Assessing the supply security – a compound indicator

Jan Abrell¹ Léo Chavaz² Hannes Weigt²

¹Center for Economic Research, ETH Zürich

²Faculty of Business and Economics, University of Basel

International Conference on the Economics of Natural Gas 27.06.2017

Table of contents

Introduction

Motivation Current measurement approaches

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Methodology

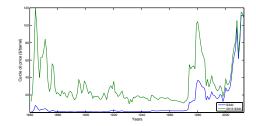
Empirical implementation Exemplary application Results

Supply security as a crucial concept; some examples

Supply security as a crucial concept; some examples

Shortages of gasoline

Gasoline Runs Short, Adding Woes to Storm Recovery


Published: November 1, 2012

The New Hork Eimes

Robert Stolarik for The New York Times

Supply security as a crucial concept; some examples

- Shortages of gasoline
- Oil price spikes

Supply security as a crucial concept; some examples

- Shortages of gasoline
- Oil price spikes
- Food import dependency

Lettuce 'black market' emerges amid national salad shortage

The Telegraph

3 FEBRUARY 2017 • 1:23PM

Supply security as a crucial concept; some examples

- Shortages of gasoline
- Oil price spikes
- Food import dependency

However, not an easy to define and measure one...

Supply security often associated to energy (oil, gas, electricity). IEA's definition:

 Energy security is the uninterrupted availability of energy sources at an affordable price

Supply security often associated to energy (oil, gas, electricity). IEA's definition:

 Energy security is the uninterrupted availability of energy sources at an affordable price

Yet other definitions are broader and encompass several dimensions (see e.g. Kruyt et al., 2009):

- Availability (physical/geographical)
- Accessibility (geopolitical elements)
- Affordability (price)
- Acceptability (social, environmental)

Supply security often associated to energy (oil, gas, electricity). IEA's definition:

 Energy security is the uninterrupted availability of energy sources at an affordable price

Yet other definitions are broader and encompass several dimensions (see e.g. Kruyt et al., 2009):

- Availability (physical/geographical)
- Accessibility (geopolitical elements)
- Affordability (price)
- Acceptability (social, environmental)

 \Rightarrow Supply security is a multi-dimensional and context-dependent notion

Supply security has a strong link to the notion of "diversity" \Rightarrow broader relevance in economics:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- Hedge against "ignorance"
- Driver for innovation and growth

Supply security has a strong link to the notion of "diversity" \Rightarrow broader relevance in economics:

- Hedge against "ignorance"
- Driver for innovation and growth

Related applications:

- Finance: portfolio diversification
- International trade: foreign trade balance
- Agricultural economics: food security

(ロ)、(型)、(E)、(E)、 E) の(の)

Four categories:

Four categories:

Simple metrics:

 Import dependency, resource estimates, reserve-to-production ratios, etc.

Limitations: one-dimensional crude assessments, narrow coverage

Four categories:

Simple metrics:

- Import dependency, resource estimates, reserve-to-production ratios, etc.
- Limitations: one-dimensional crude assessments, narrow coverage

Diversity-based indicators:

- Assessing diversification of supplier-mix with Shannon-Wiener or Herfindhal-Hirschamnn indexes. Extensions: accounting for self-sufficiency, political or transit risks, etc.
- ► Limitations: "static" diversification → disregarding potential substitution alternatives; no relation to market capability/capacity

Analyses of short-term resilience:

- Model-based assessment: scenario analyses based on simulations or IEA's model: political/technical risk of disruption & system resilience
- Limitations: choices of scenarios, no integration of demand-side reaction

Analyses of short-term resilience:

- Model-based assessment: scenario analyses based on simulations or IEA's model: political/technical risk of disruption & system resilience
- Limitations: choices of scenarios, no integration of demand-side reaction

EU's approach

- N-1 rule: capability to cope with disruption of largest infrastructure
- ► Limitations: static assessment → disregarding market dynamics, notably on the supply side (e.g. global shortage)

We propose a novel approach to assess the supply security of network-based industries

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

We propose a novel approach to assess the supply security of network-based industries

Our aims:

- Assessment tool for supply security
- Comprehensive view on supply security (multi-dimensional)

- Flexible approach: application to various network-based markets (energy, international trade, ...)
- Overcoming limitations of current methodologies

Main principles:

- Putting the market in a stress situation (shock) and evaluating reaction its to the crisis (i.e. capability to cope with it) by measuring the impact on consumer surplus
- Shocks: interruption / collapse of the network components.
- Consumer surplus impact allows to cover both the quantity (deliveries interruption, consumer reaction, etc.) and price effect of the crisis.

