Cost Allocation in Natural Gas Distribution Networks

David LOWING

CentraleSupélec, Université Paris-Saclay Laboratoire de Génie Industriel Chaire Economie du Gaz

Gas distribution in France

In order to carry out its activity, a (gas distribution) network operator is faced with various **operation costs**:

- some costs are related to the extension of the network;
- others are related to network security;
- others are related to the maintenance of the network;
- etc.

We want to evaluate the impact of consumer demands on operation costs.

How can these operation costs be allocated to consumers ?

- 1. Notations and definitions;
- 2. Optimistic design of a network;
- 3. The total cost of a network;
- 4. Normative approach to cost allocation rules;
- 5. Algorithmic approach to cost allocation rules;
- 6. Additional content.

The Model

 $\diamond N = \{a, b, \dots, n\}$ finite set of **consumers**.

 \diamond Consumers are connected to a source via **pipelines**, forming a **tree network** *P*.

♦ Each $i \in N$ has an effective demand $q_i \in \mathbb{N}, q_i \leq K$.

 \square All effective demands are compiled in $q = (q_a, \ldots, q_n)$. \square The integer K serves as an upper bound for demands. \diamond **Network design**: be able to satisfy any effective demand.

i.e. Each pipeline $i \in N$ meets its effective capacity— it can handle its highest downstream effective demand \overline{q}_i .

 \square There exist alternatives to this design (not covered here).

 \diamondsuit A Cost function measures the cost of any pipeline of any capacity

$$C: N \times \{0, \dots, K\} \to \mathbb{R}_+,$$

e.g. The cost of pipeline *i* sized at capacity *j* is $C(i, j) \in \mathbb{R}_+$.

С	a	b	с	d	е
1	5	2	7	4	5
2	10	8	13	9	11
3	15	2 8 12	16	13	15

 $\label{eq:constraint} \bowtie \ C(i,0) = 0 \ \text{and} \ C(i,j) \leq C(i,j+1).$

\diamond Incremental costs are defined as

$$\forall i \in N, \forall j \le K, \quad A_{ij}^C = C(i,j) - C(i,j-1).$$

С	a	b	с	d	e	
1	5	2	7	4	5	$A_{a3}^C = C(a,3) - C(a,2)$
2	10	8	13	9	11	= 15 - 10
3	15	12	16	4 9 13	15	= 5.

 $\bowtie A_{ij}^C$ represents the (additional) operation costs induced by upgrading pipeline *i* from capacity j - 1 to j.

 \diamond The cost function and the Matrix of incremental costs are equivalent objects.

$$\forall i \in N, \forall j \le K, \quad A_{ij}^C = C(i,j) - C(i,j-1).$$

\mathbf{C}	a	b	с	d	е	A^C	a	b	с	d	е
				4		1					
2	10	8	13	9	11	2	5	6	6	5	5
3	15	12	16	13	15	3	5	4	3	4	5

 \diamond The **total cost** of operating the network is computed as the sum of the costs of all pipelines, where each pipeline meets its effective capacity.

♦ Gas distribution (cost allocation) problem: How to divide this total cost among consumers?

Cost Allocation Rules

 \diamond A gas distribution problem is denoted by (q, A^C) .

 \diamond To properly define rules, endow each consumer $i \in N$ with the discrete set of **demand units** $\{1, \ldots, q_i\}$.

Figure: Demand units of consumer c

 \bowtie The class of all gas distribution problems is denoted by GDP.

