Cost Allocation in Natural Gas Distribution Networks

David LOWING

CentraleSupélec, Université Paris-Saclay
Laboratoire de Génie Industriel
Chaire Economie du Gaz

Gas distribution in France

In order to carry out its activity, a (gas distribution) network operator is faced with various operation costs:

- some costs are related to the extension of the network;
- others are related to network security;
- others are related to the maintenance of the network;
- etc.

We want to evaluate the impact of consumer demands on operation costs.
How can these operation costs be allocated to consumers?

1. Notations and definitions;
2. Optimistic design of a network;
3. The total cost of a network;
4. Normative approach to cost allocation rules;
5. Algorithmic approach to cost allocation rules;
6. Additional content.

The Model

$\diamond N=\{a, b, \ldots, n\}$ finite set of consumers.
\diamond Consumers are connected to a source via pipelines, forming a tree network P.
\diamond Each $i \in N$ has an effective demand $q_{i} \in \mathbb{N}, q_{i} \leq K$.
\square All effective demands are compiled in $q=\left(q_{a}, \ldots, q_{n}\right)$.
\square The integer K serves as an upper bound for demands.
\diamond Network design: be able to satisfy any effective demand.
i.e. Each pipeline $i \in N$ meets its effective capacity - it can handle its highest downstream effective demand \bar{q}_{i}.

\square There exist alternatives to this design (not covered here).
$\diamond A$ Cost function measures the cost of any pipeline of any capacity

$$
C: N \times\{0, \ldots, K\} \rightarrow \mathbb{R}_{+},
$$

e.g. The cost of pipeline i sized at capacity j is $C(i, j) \in \mathbb{R}_{+}$.

C	a	b	c	d	e
1	5	2	7	4	5
2	10	8	13	9	11
3	15	12	16	13	15

$\square C(i, 0)=0$ and $C(i, j) \leq C(i, j+1)$.
\diamond Incremental costs are defined as

$$
\forall i \in N, \forall j \leq K, \quad A_{i j}^{C}=C(i, j)-C(i, j-1)
$$

C	a	b	c	d	e
1	5	2	7	4	5
2	10	8	13	9	11
3	15	12	16	13	15

$$
\begin{aligned}
A_{a 3}^{C} & =C(a, 3)-C(a, 2) \\
& =15-10 \\
& =5 .
\end{aligned}
$$

■ $A_{i j}^{C}$ represents the (additional) operation costs induced by upgrading pipeline i from capacity $j-1$ to j.
\diamond The cost function and the Matrix of incremental costs are equivalent objects.

$$
\forall i \in N, \forall j \leq K, \quad A_{i j}^{C}=C(i, j)-C(i, j-1)
$$

C	a	b	c	d	e
1	5	2	7	4	5
2	10	8	13	9	11
3	15	12	16	13	15

A^{C}	a	b	c	d	e
1	5	2	7	4	5
2	5	6	6	5	5
3	5	4	3	4	5

\diamond The total cost of operating the network is computed as the sum of the costs of all pipelines, where each pipeline meets its effective capacity.

C	a	b	c	d	e
1	5	2	7	4	5
2	10	8	13	9	10
3	15	12	16	13	15

Total cost $=62$.
\diamond Gas distribution (cost allocation) problem: How to divide this total cost among consumers?

Cost Allocation Rules

Cost Allocation Rules

\diamond A gas distribution problem is denoted by $\left(q, A^{C}\right)$.
\diamond To properly define rules, endow each consumer $i \in N$ with the discrete set of demand units $\left\{1, \ldots, q_{i}\right\}$.

Figure: Demand units of consumer c
\square The class of all gas distribution problems is denoted by $G D P$.

Cost Allocation Rules

$\diamond \mathrm{A}$ (cost allocation) rule is a map

$$
\begin{aligned}
f: G D P & \rightarrow \mathbb{R}_{+}^{|N| \times K} \\
\left(q, A^{C}\right) & \mapsto\left(\begin{array}{ccc}
f_{a 1} & \ldots & f_{n 1} \\
\vdots & \ldots & \vdots \\
f_{a K} & \ldots & f_{n K}
\end{array}\right)
\end{aligned}
$$

\square Each coordinate $f_{i j}\left(q, A^{C}\right) \in \mathbb{R}_{+}$captures the incremental allocation assigned to consumer i for an increase in demand from $j-1$ to j.
$\square f_{i j}=0$ for each $j>q_{i}$.

