

Ambiguity aversion and the expected-cost of rare energy disasters

The case of nuclear power accidents

Romain Bizet, François Lévêque

Mines ParisTech - Centre for Industrial Economics

December, 2016

The paper

Observation Few and conflicting assessments of the nuclear risk

Questions How to make good decisions in this situation?

Is cost-benefit analysis appropriate when facing catastrophic risks?

Method Use of a growing literature on ambiguity-aversion

Results Generalization of cost-benefit analysis to situations of uncertainty

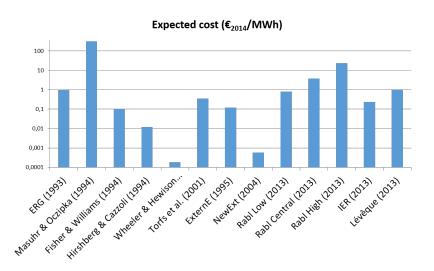
A method that accounts for public perceptions Expected-cost of nuclear accidents 1.7€/MWh

Literature review

- Decision-making under ambiguity
 - Individual choice under ambiguity: Ghirardato (2004)
 - Combination of experts opinions: Gajdos (2008), Crès (2011)
 - Formalization of the precautionary principle: Henry (2002) (WP)
- Assesment of the nuclear risk:
 - Risk-aversion and nuclear accidents: Eeckhoudt (2000)
 - Statistical analysis of nuclear accidents: Hofert (2011), Wheatley (2016a,b)
 - Bayesian revision of nuclear experts opinions: Rangel (2014)

Not a new question...

• "In the actual exercise of reason we do not wait on certainty, or deem it irrational to depend on a doubtful argument." J. M. Keynes (A Treatise on Probability, 1920)


Outline of the presentation

- Motivation and challenges
- 2 Uncertainty and economic theory of decision
- 3 An application to nuclear power accidents
- Limits and policy implications

Motivations

- A need to estimate the cost of nuclear accidents
 - To better inform policy/investment decisions
 - examples: nuclear share in the energy mix, location of nuclear stations, phase-out schedules
- An estimation facing important methodological challenges
 - Rare events whose frequencies are not probabilities
 - Absence of consensus on the expected-cost of accidents

No consensus on expected-costs

Few observations of nuclear power accidents

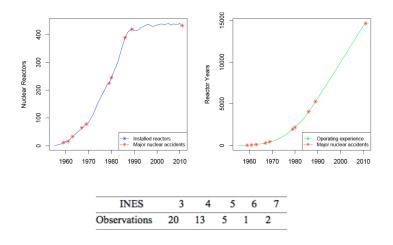


Figure: Historic occurrences of severe nuclear events (Cochran, 2011)

No consensus in the measurement of probabilities

Figure: Existing studies assessing nuclear accident probabilities

Source	Year	Core melts	Large releases	Method
ExternE	1995	5.10^{-5}	1.10^{-5}	PSA
NEA	2003	10^{-5}	10^{-6}	ExternE (PSA)
Hofert, Wuthricht	2011	1.10^{-5}	NS	Poisson law
IRSN	2012	NS	$10^{-5} - 10^{-6}$	IAEA standards
Rabl	2013	NS	10^{-4}	Observed frequencies
IER	2013	NS	10^{-7}	NS
D'Haeseleer	2013	$1,7.10^{-4}$	$1,7.10^{-5}$	Bayesian update
Rangel, Lévêque	2014	$4, 4.10^{-5}$	NS	PEWMA model

Interpretation for a 400-reactor fleet

- $p_{PastEvents} = 10^{-4}$: one major accident every 25 years
- $p_{PSA} = 10^{-6}$: one major accident every 2500 years

Accident frequencies are not objective probabilities

The **number of repetitions** does not allow identification:

- 14,500 observed Reactor. Year
- Few observed events
 - Cochran (2011): 12 CMD since 1955
 - Extension to INES > 2: 41 events since 1991

Accident frequencies are not objective probabilities

The number of repetitions does not allow identification:

- 14,500 observed Reactor. Year
- Few observed events
 - Cochran (2011): 12 CMD since 1955
 - Extension to INES > 2: 41 events since 1991

The i.i.d. hypothesis is not respected:

- Not identically distributed Diversity of accident types, of reactor technology or location, of safety regulators...
- Not independent Accidents affect safety standards

What about PSAs?