 \diamond A (cost allocation) rule is a map

$$f:GDP \to \mathbb{R}^{|N| \times K}_+$$
$$(q, A^C) \mapsto \begin{pmatrix} f_{a1} & \cdots & f_{n1} \\ \vdots & \cdots & \vdots \\ f_{aK} & \cdots & f_{nK} \end{pmatrix}$$

 \bowtie Each coordinate $f_{ij}(q, A^C) \in \mathbb{R}_+$ captures the incremental allocation assigned to consumer *i* for an increase in demand from j - 1 to *j*. $\bowtie f_{ij} = 0$ for each $j > q_i$. Recall that $q_a = 2$, $q_b = 1$, $q_c = 3$, $q_d = 1$ and $q_e = 3$.

$$\begin{pmatrix} f_{a1} & f_{b1} & f_{c1} & f_{d1} & f_{e1} \\ f_{a2} & 0 & f_{c2} & 0 & f_{e2} \\ 0 & 0 & f_{c3} & 0 & f_{e3} \end{pmatrix}$$

 \beth The total amount charged to a consumer $i \in N$ is given by

$$F_i(q, A^C) = \sum_{j \le q_i} f_{ij}(q, A^C).$$

Normative approach based on principles.

 \diamond A rule satisfies the **Budget balanced principle** and the **Independence to higher demands principle**:

- (i) **Budget balanced principle**: a rule recovers the total cost of operating the network.
- (ii) **Independence to higher demands principle**: the amount allocated to a demand unit of a consumer is independent from any other greater demand unit.

 \diamondsuit I propose three cost allocation rules:

- ▶ the Connection rule,
- ▶ the Uniform rule;
- ▶ and the Mixed rules.

 \diamond Each rule is in line with the **Budget balanced principle** and the **Independence to higher demands principle** (by definition).

 \diamond We introduce **two other principles** to highlight the differences between these three rules.

- (iii) **Connection principle**: a consumer should only be charged for the costs associated with the specific pipelines that connect him to the source.
- (iv) **Uniformity principle**: two consumers with the same demands should be charged the same amount regardless of their geographical location.

 \beth Clearly, the two principles are incompatible.

- (i) Budget balanced principle
- (ii) Independence to higher demands principle
- (iii) Connection principle
- (iv) Uniformity principle
- \implies The Connection rule

(i) Budget balanced principle

(ii) Independence to higher demands principle

(iii) Connection principle

(iv) Uniformity principle

 \implies The Uniform rule

- (i) Budget balanced principle
- (ii) Independence to higher demands principle
- (iii) Connection principle
- (iv) Uniformity principle
- \implies The **Mixed rules**

Computing the rules

 \diamond Network design: be able to satisfy any effective demand.

 \diamond Let us build this network **step by step** to understand how the rules work.

 \diamond **Step 0**: no network.

 \diamond **Step 1**: Upgrade a pipeline (let us choose *a*) capacity by one unit.

 \diamond This generates the incremental cost $\mathbf{A_{a1}^C}$.

♦ **Step 2**: Upgrade the same pipeline's capacity by one additional unit.

 \diamond This generates the incremental cost A_{a2}^C .

Connection rule: $A_{a2}^C \land$

Uniform rule:
$$\mathbf{A}_{a2}^{C} \sim$$

 $\begin{pmatrix} a & b & c & d & e \\ \mathbf{A}_{a1}^{C}/5 & \mathbf{A}_{a1}^{C}/5 & \mathbf{A}_{a1}^{C}/5 & \mathbf{A}_{a1}^{C}/5 & \mathbf{A}_{a1}^{C}/5 \\ \mathbf{A}_{a2}^{C}/3 & 0 & \mathbf{A}_{a2}^{C}/3 & 0 & \mathbf{A}_{a2}^{C}/3 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$

 \diamondsuit Continue until you recover the network as it is supposed to be designed.

 \boxplus Both the Connection rule and the Uniform rule can be computed in polynomial time.

 \diamondsuit The two rules lead to two different allocations.

 \bowtie They reflect the connection principle and the uniformity principle, respectively.