Cost Allocation Rules

Recall that $q_{a}=2, q_{b}=1, q_{c}=3, q_{d}=1$ and $q_{e}=3$.

$$
\left(\begin{array}{ccccc}
f_{a 1} & f_{b 1} & f_{c 1} & f_{d 1} & f_{e 1} \\
f_{a 2} & 0 & f_{c 2} & 0 & f_{e 2} \\
0 & 0 & f_{c 3} & 0 & f_{e 3}
\end{array}\right)
$$

\square The total amount charged to a consumer $i \in N$ is given by

$$
F_{i}\left(q, A^{C}\right)=\sum_{j \leq q_{i}} f_{i j}\left(q, A^{C}\right) .
$$

Cost Allocation Rules

Normative approach based on principles.
\diamond A rule satisfies the Budget balanced principle and the Independence to higher demands principle:
(i) Budget balanced principle: a rule recovers the total cost of operating the network.
(ii) Independence to higher demands principle: the amount allocated to a demand unit of a consumer is independent from any other greater demand unit.
\diamond I propose three cost allocation rules:

- the Connection rule,
- the Uniform rule;
- and the Mixed rules.
\diamond Each rule is in line with the Budget balanced principle and the Independence to higher demands principle (by definition).
\diamond We introduce two other principles to highlight the differences between these three rules.
(iii) Connection principle: a consumer should only be charged for the costs associated with the specific pipelines that connect him to the source.
(iv) Uniformity principle: two consumers with the same demands should be charged the same amount regardless of their geographical location.
\square Clearly, the two principles are incompatible.
(i) Budget balanced principle
(ii) Independence to higher demands principle
(iii) Connection principle
(iv) Uniformity principle
\Longrightarrow The Connection rule
(i) Budget balanced principle
(ii) Independence to higher demands principle
(iii) Connection principle
(iv) Uniformity principle
\Longrightarrow The Uniform rule
(i) Budget balanced principle
(ii) Independence to higher demands principle
(iii) Connection principle
(iv) Uniformity principle
\Longrightarrow The Mixed rules

Computing the rules

Computing the rules

\diamond Network design: be able to satisfy any effective demand.

\diamond Let us build this network step by step to understand how the rules work.

Computing the rules

\diamond Step 0: no network.

\square No costs, which implies

2
2 $\left(\begin{array}{lllll}a & b & c & d & e \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right)$

Computing the rules

\diamond Step 1: Upgrade a pipeline (let us choose a) capacity by one unit.

\diamond This generates the incremental cost $\mathbf{A}_{\mathrm{a} 1}^{\mathrm{C}}$.

Computing the rules

Uniform rule: $\mathbf{A}_{\mathbf{a} 1}^{\mathbf{C}} \rightsquigarrow\left(\begin{array}{ccccc}a & b & c & d & e \\ \mathbf{A}_{\mathbf{a} 1}^{\mathrm{C}} / 5 & \mathbf{A}_{\mathbf{a} 1}^{\mathrm{C}} / 5 & \mathbf{A}_{\mathbf{a 1}}^{\mathrm{C}} / 5 & \mathbf{A}_{\mathbf{a} 1}^{\mathrm{C}} / 5 & \mathbf{A}_{\mathbf{a} 1}^{\mathrm{C}} / 5 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right)$

Computing the rules

\diamond Step 2: Upgrade the same pipeline's capacity by one additional unit.

\diamond This generates the incremental cost $\mathrm{A}_{\mathrm{a} 2}^{\mathrm{C}}$.

