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The paper

Observation Few and conflicting assessments of the nuclear risk

Questions How to make good decisions in this situation?
Is cost-benefit analysis appropriate when facing
catastrophic risks?

Method Use of a growing literature on ambiguity-aversion

Results Generalization of cost-benefit analysis to situations of
uncertainty
A method that accounts for public perceptions
Expected-cost of nuclear accidents 1.7e/MWh
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Literature review

Decision-making under ambiguity
Individual choice under ambiguity: Ghirardato (2004)
Combination of experts opinions: Gajdos (2008), Crès (2011)
Formalization of the precautionary principle: Henry (2002) (WP)

Assesment of the nuclear risk:
Risk-aversion and nuclear accidents: Eeckhoudt (2000)
Statistical analysis of nuclear accidents: Hofert (2011),
Wheatley (2016a,b)
Bayesian revision of nuclear experts opinions: Rangel (2014)
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Not a new question...

“ In the actual exercise of reason we do not wait on certainty, or deem
it irrational to depend on a doubtful argument.” J. M. Keynes (A
Treatise on Probability, 1920)
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Outline of the presentation

1 Motivation and challenges

2 Uncertainty and economic theory of decision

3 An application to nuclear power accidents

4 Limits and policy implications
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Motivations

A need to estimate the cost of nuclear accidents
To better inform policy/investment decisions
examples: nuclear share in the energy mix, location of nuclear
stations, phase-out schedules

An estimation facing important methodological challenges
Rare events whose frequencies are not probabilities
Absence of consensus on the expected-cost of accidents
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No consensus on expected-costs
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Few observations of nuclear power accidents

Figure: Historic occurrences of severe nuclear events (Cochran, 2011)
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No consensus in the measurement of probabilities

Figure: Existing studies assessing nuclear accident probabilities

Interpretation for a 400-reactor fleet
pPastEvents = 10−4: one major accident every 25 years
pPSA = 10−6: one major accident every 2500 years
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Accident frequencies are not objective probabilities

The number of repetitions does not allow identification :
14,500 observed Reactor.Year
Few observed events

Cochran (2011): 12 CMD since 1955
Extension to INES > 2: 41 events since 1991

The i.i.d. hypothesis is not respected :
Not identically distributed - Diversity of
accident types, of reactor technology or location, of
safety regulators...
Not independent - Accidents affect safety
standards
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What about PSAs?

Estimating probabilities with PSA
Based on event-trees and simulations
Pinpoint local safety weaknesses
Better allocate safety efforts

What information do they carry?
40 years of nuclear engineering knowledge
Assuming safety standards are well enforced
Assuming no unknown unknowns
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What about public perceptions?

Public perceptions should be accounted for
Possible additional costs
Super-Phenix, Takahama

Experimental psychology works
Perceptions can be distorted
Rare events are perceived as more likely than they
are (Lichtenstein, 1978; Slovic, 1982).
Dreadful events are perceived as more likely than
they are (Kahneman, 2011)

Nuclear accidents are both rare and dreadful
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Stakes for the decision maker

The sources are conflictual
PSA for a large accident in an EPR: 10−7

Observed frequency of large accidents: 10−4

Perceptions: > 10−4 ?

Which information should be relied on?
All sources are biased
Using a biased probability could entail:

wrong level of investments in safety
wrong timing of phase-outs
suboptimal technology mixes

How can policy-makers make good decisions in these situations?
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1 Motivation and challenges

2 Uncertainty and economic theory of decision

3 An application to nuclear power accidents

4 Limits and policy implications
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Cost-benefit analysis (CBA)

Objectives
Basis for comparison of competing projects
Implicitly, best decision maximizes benefits − costs

Underlying hypotheses:
Costs and benefits can be given monetary values
Risks can be given a probabilistic representation
All agents agree on this representation

Shortcomings
What monetary values for non-monetary consequences?
How to include attitude towards risks and uncertainties?
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Risks and uncertainty (Knight, 1920)

Risk Various outcomes associated with probabilities
Repetition confirms the probability representation

Uncertainty Various outcomes without attached probabilities

Examples
Risk: roll of dice, roulette wheel...
Uncertainty: Horse races, elections, long-term weather forecasts...
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Decisions and economics

Bayesian Decision-Making (Gilboa, 2004)
1 All risk can be represented in probabilistic terms
2 Preferences and beliefs are updated using Bayes’ law
3 “Good decisions” consist in the maximization of an expected

utility w.r.t probabilistic beliefs

Main authors: de Finetti, Von Neumann, Morgenstern, Savage.

