Modeling CO_2 pipeline systems: An analytical lens for CCS regulation Workshop - The Economics of Gas

A. Nicolle, D. Cebreros, O. Massol, E. Jagu Schippers

Industrial Engineering Research Department Climate Economics Chair

May 22nd 2023

What is CCS?

CCS: Carbon Capture and Storage

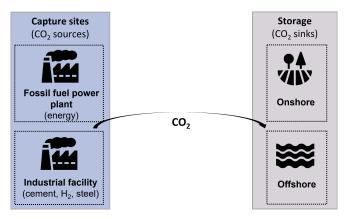


Figure 1: A first representation of CCS

3 - Policy insights

What is CCS?

CCS: Carbon Capture, Transportation and Storage

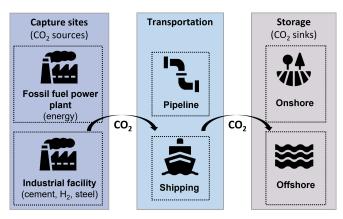


Figure 2: A better representation of CCS

High hopes...

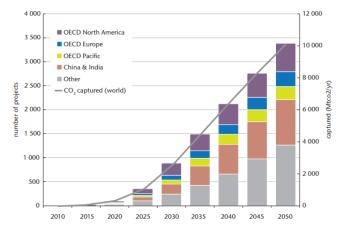


Figure 3: IEA "Blue Map" Scenario (IEA, 2009)

High hopes...

The IEA "Blue Map" scenario:

- \rightarrow without CCS, overall costs increase by 70%
- \rightarrow 300 Mt CO_2 captured per year by 2020

Special Report on Carbon Dioxide Capture and Storage (IPCC, 2005) :

ightarrow CCS expected to represent up to 55% of the CO_2 mitigation actions needed

High hopes...

The IEA "Blue Map" scenario:

- \rightarrow without CCS, overall costs increase by 70%
- \rightarrow 300 Mt CO_2 captured per year by 2020

Special Report on Carbon Dioxide Capture and Storage (IPCC, 2005) :

- ightarrow CCS expected to represent up to 55% of the $\it CO_2$ mitigation actions needed
- = Ambitious CCS growth path scenarios in the early 2000s

...and disillusionment

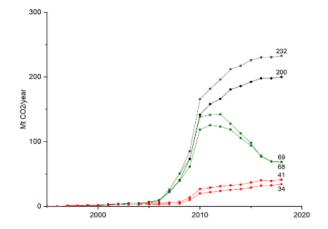


Figure 4: CCS capture and storage projects' capacity (Wang et al., 2021)

In black: planned capacity. In green: projects under construction & in operation. In red: projects in operation

A fresh momentum

The Inflation Reduction Act in the US (2022):

 \rightarrow increase of the 45Q Carbon Capture tax credit

The Net Zero Industry Act in the EU (2023):

- \rightarrow An EU storage target: 50 Mt CO_2 /y by 2030
- \rightarrow Recognition of a need for coordination
- → Accelerated storage permitting procedures

A fresh momentum

The Inflation Reduction Act in the US (2022):

→ increase of the 45Q Carbon Capture tax credit

The Net Zero Industry Act in the EU (2023):

- \rightarrow An EU storage target: 50 Mt CO_2 /y by 2030
- \rightarrow Recognition of a need for coordination
- → Accelerated storage permitting procedures

Are fixing new storage targets and closing the capture financial gap enough for deploying CCS on a large scale?

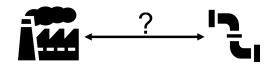
A main barrier: CCS transportation

Costs of capture and storage capacity's uncertainty are regularly mentioned as barriers to large-scale deployment (Bui et al., 2018).

A main barrier: CCS transportation

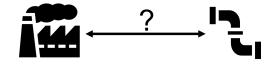
Costs of capture and storage capacity's uncertainty are regularly mentioned as barriers to large-scale deployment (Bui et al., 2018).

Stakeholders to a large extent underestimated transport and storage. [...] Transport was the most neglected component.