Computing the rules

 $a \quad b \quad c \quad d \quad e$ Connection rule $\rightarrow \begin{pmatrix} 1.7 & 1 & 8.7 & 5.7 & 6 \\ 2.5 & 0 & 8.5 & 0 & 11 \\ 0 & 0 & 8 & 0 & 9 \end{pmatrix}$ $\begin{array}{cccccccc} a & b & c & d & e \\ \text{Uniform rule} \rightarrow & \begin{pmatrix} 4.6 & 4.6 & 4.6 & 4.6 & 4.6 \\ 7.3 & 0 & 7.3 & 0 & 7.3 \\ 0 & 0 & 8.5 & 0 & 8.5 \end{pmatrix}$

♦ A Mixed rule is defined according to a (trade-off) system $(\alpha_1, \alpha_2, \ldots, \alpha_K), \alpha_j \in [0, 1]$ for each $j \in K$.

$$\begin{array}{cccccc} \alpha^{1} \times \\ \alpha^{2} \times \\ \alpha^{3} \times \end{array} \begin{pmatrix} Cr_{a1} & Cr_{b1} & Cr_{c1} & Cr_{d1} & Cr_{e1} \\ Cr_{a2} & 0 & Cr_{c2} & 0 & Cr_{e2} \\ 0 & 0 & Cr_{c3} & 0 & Cr_{e3} \end{pmatrix}$$

$$\begin{array}{cccc} (1-\alpha^{1}) \times \\ + & (1-\alpha^{2}) \times \\ (1-\alpha^{3}) \times \end{array} \begin{pmatrix} Ur_{a1} & Ur_{b1} & Ur_{c1} & Ur_{d1} & Ur_{e1} \\ Ur_{a2} & 0 & Ur_{c2} & 0 & Ur_{e2} \\ 0 & 0 & Ur_{c3} & 0 & Ur_{e3} \end{pmatrix}$$

$$= \begin{pmatrix} Mr_{a1} & Mr_{b1} & Mr_{c1} & Mr_{d1} & Mr_{e1} \\ Mr_{a2} & 0 & Mr_{c2} & 0 & Mr_{e2} \\ 0 & 0 & Mr_{c3} & 0 & Mr_{e3} \end{pmatrix}$$

 \exists Observe that $\alpha_j \neq \alpha_{j'}, j \neq j'$, is possible.

Computing the rules

Pick $\alpha = (1, 0.8, 0.5)$

$$\begin{array}{cccccccc} a & b & c & d & e \\ 1 \times & 1 \times & 1 & 8.7 & 5.7 & 6 \\ 0.5 \times & 2.5 & 0 & 8.5 & 0 & 11 \\ 0 & 0 & 8 & 0 & 9 \end{array}$$

$$\begin{array}{cccccccc} u & b & c & a & e \\ 0 \times & & & \\ 0.16 \times & & & \\ 0.16 \times & & & \\ 0.16 \times & & & \\ 0 & 0 & 8.5 & & \\ 0 & 0 & 8.5 & & \\ 0 & 0 & 8.5 & & \\ 0 & 0 & 8.5 & & \\ \end{array}$$

We obtain

 \diamond We defined gas distribution (cost allocation) **problems**;

- \diamond We defined gas distribution (cost allocation) **problems**;
- ♦ We defined cost allocation rules that describe how each consumer's allocation evolves according to its demand;

- \diamond We defined gas distribution (cost allocation) **problems**;
- ♦ We defined cost allocation rules that describe how each consumer's allocation evolves according to its demand;
- \diamond We proposed three rules based on **principles**;

- $\diamond\,$ We defined gas distribution (cost allocation) **problems**;
- ♦ We defined cost allocation rules that describe how each consumer's allocation evolves according to its demand;
- \diamond We proposed three rules based on **principles**;
- ♦ We proposed a (polynomial time) procedure to compute the rules.

- $\diamond\,$ We defined gas distribution (cost allocation) **problems**;
- ♦ We defined cost allocation rules that describe how each consumer's allocation evolves according to its demand;
- \diamond We proposed three rules based on **principles**;
- ♦ We proposed a (polynomial time) procedure to compute the rules.

It remains to discuss

 \diamond The **axiomatic characterizations** of the rules;

- $\diamond\,$ We defined gas distribution (cost allocation) **problems**;
- ♦ We defined cost allocation rules that describe how each consumer's allocation evolves according to its demand;
- \diamond We proposed three rules based on **principles**;
- ♦ We proposed a (polynomial time) procedure to compute the rules.

