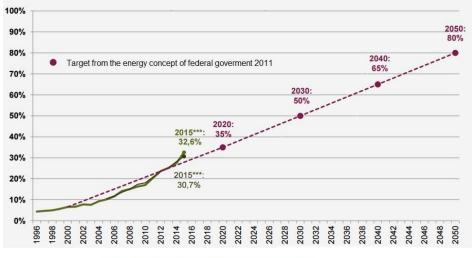
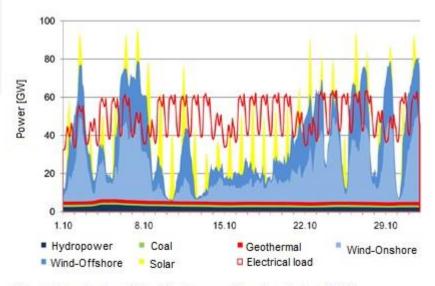


Modeling power-to-gas facilities in a multistage system of natural gas, electricity and emission trading markets

Sina Heidari Christoph Weber The 1st Paris International Conference on the Economics of Natural Gas, Paris, 27.06.2017


UNIVERSITÄT DUISBURG ESSEN

Agenda	UNIVERSITÄT D_U I S_B U R G E S S E N
	Offen im Denken
Introduction	1
Model	2
Power-to-Gas	3
Application Case Study	4
Results	5



• Energiewende: 80% of electricity generation from renewables by 2050

Source: BDEW Bundesverband der Energie- und Wasserwirtschaft e.V.

Integration of renewables is challenging!

House of Energy Markets & Finance

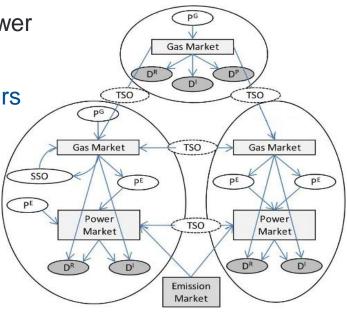
UIISBURG ESSEN Offen im Denken Exemplary load and feed in of renewables in october 2050 Source: Fraunhofer IWES

Research question

Introduction

- Some general options to avoid curtailment of renewables:
 - grid expansions, demand-side managements, electricity storages, integration of energy sectors (sector coupling)

UNIVERSITÄT


- Flexibility in power market is required in both:
 - Short term: battery storage, compressed air storage etc.
 - Long term: hydro reservoirs, Power-to-X (sector coupling)
- The aim of present study is to investigate:
 - the interactions of the electrical power and natural gas sectors in case of high share of renewables,
 - the influence of Power-to-Gas (PtG) technology on the aforementioned interaction
 - the possible contribution of PtG to the integration of renewables through increased coupling between energy sectors

CEIGEM-Model

- CEIGEM-Model
 - Complementarity electricity & gas & emission market model
- A large-scale partial market equilibrium model based on the principles of Cournot-Nash equilibria
- Considers three sector of natural gas, power and emissions trading
- Analyzing the markets with and without market power
- Players of natural gas market at 3 levels
 - Upstream: producers and their associated traders
 - Midstream: TSOs and shippers (incl. pipelines and LNG terminals) as well as storage facilities
 - Downstream: gas hubs (final demand is aggregated to three sectors, one is the power sector)

UNIVERSITÄT

D_U_I_S_B_U R G

Model

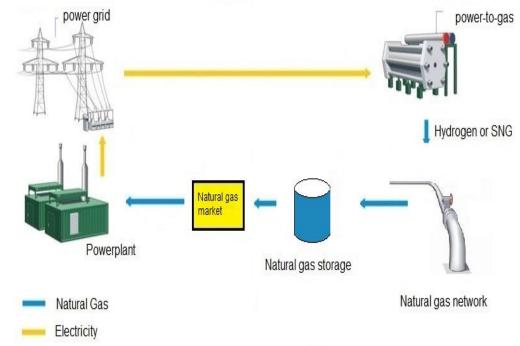
- Players of electricity market at 3 levels: producers, transmission system operators (TSOs) and consumers
- Electricity producers: renewable, conventional power plants & pump storages
- Producers are aggregated based on their technology class as well as their fuel type and technical properties
- production costs include a combination of fuel costs, CO₂ costs and start-up costs
- Players try to maximize their profits
 - However, perfect competition is considered in the electricity market.
 - In this case, market outcomes correspond to those obtained through minimization of the whole system costs

hydrogen

Power-to-Gas technology

PtG technology classified based

synthesis gas (with methanation)