Relation to existing methodologies:

 Takes the market dynamics (demand & supply reaction) into account

- Multi-dimensional approach (4 A's)
- Broader stance than current methodolgies (blending diversification, system resilience, etc.)
- Probabilistic-like methodology

Evaluation procedure

Evaluation procedure

1. Theoretical model of the considered market

Evaluation procedure

- 1. Theoretical model of the considered market
- 2. Calibration of the model with real market data

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Evaluation procedure

- 1. Theoretical model of the considered market
- 2. Calibration of the model with real market data
- 3. Design and implement shocks: iterative disruption of each component (node, line) of the network (supplier, pipeline, commercial relation, etc.) for a given time period

Evaluation procedure

- 1. Theoretical model of the considered market
- 2. Calibration of the model with real market data
- 3. Design and implement shocks: iterative disruption of each component (node, line) of the network (supplier, pipeline, commercial relation, etc.) for a given time period
- 4. Evaluate the impact on consumer surplus in each iteration:

$$\phi_{i,n} = \frac{CS_n^{crisis}}{CS_n^{base}}$$

Evaluation procedure

- 1. Theoretical model of the considered market
- 2. Calibration of the model with real market data
- 3. Design and implement shocks: iterative disruption of each component (node, line) of the network (supplier, pipeline, commercial relation, etc.) for a given time period
- 4. Evaluate the impact on consumer surplus in each iteration:

$$\phi_{i,n} = \frac{CS_n^{crisis}}{CS_n^{base}}$$

5. Weight $\phi_{i,n}$ by a risk factor (political, technical, etc.; depending on each scenario) and build arithmetic mean:

$$\Phi_n = \frac{\sum_i^I \omega_i \phi_{i,n}}{\sum_i^I \omega_i}$$

First application: European natural gas market

Our model:

- Partial equilibrium model depicting the main interactions along the supply chain
- Producers, pipeline & LNG transport, storage, disaggregated demand
- Worldwide coverage; seasonal dynamics; monthly resolution
- Calibration with market data for 2012-2014
- Accomodates both a short-term and medium-term perspective

Three sets of shock scenarios and weighting:

- Technical pipeline failures (82): failure rate (length)
- Geopolitical pipeline failure (16): political stability index

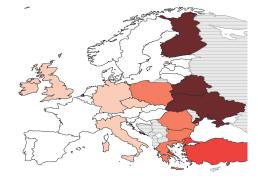
Country collapse (24): political stability index


Three sets of shock scenarios and weighting:

- Technical pipeline failures (82): failure rate (length)
- Geopolitical pipeline failure (16): political stability index
- Country collapse (24): political stability index

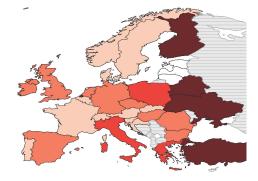
Time frame: for a thorough assessment, we run the scenarios in two different time frames (with corresponding elasticities):

- Short-term: 4 months, December to March
- Medium-term: 12 months, December to November


Example of shock: (geopolitical) interruption of network service: Russia-Ukraine pipeline disruption

Baseline results (short-term):
$$\Phi_n = \frac{\sum_{i}^{l} \omega_i \frac{CS_n^{crisis}}{CS_n^{base}}}{\sum_{i}^{l} \omega_i}$$

	Φ_n^{ST}
AUT	0.983
BEL	0.998
CHE	0.997
CZE	0.990
DNK	0.991
ESP	0.995
FIN	0.953
FRA	0.997
GBR	0.988
GER	0.989
GRC	0.975
IRL	0.987
ITA	0.989
NLD	0.991
POL	0.974
PRT	0.994
SWE	0.992
TUR	0.967
UKR	0.951
av.	0.976
std. dev.	0.011


◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶

æ

Baseline results (mid-term):
$$\Phi_n = \frac{\sum_{i}^{l} \omega_i \frac{CS_{orbis}^{crisis}}{CS_{orbis}}}{\sum_{i}^{l} \omega_i}$$

	Φ_n^{MT}
AUT	0.983
BEL	0.989
CHE	0.983
CZE	0.979
DNK	0.982
ESP	0.980
FIN	0.955
FRA	0.986
GBR	0.978
GER	0.976
GRC	0.969
IRL	0.973
ITA	0.964
NLD	0.979
POL	0.965
PRT	0.990
SWE	0.984
TUR	0.948
UKR	0.954
av.	0.985
std. dev.	0.014

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Comparison with other indicators

Clustered values of Φ_n and of various supply security indicators: [1: worst achievable value \rightarrow 5: best one]

	Φη	HHI	SWIN2	N-1
AUT	5	2	2	4
BEL	5	2	4	5
CHE	5	5	5	4
DNK	3	1	1	4
ESP	4	2	3	3
FIN	1	1	1	2
FRA	4	3	5	3
GBR	2	3	4	3
GER	3	4	5	5
GRC	2	5	3	1
IRL	2	4	5	4
ITA	2	5	4	2
POL	1	1	1	2
PRT	4	3	4	2
SWE	3	3	3	1
TUR	1	4	2	N/A
UKR	1	1	1	N/A

- For some countries: all four are rather unanimous (e.g. Finland, Poland, Switzerland, Ukraine). In other cases, some discrepancies.
- ▶ Between Φ_n and N-1: rather good alignment (e.g. Austria, Belgium, Greece) → largest difference: +/ - 2 (e.g. Ireland, Portugal, Sweden)

Comparison with other indicators

Clustered values of Φ_n and of various supply security indicators: [1: worst achievable value \rightarrow 5: best one]