- von Hirschhausen et al., 2012

Among other barriers to large-scale deployment, CCS transportation has received scarce attention.

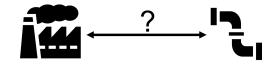
Intro


0000000000

CCS transportation is a common "Chicken & Egg" problem (Herzog, 2011).

Chicken & egg problem

CCS transportation is a common "Chicken & Egg" problem (Herzog, 2011).



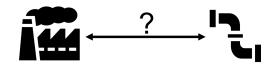
For the pipeline operator:

- \rightarrow As a **natural monopoly**, it is prone to regulatory oversight
- \rightarrow needs to be ensured that it can recoup its costs

Chicken & egg problem

CCS transportation is a common "Chicken & Egg" problem (Herzog, 2011).

For the pipeline operator:


- \rightarrow As a **natural monopoly**, it is prone to regulatory oversight
- $\,\rightarrow\,$ needs to be ensured that it can recoup its costs

For the capture sites:

- → subject to monopoly pricing
- ightarrow needs to be ensured that its consumer surplus will be protected by regulation

Chicken & egg problem

CCS transportation is a common "Chicken & Egg" problem (Herzog, 2011).

For the pipeline operator:

- \rightarrow As a **natural monopoly**, it is prone to regulatory oversight
- ightarrow needs to be ensured that it can recoup its costs

For the capture sites:

- ightarrow subject to monopoly pricing
- ightarrow needs to be ensured that its consumer surplus will be protected by regulation

Absent any regulatory signal, neither emitters nor pipeline operator will engage in CCS deployment

Intro 000000000

	UK	U.S.	U.S.	Norway	EU
		Interstate	Intrastate		
Regulatory agency for rates and access	Ofgem likely to be appointed (BEIS 2022a)	Unclear regulatory mandate for pipelines crossing some federal lands and for pipelines not crossing federal lands	No agency, except for common carriers in Texas and Colorado	No agency, but the state intervenes as a project leader and as a stakeholder of the transportation infrastructure (Gassnova SF 2022)	Silent legislation
Non-discriminatory access prices	Yes	Mandatory for common carriers	Generally mandatory for common carriers	Yes (informational discussion)	Yes
Pricing scheme	Rate-of-return regulation combined with performance incentives (BEIS 2022a)	Project-dependent (STB intervenes in case of a dispute, see discussion in Appendix A)	Project-dependent	Two-tariff structure: (i) a user-specific maritime component based on distance, and	Silent regulation
				(ii) a non- discriminatory access charge to the Norwegian onshore receiving terminal, the offshore pipeline, and the storage site	

Research question

Research question:

⇒ How does regulation affect social welfare of CCS pipeline transportation?

Scope of this presentation:

- 1. Discuss CO_2 pipeline transportation in the literature
- 2. Determine an engineering-based Cobb-Douglas production function
- 3. Provide insights into the impact of economic regulation of these infrastructures

Economic literature

Network optimization models

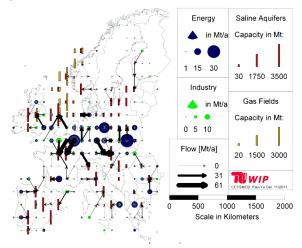


Figure 5: Source: Oei et al., 2014

Economic literature

A simplified CO_2 pipeline representation:

Table 3 Investment cost by pipeline diameter and respective annual transport capacity

Diameter (m)	Annual transport capacity (mio tCO ₂ / a)	Investment costs (\in per tCO ₂ and km)		
0.2	6	0.29		
0.4	18	0.19		
0.8	71	0.10		
1.2	174	0.06		
1.6	338	0.04		

Figure 6: Source: Oei et al., 2014

⇒ Economic models use a linear representation with discrete pipeline diameters that exhibit economies of scale.

Economic literature

From this overview, economic models tend to:

- ightarrow ignore the natural monopolistic character of the pipeline operator
- \rightarrow rely on a simplified representation of a CO_2 cost function
- ightarrow use natural gas cost data for their cost functions, although acknowledging that their transportation's cost differ (Knoope et al., 2013).