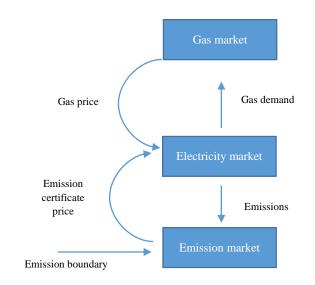

on their output products:

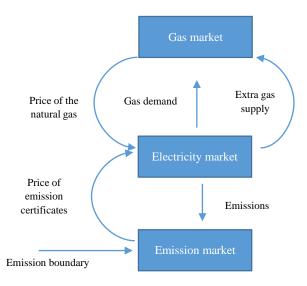
Power-to-Gas

- Considered as ideal for capturing seasonal fluctuations of renewables given storage possibilities in the gas system
- Reinforces the integration of power and natural gas sectors

Offen im Denken

UNIVERSITÄT


House of Energy Markets & Finance Offen im Denken


How PtG facilities change the model structure?

UNIVERSITÄT DUISBURG ESSEN

Offen im Denken

Power-to-Gas

Formal description of PtG operation

UNIVERSITÄT DUISBURG ESSEN

Offen im Denken

Power-to-Gas

Maximization of operational profit

$$\begin{aligned} &Max \Big[\pi_{gas,t} \cdot P_{gas,t}^{PtG} - \pi_{Elec,t} \cdot P_{elec,t}^{PtG} - c_{ovar}^{PtG} \cdot P_{elec,t}^{PtG} \Big] \\ &\text{s.t. } P_{elec,t}^{PtG} \leq K^{PtG} \end{aligned}$$

With Lagrangian multiplier λ_t^{PtG} for capacity constraint and efficiency $\eta^{PtG} = \frac{P_{gas,t}^{PtG}}{P_{elec,t}^{PtG}}$:

 $Max \big[\pi_{gas,t} \cdot \eta^{PtG} \cdot P^{PtG}_{elec,t} - \pi_{elec,t} \cdot P^{PtG}_{elec,t} - c^{PtG}_{ovar} \cdot P^{PtG}_{elec,t} - \lambda^{PtG}_t \cdot P^{PtG}_{elec,t} \big]$

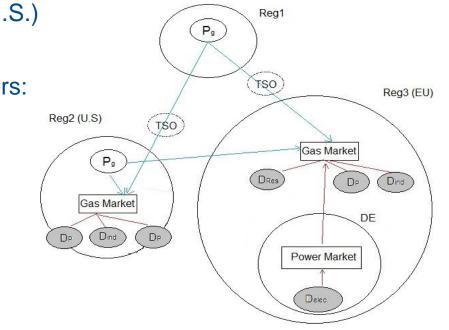
Resulting KKT condition:

$$c_{ovar}^{PtG} + \pi_{elec,t} + \lambda_t^{PtG} \ge \pi_{gas,t} \times \eta \quad \bot \quad P_{elec}$$

Key Elements Case Study – Gas market

Application Case Study

- Stylized model roughly calibrated to existing data
 - Data based on the reference year 2015
- Natural gas market:

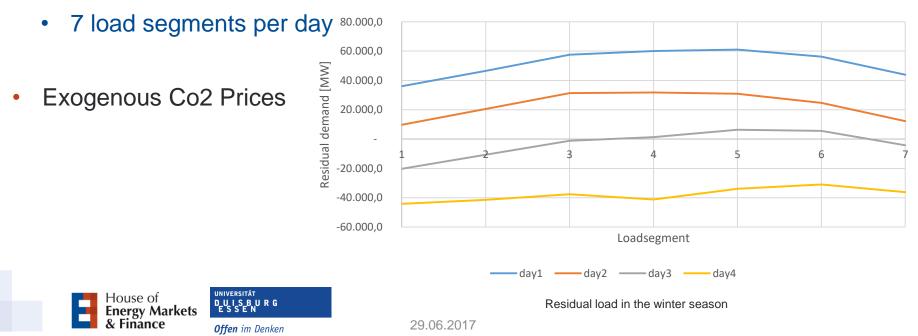

House of

Energy Markets

- 3 Regions
- Reg1: only production (~ Russia etc.)
- Reg2: production & consumption (~U.S.)
- Reg3: only consumption (~ EU)
- Demand at hubs is divided to 3 sectors: Power, Industry and Rest
- 3 different seasons (winter, summer, transition)
- 1 representative day per season