Computing the rules

Connection rule: $\mathrm{A}_{\mathrm{a} 2}^{\mathrm{C}} \curvearrowright$
1
2
3 $\left(\begin{array}{ccccl}a & b & c & d & e \\ \mathbf{A}_{\mathrm{a} 1}^{\mathrm{C}} / 3 & 0 & \mathbf{A}_{\mathrm{a} 1}^{\mathrm{C}} / 3 & \mathbf{A}_{\mathrm{a} 1}^{\mathrm{C}} / 3 & 0 \\ \mathbf{A}_{\mathrm{a} 2}^{\mathrm{C}} / 2 & 0 & \mathbf{A}_{\mathrm{a} 2}^{\mathrm{C}} / 2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right)$

Uniform rule: $\mathrm{A}_{\mathrm{a} 2}^{\mathrm{C}} \curvearrowright$

$$
\left.\begin{array}{ccccc}
a & b & c & d & e \\
\mathbf{A}_{\mathrm{a} 1}^{\mathrm{C}} / 5 & \mathbf{A}_{\mathrm{a} 1}^{\mathrm{C}} / 5 \\
\mathbf{A}_{\mathrm{a} 2}^{\mathrm{C}} / 3 & 0 & \mathbf{A}_{\mathrm{a} 2}^{\mathrm{C}} / 3 & 0 & \mathbf{A}_{\mathrm{a} 2}^{\mathrm{C}} / 3 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Computing the rules

\diamond Continue until you recover the network as it is supposed to be designed.

\square Both the Connection rule and the Uniform rule can be computed in polynomial time.

Computing the rules

\diamond The two rules lead to two different allocations.
Connection rule $\rightarrow\left(\begin{array}{ccccc}C r_{a 1} & C r_{b 1} & C r_{c 1} & C r_{d 1} & C r_{e 1} \\ C r_{a 2} & 0 & C r_{c 2} & 0 & C r_{e 2} \\ 0 & 0 & C r_{c 3} & 0 & C r_{e 3}\end{array}\right)$

$$
\text { Uniform rule } \rightarrow\left(\begin{array}{ccccc}
U r_{a 1} & U r_{b 1} & U r_{c 1} & U r_{d 1} & U r_{e 1} \\
U r_{a 2} & 0 & U r_{c 2} & 0 & U r_{e 2} \\
0 & 0 & U r_{c 3} & 0 & U r_{e 3}
\end{array}\right)
$$

\square They reflect the connection principle and the uniformity principle, respectively.

Computing the rules

\diamond For instance, in $\left(q, A^{C}\right)$ where | A^{C} | a | b | c | d | e |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 5 | 2 | 7 | 4 | 5 |
| 2 | 5 | 6 | 6 | 5 | 5 |
| | 3 | 5 | 4 | 3 | 4 |

$$
\begin{gathered}
\text { Connection rule } \left.\rightarrow \begin{array}{ccccc}
a & b & c & d & e \\
1.7 & 1 & 8.7 & 5.7 & 6 \\
2.5 & 0 & 8.5 & 0 & 11 \\
0 & 0 & 8 & 0 & 9
\end{array}\right) \\
\text { a } \\
\text { Uniform rule } \rightarrow \\
\left.\begin{array}{ccccc}
4.6 & 4.6 & c & d .6 & 4.6 \\
7.3 & 0 & 7.3 & 0 & e \\
0 & 0 & 8.5 & 0 & 8.5
\end{array}\right)
\end{gathered}
$$

Computing the rules

\diamond A Mixed rule is defined according to a (trade-off) system $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{K}\right), \alpha_{j} \in[0,1]$ for each $j \in K$.

$$
\begin{aligned}
& \alpha^{1} \times \\
& \alpha^{2} \times\left(\begin{array}{ccccc}
C r_{a 1} & C r_{b 1} & C r_{c 1} & C r_{d 1} & C r_{e 1} \\
C r_{a 2} & 0 & C r_{c 2} & 0 & C r_{e 2} \\
0 & 0 & C r_{c 3} & 0 & C r_{e 3}
\end{array}\right) \\
& \alpha^{3} \times\left(\begin{array}{lllll}
\\
& \left(1-\alpha^{1}\right) \times \\
\left(1-\alpha^{2}\right) \times\left(\begin{array}{ccccc}
U r_{a 1} & U r_{b 1} & U r_{c 1} & U r_{d 1} & U r_{e 1} \\
U r_{a 2} & 0 & U r_{c 2} & 0 & U r_{e 2} \\
\left(1-\alpha^{3}\right) \times & 0 & 0 & U r_{c 3} & 0
\end{array}\right. & U r_{e 3}
\end{array}\right) \\
&=\left(\begin{array}{ccccc}
M r_{a 1} & M r_{b 1} & M r_{c 1} & M r_{d 1} & M r_{e 1} \\
M r_{a 2} & 0 & M r_{c 2} & 0 & M r_{e 2} \\
0 & 0 & M r_{c 3} & 0 & M r_{e 3}
\end{array}\right)
\end{aligned}
$$