3 - Policy insights

Engineering literature

Numerical site-specific representation

1 - Literature review

$$D_{i} = \left\{ \frac{-64Z_{\text{ave}}^{2}R^{2}T_{\text{ave}}^{2}f_{F}\dot{m}^{2}L}{\pi^{2}\left[MZ_{\text{ave}}RT_{\text{ave}}\left(p_{2}^{2}-p_{1}^{2}\right)+2gP_{\text{ave}}^{2}M^{2}\left(h_{2}-h_{1}\right)\right]}\right\}^{\frac{1}{2}}$$

$$\frac{1}{2\sqrt{f_F}} = -2.0\log\left\{\frac{\mathcal{E}/D_i}{3.7} - \frac{5.02}{\text{Re}}\log\left[\frac{\mathcal{E}/D_i}{3.7} - \frac{5.02}{\text{Re}}\log\left(\frac{\mathcal{E}/D_i}{3.7} + \frac{13}{\text{Re}}\right)\right]\right\}$$

Figure 7: Source: McCov. 2008

⇒ Specific equations that do not allow an economic analysis

Wrap-up

Overall:

- ightarrow Economic models tend to oversimplify the \emph{CO}_2 pipeline equations
- \rightarrow Engineering models are generally site-specific and hard to compute
- \Rightarrow There is a need to build an analytical cost function to inform regulatory debates

System Definition

System under consideration:

Trunk pipeline + Pumping station

- → Point-to-point pipeline of length L and output Q
- → Constant elevation, no bends
- $\rightarrow CO_2$ transported in a dense phase state
- → Onshore or offshore
- \rightarrow possibly an "elementary module"

Engineering-based production function

Flow equation (Vandeginste & Piessens, 2008):

$$D = \frac{4^{10/3} n^2 Q^2 L \rho g}{\pi^2 \rho^2 \Delta P}^{3/16} \tag{1}$$

with n the Manning factor, g the gravity constant, ΔP the pressure drop.

Pumping power (Mohitpour et al., 2003):

$$W_{p} = \frac{Q\Delta P}{\rho \eta_{p}} \tag{2}$$

with η_p the efficiency of the pump and ρ density of CO_2 .

Engineering-based production function

After simplification:

$$Q^{\beta} = K^{\alpha} E^{1-\alpha} \tag{3}$$

with K the capital, E the energy, $\beta=9/11$ and $\alpha=8/11$ $\beta<1$

- ightarrow The system exhibits economies of scale
- \rightarrow verifies technical condition for a natural monopoly (Sharkey, 1982)

Regulatory scenarios

We now introduce a demand function $P(Q) = AQ^{-\epsilon}$

Cases	Optimization problems		
Marginal cost-pricing (*)	$\max_{Q} W(Q) = \int_{0}^{Q} P(q) dq - C(Q)$		
Unregulated private monopoly (M)	$\max_{Q} \Pi(Q) = P(Q)Q - C(Q)$		
Average cost-pricing solution (avg)	$\max_{Q}W(Q) = \int_{0}^{Q}P(q)dq - C(Q)$ $s.t \ \Pi \geq 0$		

with Π the profit of the pipeline operator

Results

	$\frac{1}{\epsilon}$					
_	1.13	1.19	1.25	1.31	1.38	
Output						
$\frac{Q^M}{Q^*}$	0.046	0.062	0.074	0.084	0.093	
$\frac{Q^{\mathrm{avg}}}{Q^*}$	0.752	0.737	0.723	0.708	0.691	
Capital						
$\frac{K^M}{K^*}$	0.081	0.102	0.119	0.132	0.143	
$\frac{K^{\mathrm{avg}}}{K^*}$	0.792	0.779	0.767	0.754	0.739	
Welfare						
$\frac{W(Q^M)}{W(Q^*)}$	0.804	0.772	0.748	0.729	0.711	
$\frac{W(Q^{\mathrm{avg}})}{W(Q^*)}$	0.996	0.995	0.992	0.990	0.987	