It remains to discuss

- \diamond The **axiomatic characterizations** of the rules;
- ♦ The relationship between the rules and solution concepts from (multi-choice) cooperative games;

- $\diamond\,$ We defined gas distribution (cost allocation) **problems**;
- ♦ We defined cost allocation rules that describe how each consumer's allocation evolves according to its demand;
- \diamond We proposed three rules based on **principles**;
- ♦ We proposed a (polynomial time) procedure to compute the rules.
- It remains to discuss
 - \diamond The **axiomatic characterizations** of the rules;
 - ♦ The relationship between the rules and solution concepts from (multi-choice) cooperative games;
 - ♦ The stability of the Connection rule from a cooperative point of view (Core).

Thank You !

An Axiomatic Characterization of the Connection Rule.

Axiom (Independence to Irrelevant Cost (IIC)) Pick any $(q, A^C) \in GDP$. For each $j \leq q_n$, each $i \in \hat{P}^{-1}(Q(j)) \cup Q(j)$, and each $\varepsilon \in \mathbb{R}$,

 $\forall h \in Q(j), h \notin (\hat{P}(i) \cup \{i\}),$

$$f_{hj}(q, A^C) = f_{hj}(q, A^C + \varepsilon I^{ij}),$$

where

$$\forall k \in N, l \le q_n, \quad I_{kl}^{ij} = \begin{cases} 1 & \text{if } k = i, l = j, \\ 0 & \text{otherwise.} \end{cases}$$

$$f_{b2}(q, A^{C} + \varepsilon I^{a2}) = f_{b2}(q, A^{C})$$

$$f_{e2}(q, A^{C} + \varepsilon I^{a2}) = f_{e2}(q, A^{C}).$$

Axiom (Equal Loss for Downstream Consumers (ELD)) Pick any $(q, A^C) \in GDP$. For each $j \leq q_n$, each $i \in \hat{P}^{-1}(Q(j)) \cup Q(j)$, and each $\varepsilon \in \mathbb{R}$,

 $\forall h, h' \in (\hat{P}(i) \cup \{i\}) \cap Q(j),$

$$f_{hj}(q, A^C + \varepsilon I^{ij}) - f_{hj}(q, A^C)$$

= $f_{h'j}(q, A^C + \varepsilon I^{ij}) - f_{h'j}(q, A^C).$

$$f_{a2}(q, A^{C} + \varepsilon I^{a2}) - f_{a2}(q, A^{C})$$

= $f_{c2}(q, A^{C} + \varepsilon I^{a2}) - f_{c2}(q, A^{C})$
= $f_{d2}(q, A^{C} + \varepsilon I^{a2}) - f_{d2}(q, A^{C}).$

Theorem: A rule f on GDP satisfies (IIC) and (ELD) \iff f =Connection rule.

Thank You !

Multi-Choice Games

A multi-choice game $(q, v) \in \mathcal{G}$ is given by:

- A finite player set $N = \{a, \ldots, n\};$
- For each $i \in N$, a finite set $M_i = \{0, \ldots, q_i\};$
- A coalition is a profile $s = (s_a, \ldots, s_n) \in \prod_{i \in N} M_i$, $q = (q_1, \ldots, q_n)$ is the grand coalition;
- ► A characteristic function

$$v:\prod_{i\in N}M_i\to\mathbb{R}$$

▶ A value is a map

$$f: \mathcal{G} \to \mathbb{R}^{\sum_{i \in N} q_i}.$$

Lowing, D. & Techer, K. (SCW 2022) introduce φ : a generalization of the Shapley value.

Grabisch, M. & Xie, L. (MMOR 2007) introduce *Co*: a generalization of the Core.

