0 0 0

Uniform rule: AS, ~

a b c d e
AS /5 AG/S A/ AG/S AG/S
AL /3 0 AL /3 0 AL /3

0 0 0 0 0
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Computing the rules
I————

<& Continue until you recover the network as it is supposed to

be designed.
S

ap=1 Ga = 2
qe:3l (14/ lCi—S
de =3 qq =1 qec =3

It Both the Connection rule and the Uniform rule can be
computed in polynomial time.
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Computing the rules
I————

& The two rules lead to two different allocations.

Crao 0 Creo 0 Creg

C?"al CTbl CT‘Cl CT‘dl C?"61>
0 0 C’I“cg 0 07}3

Connection rule — (

U’/’ag 0 U’I"CQ 0 UTeQ

Ura Urp Ureq Ura UT51>
0 O UTcg 0 Ure3

Uniform rule — <

I They reflect the connection principle and the uniformity principle,

respectively.
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Computing the rules
e —

A€ ‘ a b ¢ d e
. . c 1 5 2 7 4 5
< For instance, in (¢, A“) where 5 5 6 6 5 5
3 5 4 3 4 5
a b c d e
1.7 1 87 57 6
Connection rule — (2.5 0 8.5 0 11)
0O 0 8 0 9
a b c d e
46 46 46 4.6 4.6
Uniform rule — (7.3 0 7.3 0 7.3)
0 0 85 0 &5
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Computing the rules
I————

<& A Mixed rule is defined according to a (trade-off) system

(al, ag, ..

2

a X | Crgs 0 Cre 0
a®x 0 0 Cres 0
(1—a')x (Uryy Urp Ura
n (1- a?) X (U’/’ag 0 Ureo
(1—-a?)x 0 0 Ures
Mrar Mryy Mra Mrg
_ <M’I‘a2 0 MTCQ 0
0 0 Mr.3 0

It Observe that o # ajr, j # j', is possible.

.ak), aj € [0,1] for each j € K.

alx (Cral Cryy Cra Cra

Crel
CT‘62>
C?“eg
U’I“dl U?“el
0 UT&)
0 UT'eg
M’f‘el
M?“82>
MTeg
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Computing the rules
P—————

Pick a = (1,0.8,0.5)

a b c d e
1x 1.7 1 87 57 6

Connection rule — 0.8x (2.5 0 85 0 11)
0.5x \0 0 8 0 9

a b c d e
0x 46 46 46 46 4.6
Uniform rule — 0.2x <7.3 0 73 0 7.3>

0.5% 0 0 85 0 85
We obtain
a b c d e
1.7 1 87 5.7 6
Mixed rule — (3,46 0 826 0 10,26)
0 0 825 0 8.75
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Computing the rules
I e

Z fcl(qv AC)

I<j

25.2
204

17.2

11.9 ;

8.7 |

46| 7 X

B = Connection

% = Uniform
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Summary
7

Up until now

<& We defined gas distribution (cost allocation) problems;
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Summary
—————

Up until now
<& We defined gas distribution (cost allocation) problems;

<& We defined cost allocation rules that describe how each
consumer’s allocation evolves according to its demand;

<& We proposed three rules based on principles;

<& We proposed a (polynomial time) procedure to compute
the rules.

It remains to discuss
<& The axiomatic characterizations of the rules;

<& The relationship between the rules and solution concepts
from (multi-choice) cooperative games;

<& The stability of the Connection rule from a cooperative
point of view (Core).
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Thank You !

David LOWING



An Axiomatic Characterization
of the Connection Rule.
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Axiomatic Characterization
————

Axiom (Independence to Irrelevant Cost (IIC))

Pick any (q, A®) € GDP. For each j < gy, each
i€ PHQ(5))UQ()), and each ¢ € R,

Vh € Q(j),h ¢ (P(i) U {i}),
fni(a, A9) = fri(q, AC +eI'),

where

Vk € N,l < qp, Illc]l = {0 otherwise
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Axiomatic Characterization
————

fuo(q, AC 4+ eI%%) = fia(q, A9)
fe?(% AC + 5Ia2) = feQ(Q7AC)'
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Axiomatic Characterization
————

Axiom (Equal Loss for Downstream Consumers (ELD))

Pick any (¢, A®) € GDP. For each j < gy, each
i€ P7HQ>5))UQ(j), and each ¢ € R,

Vh, I’ € (P(i) U {i}) N Q(),

Fnj(q, A + eIy — fri(q, A9)
=fuwi(q, AC + eI — fhii(q, A°).