\square Observe that $\alpha_{j} \neq \alpha_{j^{\prime}}, j \neq j^{\prime}$, is possible.

Computing the rules

Pick $\alpha=(1,0.8,0.5)$

$$
\begin{aligned}
& \begin{array}{c}
\\
\\
\text { Connection rule } \rightarrow \\
\left.\begin{array}{c}
1 \times \\
0.8 \times \\
0.5 \times
\end{array} \begin{array}{ccccc}
a & b & c & d & e \\
1.7 & 1 & 8.7 & 5.7 & 6 \\
2.5 & 0 & 8.5 & 0 & 11 \\
0 & 0 & 8 & 0 & 9
\end{array}\right), ~
\end{array}
\end{aligned}
$$

We obtain

$$
\text { Mixed rule } \rightarrow\left(\begin{array}{ccccc}
a & b & c & d & e \\
1.7 & 1 & 8.7 & 5.7 & 6 \\
3,46 & 0 & 8,26 & 0 & 10,26 \\
0 & 0 & 8.25 & 0 & 8.75
\end{array}\right)
$$

Computing the rules

Up until now
\diamond We defined gas distribution (cost allocation) problems;

Up until now
\diamond We defined gas distribution (cost allocation) problems;
\diamond We defined cost allocation rules that describe how each consumer's allocation evolves according to its demand;

Up until now
\diamond We defined gas distribution (cost allocation) problems;
\diamond We defined cost allocation rules that describe how each consumer's allocation evolves according to its demand;
\diamond We proposed three rules based on principles;

Up until now
\diamond We defined gas distribution (cost allocation) problems;
\diamond We defined cost allocation rules that describe how each consumer's allocation evolves according to its demand;
\diamond We proposed three rules based on principles;
\diamond We proposed a (polynomial time) procedure to compute the rules.

Up until now
\diamond We defined gas distribution (cost allocation) problems;
\diamond We defined cost allocation rules that describe how each consumer's allocation evolves according to its demand;
\diamond We proposed three rules based on principles;
\diamond We proposed a (polynomial time) procedure to compute the rules.

It remains to discuss
\diamond The axiomatic characterizations of the rules;

Up until now
\diamond We defined gas distribution (cost allocation) problems;
\diamond We defined cost allocation rules that describe how each consumer's allocation evolves according to its demand;
\diamond We proposed three rules based on principles;
\diamond We proposed a (polynomial time) procedure to compute the rules.
It remains to discuss
\diamond The axiomatic characterizations of the rules;
\diamond The relationship between the rules and solution concepts from (multi-choice) cooperative games;

Up until now
\diamond We defined gas distribution (cost allocation) problems;
\diamond We defined cost allocation rules that describe how each consumer's allocation evolves according to its demand;
\diamond We proposed three rules based on principles;
\diamond We proposed a (polynomial time) procedure to compute the rules.
It remains to discuss
\diamond The axiomatic characterizations of the rules;
\diamond The relationship between the rules and solution concepts from (multi-choice) cooperative games;
\diamond The stability of the Connection rule from a cooperative point of view (Core).

Thank You!

An Axiomatic Characterization of the Connection Rule.