	Φη	HHI	SWIN2	N-1
AUT	5	2	2	4
BEL	5	2	4	5
CHE	5	5	5	4
DNK	3	1	1	4
ESP	4	2	3	3
FIN	1	1	1	2
FRA	4	3	5	3
GBR	2	3	4	3
GER	3	4	5	5
GRC	2	5	3	1
IRL	2	4	5	4
ITA	2	5	4	2
POL	1	1	1	2
PRT	4	3	4	2
SWE	3	3	3	1
TUR	1	4	2	N/A
UKR	1	1	1	N/A

- For some countries: all four are rather unanimous (e.g. Finland, Poland, Switzerland, Ukraine). In other cases, some discrepancies.
- ▶ Between Φ_n and N-1: rather good alignment (e.g. Austria, Belgium, Greece) → largest difference: +/ - 2 (e.g. Ireland, Portugal, Sweden)

 \Rightarrow All indicators do not measure the same things

Assessment of projects and policies

Testing currently discussed infrastructure projects and policies:

Investment into LNG import capacity (currently planned terminals)

- Nord Stream 2
- Southern Gas Corridor
- Strategic reserve policy (minimum filling of 30 %)

Assessment of projects and policies

Testing currently discussed infrastructure projects and policies:

	Base	LNG	NrdStrm	SGC
AUT	0.983	0.983	0.989	0.983
BEL	0.989	0.989	0.994	0.989
CHE	0.983	0.983	0.990	0.984
DNK	0.982	0.983	0.983	0.983
ESP	0.980	0.980	0.982	0.982
FIN	0.955	0.955	0.954	0.955
FRA	0.986	0.985	0.991	0.987
GBR	0.978	0.978	0.982	0.978
GER	0.976	0.976	0.984	0.976
GRC	0.969	0.970	0.973	0.974
IRL	0.973	0.973	0.978	0.973
ITA	0.964	0.964	0.971	0.964
POL	0.965	0.966	0.972	0.966
PRT	0.990	0.989	0.990	0.990
SWE	0.984	0.986	0.985	0.985
TUR	0.948	0.950	0.951	0.969
UKR	0.954	0.954	0.955	0.955
av.	0.974	0.974	0.977	0.976

- Overall, low effect of infrastructure; NordStream 2 has the largest
- Effect on directly concerned countries (e.g. Turkey for SGC)

Special case strategic storage policy:

- So far: comparison within same "market conditions" (e.g. ConsSurpl. crisis with NordStream vs. ConsSurp no-crisis with NordStream)
- Storage obligation is welfare-decreasing policy (forces more storage than optimal)
- Storage obligation is released during crisis ⇒ a crisis might be welfare enhancing!

Special case strategic storage policy:

- So far: comparison within same "market conditions" (e.g. ConsSurpl. crisis with NordStream vs. ConsSurp no-crisis with NordStream)
- Storage obligation is welfare-decreasing policy (forces more storage than optimal)
- Storage obligation is released during crisis ⇒ a crisis might be welfare enhancing!

w/in	across
1.035	0.996
1.011	0.998
1.013	0.999
1.053	0.992
0.995	0.998
0.957	0.989
1.025	0.997
1.001	0.989
1.004	0.991
1.018	0.994
0.994	0.994
1.002	0.987
0.991	0.990
0.996	0.999
1.068	0.999
0.984	0.989
0.996	0.974
1.008	0.993
	1.035 1.011 1.013 1.053 0.995 0.957 1.025 1.001 1.004 1.018 0.994 0.996 1.068 0.984 0.996

Special case strategic storage policy:

- So far: comparison within same "market conditions" (e.g. ConsSurpl. crisis with NordStream vs. ConsSurp no-crisis with NordStream)
- Storage obligation is welfare-decreasing policy (forces more storage than optimal)
- Storage obligation is released during crisis
 a crisis might be welfare enhancing!

	w/in	across
AUT	1.035	0.996
BEL	1.011	0.998
CHE	1.013	0.999
DNK	1.053	0.992
ESP	0.995	0.998
FIN	0.957	0.989
FRA	1.025	0.997
GBR	1.001	0.989
GER	1.004	0.991
GRC	1.018	0.994
IRL	0.994	0.994
ITA	1.002	0.987
POL	0.991	0.990
PRT	0.996	0.999
SWE	1.068	0.999
TUR	0.984	0.989
UKR	0.996	0.974
av.	1.008	0.993

 \Rightarrow Hence, comparison to "normal" base case? (i.e. "across") \Rightarrow But, "across" comparisons is an apples and pears comparison

Conclusions

We propose a novel methodology for the assessment of supply security

- Broader and more comprehensive approach (multi-dimensional)
- Overcoming limitations of current approaches, notably via incorporation of market dynamics
- Exemplary application to the European natural gas market and policy evaluation

Conclusions

Limitations of the methodology:

- Focusing on consumer surplus has a drawback: crisis might also cause increase of producer surplus. Hence, we might oversee an overall "positive" impact.
- ► For policy evaluation: within or across comparison?
- Generalization of methodology to non-energy markets (e.g. social networks, etc.) is still up for debate

Thank you for your attention!

<□ > < @ > < E > < E > E のQ @