UNIVERSITÄT

Offen im Denken


UNIVERSITÄT D_U_I_S_B_U R G

Key Elements Case Study – Power market

Offen im Denken

Application Case Study

- Detailed electricity market:
 - 1 Region (~Germany)
 - Renewable generation is scaled up to 85 % of Electricity demand
 - 3 seasons
 - 4 representative days for each season (constructed based on the residual load)

Overview first preliminary results

UNIVERSITÄT DUISBURG ESSEN

Offen im Denken

Results

- Example of PtG operation
- Impact of PtG on electricity generation mix and renewable integration
- Impact of CO₂ price on electricity generation mix and PtG operation
- Impact of PtG on prices and system costs
- Impact of gas market structure on PtG operation

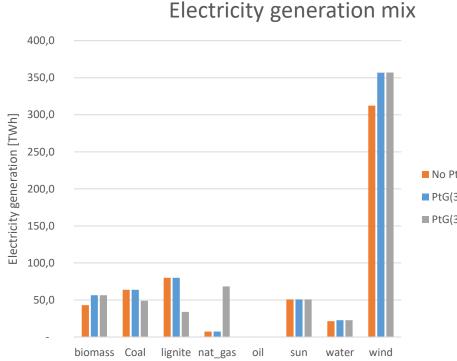
Operation of PtG - Example

Offen im Denken

UNIVERSITÄT DUISBURG ESSEN

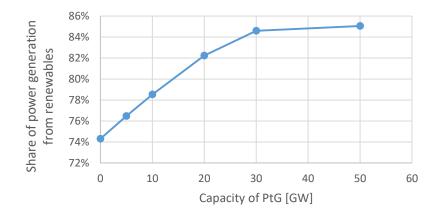
Offen im Denken

Results

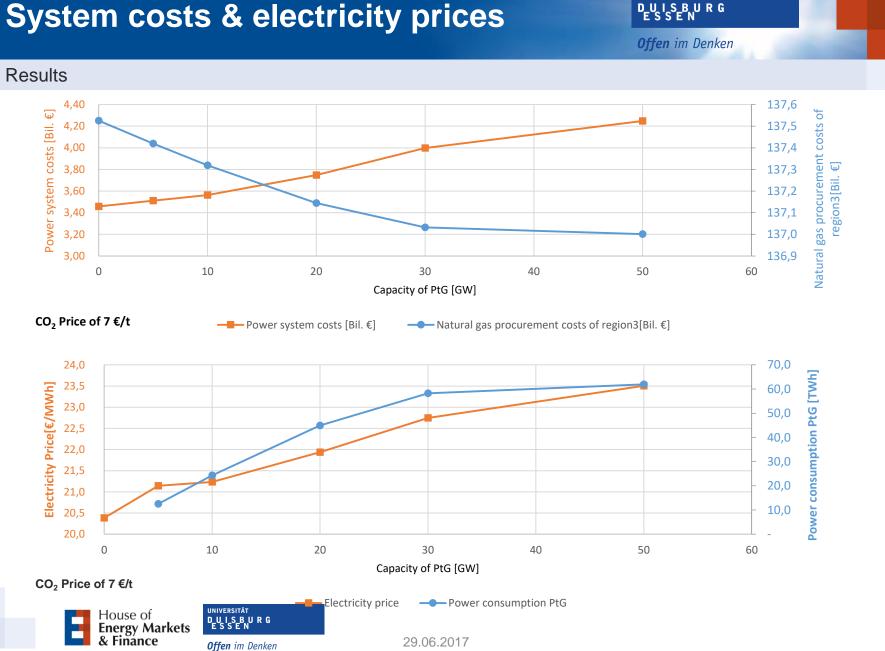


Integration of renewables & electricity generation mixes

Offen im Denken


UNIVERSITÄT

Results


No PtG

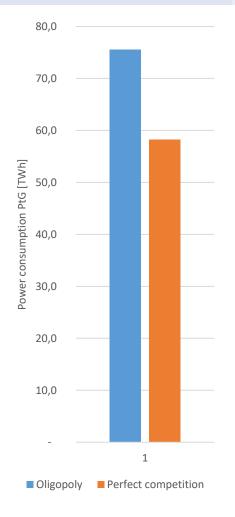
■ PtG(30GW) & Co2 price (7€/t) ■ PtG(30GW) & Co2 price (70€/t)