42
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Axiomatic Characterization
————

fa2(Q7AC + 51(12) - fa2(Q7AC)
=fe2(q, AC + 1) — fus(q, A°)

43

=fa2(q, AY +eI?) — fan(q, A°).
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Axiomatic Characterization
7

Theorem: A rule f on GDP satisfies (IIC) and (ELD)
e
f = Connection rule.

44
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Thank You !
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Multi-Choice Games
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Multi-choice games
e —

A multi-choice game (g,v) € G is given by:
» A finite player set N = {a,...,n};
» For each ¢ € N, a finite set M; = {0,...,¢};
» A coalition is a profile s = (sq4,...,5n) € [[;en Mi,
qg=(q1,---,qn) is the grand coalition;

» A characteristic function

U:HMi—HR

47
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Multi-choice games
e —

» A value is a map
f:G — RYien®,

Lowing, D. & Techer, K. (SCW 2022) introduce

©: a generalization of the Shapley value.

Grabisch, M. & Xie, L. (MMOR 2007) introduce

Co: a generalization of the Core.

48

David LOWING



Gas distribution game
E—

For each (q, AY) € GDP, the associated gas distribution
(multi-choice) game (g, v“"") is defined as

Vs <q, vSF(s) =) C(i,s),
i€EN

where

Vie N, 5 = max s.
keP(i)Ui

v P (s) is the total cost of a hypothetical gas distribution
problem (s, AY), where s < ¢.

49
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Values and rules
e

For each (¢, AY) € GDP,

and

U(q, A9) € Co(q,v").

50
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Thank You !
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Values for multi-choice games
E—

For each game (¢,v) € G, the multi-choice Shapley value is
defined as

Vi, j) € MY, @ijlgv) = Y.
s€ ey Mi
(6,5)€T(s)

where
Ay(s) =wv(t) = > Ay(t)
t<s,t#s

T(s) = {(i,si) EMT s > sy, Vk € N}.
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Values for multi-choice games
E—

For each game (¢,v) € G, the multi-choice Equal division value
is defined as

V(i,j) € M,

§ij(q,v) =

|Q}j)| v((J A gr)ken) —o(((F — 1) A gr)ken))|-

QU)={ieN:q=j}

93
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Values for multi-choice games
E—

Pick any « € [0, 1]9". For each (¢,v) € G, the multi-choice
Egalitarian Shapley value x¢ is defined as

V(Z,]) € M+7 X%(Q7U) = OZJSOZ](QJJ) + (1 - a])gl](Qa U)'

o4
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Gas distribution game
E—

For each (g, A®) € GDP, the associated gas distribution
(multi-choice) game (g, v®T) is defined as

Vs <q, vOP(s)= 3 C(i,5),
ieEN

where

Yie N, § = max Sg.
keP(i)Ui

Each (¢,v“") is sub-modular, i.e.,
v (s V1) + 0P (s A t) < vOF (s) + vOF (1) for each s,t < q.
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Values and rules
e

For each (¢, A°) € GDP,

o(q,v9") = U(q, A9)
&(q,v9") = Y(q, A9)
X*(q,v") = u*(q, A°)

56
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Core and rules
7

The Core of a multi-choice game (g,v) € G is denoted by
Co(g,v) and is defined as

Vs <gq, Zi:xw < wv(s)

iEN j=1
x € Co(q,v) <~ e hAg:

Vh < gp, Z Z zij = v((h A gi)ien)-

iEN j=1

o7
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Core and rules
7

Each sub-modular game (q,v) € G,

¢(q,v) € Co(g,v).

NB: A game (¢,v) € G is sub-modular if
v(sVt)+u(sAt) <o(s)+ v(t) for each s,t < q.

o8
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Core and rules
7

We show that (q, &P ) is sub-modular, therefore

go(q,vC’P) € Co(q, UC’P)

99
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Thank You !
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