Axiom (Independence to Irrelevant Cost (IIC))
Pick any $\left(q, A^{C}\right) \in G D P$. For each $j \leq q_{n}$, each $i \in \hat{P}^{-1}(Q(j)) \cup Q(j)$, and each $\varepsilon \in \mathbb{R}$,

$$
\begin{aligned}
& \forall h \in Q(j), h \notin(\hat{P}(i) \cup\{i\}), \\
& f_{h j}\left(q, A^{C}\right)=f_{h j}\left(q, A^{C}+\varepsilon I^{i j}\right),
\end{aligned}
$$

where

$$
\forall k \in N, l \leq q_{n}, \quad I_{k l}^{i j}= \begin{cases}1 & \text { if } k=i, l=j \\ 0 & \text { otherwise }\end{cases}
$$

$$
\begin{gathered}
f_{b 2}\left(q, A^{C}+\varepsilon I^{a 2}\right)=f_{b 2}\left(q, A^{C}\right) \\
f_{e 2}\left(q, A^{C}+\varepsilon I^{a 2}\right)=f_{e 2}\left(q, A^{C}\right)
\end{gathered}
$$

Axiom (Equal Loss for Downstream Consumers (ELD))
Pick any $\left(q, A^{C}\right) \in G D P$. For each $j \leq q_{n}$, each $i \in \hat{P}^{-1}(Q(j)) \cup Q(j)$, and each $\varepsilon \in \mathbb{R}$,

$$
\begin{gathered}
\forall h, h^{\prime} \in(\hat{P}(i) \cup\{i\}) \cap Q(j) \\
\\
f_{h j}\left(q, A^{C}+\varepsilon I^{i j}\right)-f_{h j}\left(q, A^{C}\right) \\
=f_{h^{\prime} j}\left(q, A^{C}+\varepsilon I^{i j}\right)-f_{h^{\prime} j}\left(q, A^{C}\right) .
\end{gathered}
$$

$$
\begin{aligned}
& f_{a 2}\left(q, A^{C}+\varepsilon I^{a 2}\right)-f_{a 2}\left(q, A^{C}\right) \\
= & f_{c 2}\left(q, A^{C}+\varepsilon I^{a 2}\right)-f_{c 2}\left(q, A^{C}\right) \\
= & f_{d 2}\left(q, A^{C}+\varepsilon I^{a 2}\right)-f_{d 2}\left(q, A^{C}\right) .
\end{aligned}
$$

Theorem: A rule f on $G D P$ satisfies (IIC) and (ELD) \Longleftrightarrow
$f=$ Connection rule.

Thank You!

Multi-Choice Games

A multi-choice game $(q, v) \in \mathcal{G}$ is given by:

- A finite player set $N=\{a, \ldots, n\}$;
- For each $i \in N$, a finite set $M_{i}=\left\{0, \ldots, q_{i}\right\}$;
- A coalition is a profile $s=\left(s_{a}, \ldots, s_{n}\right) \in \prod_{i \in N} M_{i}$, $q=\left(q_{1}, \ldots, q_{n}\right)$ is the grand coalition;
- A characteristic function

$$
v: \prod_{i \in N} M_{i} \rightarrow \mathbb{R}
$$

- A value is a map

$$
f: \mathcal{G} \rightarrow \mathbb{R}^{\sum_{i \in N} q_{i}}
$$

Lowing, D. \& Techer, K. (SCW 2022) introduce φ : a generalization of the Shapley value.

Grabisch, M. \& Xie, L. (MMOR 2007) introduce Co: a generalization of the Core.

Gas distribution game

For each $\left(q, A^{C}\right) \in G D P$, the associated gas distribution (multi-choice) game ($q, v^{C, P}$) is defined as

$$
\forall s \leq q, \quad v^{C, P}(s)=\sum_{i \in N} C\left(i, \bar{s}_{i}\right),
$$

where

$$
\forall i \in N, \quad \bar{s}_{i}=\max _{k \in \hat{P}(i) \cup i} s_{k} .
$$

$v^{C, P}(s)$ is the total cost of a hypothetical gas distribution problem $\left(s, A^{C}\right)$, where $s \leq q$.

For each $\left(q, A^{C}\right) \in G D P$,

$$
\varphi\left(q, v^{C, P}\right)=\Psi\left(q, A^{C}\right)
$$

and

$$
\Psi\left(q, A^{C}\right) \in C o\left(q, v^{C, P}\right)
$$

Thank You!