For each $(q, A^C) \in GDP$, the associated gas distribution (multi-choice) game $(q, v^{C,P})$ is defined as

$$\forall s \le q, \quad v^{C,P}(s) = \sum_{i \in N} C(i, \overline{s}_i),$$

where

$$\forall i \in N, \quad \overline{s}_i = \max_{k \in \hat{P}(i) \cup i} s_k.$$

 $v^{C,P}(s)$ is the **total cost** of a hypothetical gas distribution problem (s, A^C) , where $s \leq q$.

For each $(q, A^C) \in GDP$,

$$\varphi(q, v^{C, P}) = \Psi(q, A^C)$$

and

$$\Psi(q,A^C)\in Co(q,v^{C,P}).$$

Thank You !

For each game $(q, v) \in \mathcal{G}$, the multi-choice Shapley value is defined as

$$\forall (i,j) \in M^+, \quad \varphi_{ij}(q,v) = \sum_{\substack{s \in \prod_{i \in N} M_i \\ (i,j) \in T(s)}} \frac{\Delta_v(s)}{|T(s)|}.$$

where

$$\Delta_{v}(s) = v(t) - \sum_{t \leq s, t \neq s} \Delta_{v}(t)$$
$$T(s) = \left\{ (i, s_{i}) \in M^{+} : s_{i} \geq s_{k}, \forall k \in N \right\}.$$

For each game $(q, v) \in \mathcal{G}$, the multi-choice Equal division value is defined as

$$\begin{aligned} \forall (i,j) \in M^+, \\ \xi_{ij}(q,v) &= \frac{1}{|Q(j)|} \Big[v((j \land q_k)_{k \in N}) - v(((j-1) \land q_k)_{k \in N})) \Big]. \\ Q(j) &= \{i \in N : q_i \ge j\}. \end{aligned}$$

Pick any $\alpha \in [0,1]^{q_n}$. For each $(q,v) \in \mathcal{G}$, the multi-choice Egalitarian Shapley value χ^{α} is defined as

$$\forall (i,j) \in M^+, \quad \chi^{\alpha}_{ij}(q,v) = \alpha_j \varphi_{ij}(q,v) + (1-\alpha_j)\xi_{ij}(q,v).$$

For each $(q, A^C) \in GDP$, the associated gas distribution (multi-choice) game $(q, v^{C,P})$ is defined as

$$\forall s \le q, \quad v^{C,P}(s) = \sum_{i \in N} C(i, \overline{s}_i),$$

where

$$\forall i \in N, \quad \overline{s}_i = \max_{k \in \hat{P}(i) \cup i} s_k.$$

Each $(q, v^{C,P})$ is sub-modular, i.e., $v^{C,P}(s \lor t) + v^{C,P}(s \land t) \le v^{C,P}(s) + v^{C,P}(t)$ for each $s, t \le q$. For each $(q, A^C) \in GDP$,

$$\begin{split} \varphi(q, v^{C,P}) &= \Psi(q, A^C) \\ \xi(q, v^{C,P}) &= \Upsilon(q, A^C) \\ \chi^{\alpha}(q, v^{C,P}) &= \mu^{\alpha}(q, A^C) \end{split}$$

The Core of a multi-choice game $(q,v)\in \mathcal{G}$ is denoted by Co(q,v) and is defined as

$$x \in Co(q, v) \iff \begin{cases} \forall s \le q, \quad \sum_{i \in N} \sum_{j=1}^{s_i} x_{ij} \le v(s) \\ \forall h \le q_n, \quad \sum_{i \in N} \sum_{j=1}^{h \land q_i} x_{ij} = v((h \land q_i)_{i \in N}). \end{cases}$$

Each sub-modular game $(q, v) \in \mathcal{G}$,

 $\varphi(q,v)\in Co(q,v).$

<u>NB:</u> A game $(q, v) \in \mathcal{G}$ is sub-modular if $v(s \lor t) + v(s \land t) \le v(s) + v(t)$ for each $s, t \le q$.

We show that $(q, v^{C, P})$ is sub-modular, therefore

$$\varphi(q,v^{C,P})\in Co(q,v^{C,P})$$

Thank You !

References