Estimating probabilities with PSA

- Based on event-trees and simulations
- Pinpoint local safety weaknesses
- Better allocate safety efforts

What about PSAs?

Estimating probabilities with PSA

- Based on event-trees and simulations
- Pinpoint local safety weaknesses
- Better allocate safety efforts

What information do they carry?

- 40 years of nuclear engineering knowledge
- Assuming safety standards are well enforced
- Assuming no unknown unknowns

What about public perceptions?

Public perceptions should be accounted for

- Possible additional costs
- Super-Phenix, Takahama

Experimental psychology works

- Perceptions can be distorted
- Rare events are perceived as more likely than they are (Lichtenstein, 1978; Slovic, 1982).
- Dreadful events are perceived as more likely than they are (Kahneman, 2011)

Nuclear accidents are both rare and dreadful

Stakes for the decision maker

The sources are conflictual

PSA for a large accident in an EPR: 10^{-7}

Observed frequency of large accidents: 10^{-4}

Perceptions: $> 10^{-4}$?

Stakes for the decision maker

The sources are conflictual

PSA for a large accident in an EPR: 10^{-7}

Observed frequency of large accidents: 10⁻⁴

Perceptions: $> 10^{-4}$?

Which information should be relied on?

All sources are biased

Using a biased probability could entail:

- wrong level of investments in safety
- wrong timing of phase-outs
- suboptimal technology mixes

How can policy-makers make good decisions in these situations?

Motivation and challenges

- 2 Uncertainty and economic theory of decision
- 3 An application to nuclear power accidents

Limits and policy implications

Cost-benefit analysis (CBA)

- Objectives
 - Basis for comparison of competing projects
 - Implicitly, best decision maximizes benefits costs
- Underlying hypotheses:
 - Costs and benefits can be given monetary values
 - Risks can be given a probabilistic representation
 - All agents agree on this representation
- Shortcomings
 - What monetary values for non-monetary consequences?
 - How to include attitude towards risks and uncertainties?

Risks and uncertainty (Knight, 1920)

Risk Various outcomes associated with probabilities

Repetition confirms the probability representation

Uncertainty Various outcomes without attached probabilities

Examples

Risk: roll of dice, roulette wheel...

Uncertainty: Horse races, elections, long-term weather forecasts...

Decisions and economics

Bayesian Decision-Making (Gilboa, 2004)

- All risk can be represented in probabilistic terms
- Preferences and beliefs are updated using Bayes' law
- Good decisions' consist in the maximization of an expected utility w.r.t probabilistic beliefs

Main authors: de Finetti, Von Neumann, Morgenstern, Savage.

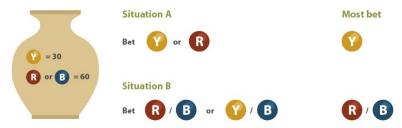
Decisions and economics

Bayesian Decision-Making (Gilboa, 2004)

- All risk can be represented in probabilistic terms
- Preferences and beliefs are updated using Bayes' law
- "Good decisions" consist in the maximization of an expected utility w.r.t probabilistic beliefs

Main authors: de Finetti, Von Neumann, Morgenstern, Savage.

Non-Bayesian Decision-making


Challenging 3: Allais, Kahneman, Tversky

Challenging 2: Kahneman, Tversky

Challenging 1: Modern decision theory


Ambiguity - Ellsberg's paradoxes

Figure: The one-urn Ellsberg paradox

Ambiguity - Ellsberg's paradoxes

Figure: The one-urn Ellsberg paradox

Situation A
$$\mathbb{P}(Y) > \mathbb{P}(R)$$

Situation B $\mathbb{P}(Y \cup B) < \mathbb{P}(R \cup B) \Rightarrow \mathbb{P}(Y) < \mathbb{P}(R)$

Ambiguity - Ellsberg's paradoxes

- People prefer bets described by known probabilities
- Ambiguity-aversion is not accounted for in classical cost-benefit analysis

Motivation and challenges

- 2 Uncertainty and economic theory of decision
- 3 An application to nuclear power accidents

4 Limits and policy implications

- We apply a decision criterion (GMM, 2004)
- Decision Maker is assumed to behave according to six axioms:

Ghirardato's "rationality" (2004)