UNIVERSITÄT House of **Energy Markets** & Finance

UNIVERSITÄT

System costs & electricity prices

Oligopoly vs. Perfect Competition


DUISBURG ESSEN

Offen im Denken

UNIVERSITÄT

Results

- In case of Oligopoly in the natural gas market, higher prices of the natural gas result in additional application of PtG.
- In this case, PtG is used until the wholesale price of electricity is less than the wholesale natural gas price plus PtG marginal costs
- PtG converts the electricity generated through lignite and coal units into the synthetic gas since it is economical for the PtG operators!
- With low CO₂ prices, the carbon externality is valued less than the limitation of market power by oligopolists!

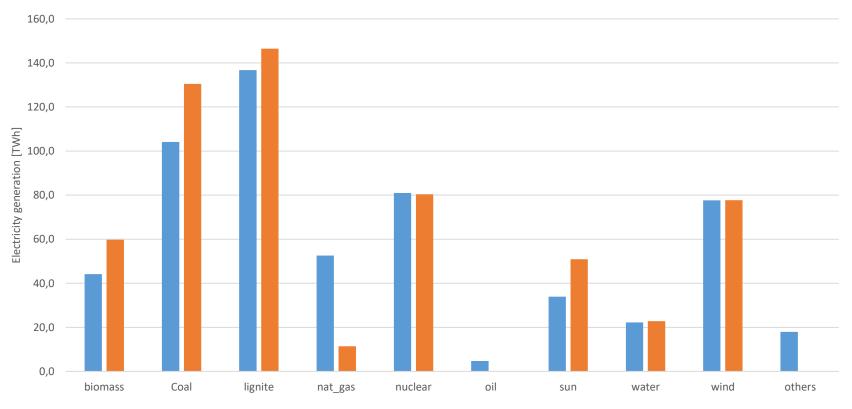
Capacity of PtG 30 [GW] for both cases

- We use a multi-level market model to investigate the role of PtG in case of high shares of renewables
- PtG leads to bidirectional integration of power and natural gas sectors
- PtG runs based on price difference between the two sectors of electrical power and natural gas and is driven mostly by available excess electricity in the electricity grid
- PtG contributes to a reduction of the renewable curtailments
- It increases the power system costs and reduces the procurement cost of natural gas
- The electricity prices increase with the construction of PtG capacity until all the renewables can be integrated in the system and then it stays constant
- Higher CO₂ prices increase electricity generation through the natural gas units and therefore change the electricity generation mix as well as electricity prices, however do not affect the operation of PtG
- A high capacity of PtG in case of high natural gas prices can lead to externalities!
- The gas generated in PtG tends to be consumed in the same season (storage costs!)

Thanks for your attention!

Offen im Denken

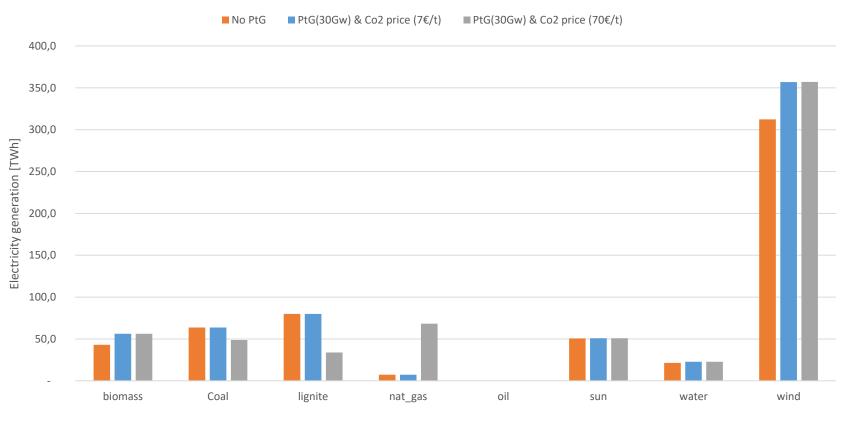
Back up slides



Electricity generation mix: Simulation vs. historical states

Offen im Denken

■ Statistics(scaled) ■ Simulation



Electricity generation mix with high share of renewables

Offen im Denken

Results