Results

	$\frac{1}{\epsilon}$				
_	1.13	1.19	1.25	1.31	1.38
Output					
$\frac{Q^M}{Q^*}$	0.046	0.062	0.074	0.084	0.093
$\frac{Q^{\mathrm{avg}}}{Q^*}$	0.752	0.737	0.723	0.708	0.691
Capital					
$\frac{K^M}{K^*}$	0.081	0.102	0.119	0.132	0.143
$\frac{K^{\mathrm{avg}}}{K^*}$	0.792	0.779	0.767	0.754	0.739
Welfare					
$\frac{W(Q^M)}{W(Q^*)}$	0.804	0.772	0.748	0.729	0.711
$\frac{W(Q^{\text{avg}})}{W(Q^*)}$	0.996	0.995	0.992	0.990	0.987

Conclusion

- → Economic regulation is still in early stage but it is necessary to establish the rules now
- ightarrow We have proved analytically that the CO_2 pipeline system exhibits economies of scale and verifies the technical condition for a natural monopoly
- ightarrow the Cobb Douglas-Douglas production function is a first analytical tool for policymakers
- → We find an efficiency gap between economic and environmental objectives

Intro

Thank you for your attention!

Questions/comments? adrien.nicolle@chaireeconomieduclimat.org

1 - Literature review

- Bui, M., Adjiman, C. S., Bardow, A., Anthony, E. J., Boston, A., Brown, S., Fennell, P. S., Fuss, S., Galindo, A., Hackett, L. A., Hallett, J. P., Herzog, H. J., Jackson, G., Kemper, J., Krevor, S., Maitland, G. C., Matuszewski, M., Metcalfe, I. S., Petit, C., ... Mac Dowell, N. (2018). Carbon capture and storage (CCS): The way forward. Energy and Environmental Science, 11(5), 1062-1176.
- Herzog, H. J. (2011). Scaling up carbon dioxide capture and storage: From megatons to gigatons. Energy Economics, *33*(4), 597–604.
- IEA. (2009). Technology Roadmap Carbon Capture and Storage 2009 (tech. rep.).
- IPCC. (2005). IPCC Special Report on Carbon Dioxide Capture and Storage (tech. rep.). Cambridge University.
- Knoope, M. M., Ramírez, A., & Faaij, A. P. (2013). A state-of-the-art review of techno-economic models predicting the costs of CO2 pipeline transport. International Journal of Greenhouse Gas Control, 16, 241–270.

- McCoy, S. T. (2008). The Economics of CO2 Transport by Pipeline and Storage in Saline Aguifers and Oil Reservoirs (Doctoral dissertation). Carnegie Mellon University. Pittsburgh PA.
- Mohitpour, M., Golshan, H., & Murray, M. A. (2003). Pipeline design & construction: a practical approach.. Amer Society of Mechanical
- Oei, P. Y., Herold, J., & Mendelevitch, R. (2014). Modeling a Carbon Capture, Transport, and Storage Infrastructure for Europe. Environmental Modeling and Assessment, 19(6), 515-531.
- Sharkey, W. W. (1982). The theory of natural monopoly.. Cambridge Books.
- Vandeginste, V., & Piessens, K. (2008). Pipeline design for a least-cost router application for CO2 transport in the CO2 sequestration cycle. International Journal of Greenhouse Gas Control, 2(4), 571-581.

1 - Literature review

- von Hirschhausen, C., Herold, J., & Oei, P. Y. (2012). How a 'low carbon' innovation can fail-tales from a 'lost decade' for carbon capture, transport, and sequestration (CCTS). Economics of Energy & Environmental Policy, 1(2), 115-123.
- Wang, Akimoto, K., & Nemet, G. F. (2021). What went wrong? Learning from three decades of carbon capture, utilization and sequestration (CCUS) pilot and demonstration projects. Energy Policy, 158.