Non-Bayesian Decision-making
Challenging 3: Allais, Kahneman, Tversky
Challenging 2: Kahneman, Tversky
Challenging 1: Modern decision theory
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Ambiguity - Ellsberg’s paradoxes

Figure: The one-urn Ellsberg paradox
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Ambiguity - Ellsberg’s paradoxes

Figure: The one-urn Ellsberg paradox

Situation A P(Y ) > P(R)
Situation B P(Y ∪ B) < P(R ∪ B)⇒ P(Y ) < P(R)
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Ambiguity - Ellsberg’s paradoxes

Figure: The one-urn Ellsberg paradox

People prefer bets described by known probabilities
Ambiguity-aversion is not accounted for in classical cost-benefit
analysis
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The decision rule (1/2)

We apply a decision criterion (GMM, 2004)
Decision Maker is assumed to behave according to six axioms:

Ghirardato’s “rationality” (2004)
GMM1: Transitive Weak-order (usual)

a � b and b � c⇒ a � c

GMM2: Certainty Independence (new)
GMM3: Continuity (technical, usual)
GMM4: Monotonicity (usual)
GMM5: Non-degeneracy (trivial)
GMM6: Certainty-equivalence (new, technical)
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The decision rule (1/2)

We apply a decision criterion (GMM, 2004)
Decision Maker is assumed to behave according to six axioms:

Ghirardato’s “rationality” (2004)
GMM1: Transitive Weak-order (usual)
GMM2: Certainty Independence (new)
GMM3: Continuity (technical, usual)
GMM4: Monotonicity (usual)
GMM5: Non-degeneracy (trivial)
GMM6: Certainty-equivalence (new, technical)

∀a,b ∈ A,C ∗(a) = C ∗(b)⇒ a ∼ b.
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The decision rule 2/2

A simple, equivalent interpretation

Uncertainty represented by a set of probabilities
Decisions based on expected-costs, calculated w.r.t. worst case
and best case probabilities
Attitude towards ambiguity captured by parameter (α ∈ [0; 1])

α = 1: decisions are based on the worst case
α = 0: decisions are based on the best case

In other words, the expected-cost is a weighted sum

EαC = αEworst case [C ] + (1− α) Ebest case [C ]
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Underlying structure

Two categories of accidents
Core Damage Accident without releases (CDA)
Large-Release Accident (LRA)

Figure: A simplified event-tree structure for nuclear accidents

LRA

CDA

No accident
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Hypotheses concerning nuclear accidents

Table: Hypotheses regarding damage and probabilities

Probability (per r.y) Damage (109e)
best-case worst-case benchmark macro

Core-damage 10−6 10−3 2, 6 52
Large-release 10−7 10−4 170 359

Source AREVA Past Sovacool (08) IRSN (13)
(HSE PSA) events Jap. Gvt. Rabl (13)
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The expected-cost of nuclear accidents

Figure: Expected-cost in e/MWh as a function of α
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Policy implications

Policy Assessments of the costs of technologies should account
for public perceptions as well as experts analyses

Nuclear Our result is small when compared to the LCOE of
nuclear power new builds (∼ 100e/MWh)

Method Other uses to assess the cost of other rare disasters (oil
spills, dam failures, nuclear safety standards or accident
mitigation plans...)

Romain Bizet Mines ParisTech (CERNA) December, 2016 26 / 27



Limits

Damage are also prone to uncertainties

Completeness All states of the world not known ex ante

Flexibility Decisions are good ex ante
What happens when new information is obtained?
Is ex post flexibility valuable? (Kreps (1979))

Social choice Implicit assumption: decision-maker is a rational
individual (firm CEO, banker, median voter...)
No aggregation of preferences (equity concerns)
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Thank you for your attention !

More information and references :

www.cerna.mines-paristech.fr/leveque/
www.cerna.mines-paristech.fr/bizet/
www.cerna.mines-paristech.fr/nuclearpower/
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Appendix 1: Decision rules

General form of decision criteria in economic theory

Rationality = conditions on
preferences (or axioms)

⇔
Decisions maximize an index I:

d1 � d2 ⇔ I (d1) ≤ I (d2)

Decisions under risk
Expected utility: I (d) =

∑
S p(s)u(d(s))

Decision and ambiguity
Maxmin Expected Utility: I (d) = min

π∈Π
Eπ[U(d)]

Many other criteria
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