For each game $(q, v) \in \mathcal{G}$, the multi-choice Shapley value is defined as

$$
\forall(i, j) \in M^{+}, \quad \varphi_{i j}(q, v)=\sum_{\substack{s \in \prod_{i \in N} M_{i} \\(i, j) \in T(s)}} \frac{\Delta_{v}(s)}{|T(s)|}
$$

where

$$
\begin{aligned}
& \Delta_{v}(s)=v(t)-\sum_{t \leq s, t \neq s} \Delta_{v}(t) \\
& T(s)=\left\{\left(i, s_{i}\right) \in M^{+}: s_{i} \geq s_{k}, \forall k \in N\right\} .
\end{aligned}
$$

For each game $(q, v) \in \mathcal{G}$, the multi-choice Equal division value is defined as

$$
\begin{aligned}
& \forall(i, j) \in M^{+} \\
& \left.\quad \xi_{i j}(q, v)=\frac{1}{|Q(j)|}\left[v\left(\left(j \wedge q_{k}\right)_{k \in N}\right)-v\left(\left((j-1) \wedge q_{k}\right)_{k \in N}\right)\right)\right] . \\
& Q(j)=\left\{i \in N: q_{i} \geq j\right\} .
\end{aligned}
$$

Pick any $\alpha \in[0,1]^{q_{n}}$. For each $(q, v) \in \mathcal{G}$, the multi-choice Egalitarian Shapley value χ^{α} is defined as

$$
\forall(i, j) \in M^{+}, \quad \chi_{i j}^{\alpha}(q, v)=\alpha_{j} \varphi_{i j}(q, v)+\left(1-\alpha_{j}\right) \xi_{i j}(q, v)
$$

Gas distribution game

For each $\left(q, A^{C}\right) \in G D P$, the associated gas distribution (multi-choice) game ($q, v^{C, P}$) is defined as

$$
\forall s \leq q, \quad v^{C, P}(s)=\sum_{i \in N} C\left(i, \bar{s}_{i}\right)
$$

where

$$
\forall i \in N, \quad \bar{s}_{i}=\max _{k \in \hat{P}(i) \cup i} s_{k} .
$$

Each $\left(q, v^{C, P}\right)$ is sub-modular, i.e., $v^{C, P}(s \vee t)+v^{C, P}(s \wedge t) \leq v^{C, P}(s)+v^{C, P}(t)$ for each $s, t \leq q$.

For each $\left(q, A^{C}\right) \in G D P$,

$$
\begin{aligned}
\varphi\left(q, v^{C, P}\right) & =\Psi\left(q, A^{C}\right) \\
\xi\left(q, v^{C, P}\right) & =\Upsilon\left(q, A^{C}\right) \\
\chi^{\alpha}\left(q, v^{C, P}\right) & =\mu^{\alpha}\left(q, A^{C}\right)
\end{aligned}
$$

Core and rules

The Core of a multi-choice game $(q, v) \in \mathcal{G}$ is denoted by $C o(q, v)$ and is defined as

$$
x \in C o(q, v) \Longleftrightarrow \begin{cases}\forall s \leq q, & \sum_{i \in N} \sum_{j=1}^{s_{i}} x_{i j} \leq v(s) \\ \forall h \leq q_{n}, & \sum_{i \in N} \sum_{j=1}^{h \wedge q_{i}} x_{i j}=v\left(\left(h \wedge q_{i}\right)_{i \in N}\right) .\end{cases}
$$

Core and rules

Each sub-modular game $(q, v) \in \mathcal{G}$,

$$
\varphi(q, v) \in C o(q, v)
$$

NB: A game $(q, v) \in \mathcal{G}$ is sub-modular if $v(s \vee t)+v(s \wedge t) \leq v(s)+v(t)$ for each $s, t \leq q$.

Core and rules

We show that $\left(q, v^{C, P}\right)$ is sub-modular, therefore

$$
\varphi\left(q, v^{C, P}\right) \in C o\left(q, v^{C, P}\right)
$$

Thank You!