• GMM1: Transitive Weak-order (usual)

$$a \succeq b$$
 and $b \succeq c \Rightarrow a \succeq c$

- GMM2: Certainty Independence (new)
- GMM3: Continuity (technical, usual)
- GMM4: Monotonicity (usual)
- GMM5: Non-degeneracy (trivial)
- GMM6: Certainty-equivalence (new, technical)

- We apply a decision criterion (GMM, 2004)
- Decision Maker is assumed to behave according to six axioms:

- GMM1: Transitive Weak-order (usual)
- GMM2: Certainty Independence (new) "risk hedging":

$$\mathbf{a} \preceq \mathbf{b} \Leftrightarrow \lambda \mathbf{a} + (1-\lambda)\mathbf{c} \preceq \lambda \mathbf{b} + (1-\lambda)\mathbf{c}, \ \mathbf{c} \ \textit{constant}$$

- GMM3: Continuity (technical, usual)
- GMM4: Monotonicity (usual)
- GMM5: Non-degeneracy (trivial)
- GMM6: Certainty-equivalence (new, technical)

- We apply a decision criterion (GMM, 2004)
- Decision Maker is assumed to behave according to six axioms:

- GMM1: Transitive Weak-order (usual)
- GMM2: Certainty Independence (new)
- GMM3: Continuity (technical, usual) "no extreme"

$$\mathbf{a} \prec \mathbf{b} \prec \mathbf{c} \Rightarrow \lambda_1 \mathbf{a} + (1 - \lambda_1) \mathbf{c} \prec \mathbf{b} \prec \lambda_2 \mathbf{a} + (1 - \lambda_2) \mathbf{c}$$

- GMM4: Monotonicity (usual)
- GMM5: Non-degeneracy (trivial)
- GMM6: Certainty-equivalence (new, technical)

- We apply a decision criterion (GMM, 2004)
- Decision Maker is assumed to behave according to six axioms:

- GMM1: Transitive Weak-order (usual)
- GMM2: Certainty Independence (new)
- GMM3: Continuity (technical, usual)
- GMM4: Monotonicity (usual) "state dominance"

$$\forall s \in \mathcal{S}, b(s) \leq a(s) \Rightarrow \mathbf{b} \leq \mathbf{a}$$

- GMM5: Non-degeneracy (trivial)
- GMM6: Certainty-equivalence (new, technical)

- We apply a decision criterion (GMM, 2004)
- Decision Maker is assumed to behave according to six axioms:

Ghirardato's "rationality" (2004)

- GMM1: Transitive Weak-order (usual)
- GMM2: Certainty Independence (new)
- GMM3: Continuity (technical, usual)
- GMM4: Monotonicity (usual)
- GMM5: Non-degeneracy (trivial)

$$\exists a, b, a \leq b$$

• GMM6: Certainty-equivalence (new, technical)

- We apply a decision criterion (GMM, 2004)
- Decision Maker is assumed to behave according to six axioms:

- GMM1: Transitive Weak-order (usual)
- GMM2: Certainty Independence (new)
- GMM3: Continuity (technical, usual)
- GMM4: Monotonicity (usual)
- GMM5: Non-degeneracy (trivial)
- GMM6: Certainty-equivalence (new, technical)

$$\forall \mathsf{a},\mathsf{b} \in \mathsf{A},\, C^*(\mathsf{a}) = C^*(\mathsf{b}) \Rightarrow \mathsf{a} \sim \mathsf{b}.$$

The decision rule 2/2

A simple, equivalent interpretation

- Uncertainty represented by a set of probabilities
- Decisions based on expected-costs, calculated w.r.t. worst case and best case probabilities
- ullet Attitude towards ambiguity captured by **parameter** ($lpha \in [0;1]$)
 - $\alpha = 1$: decisions are based on the worst case
 - $\alpha = 0$: decisions are based on the best case

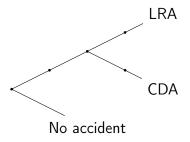
The decision rule 2/2

A simple, equivalent interpretation

- Uncertainty represented by a set of probabilities
- Decisions based on expected-costs, calculated w.r.t. worst case and best case probabilities
- ullet Attitude towards ambiguity captured by **parameter** ($lpha \in [0;1]$)
 - $\alpha = 1$: decisions are based on the worst case
 - $\alpha = 0$: decisions are based on the best case

In other words, the expected-cost is a weighted sum

$$\mathbb{E}_{\alpha}C = \alpha \mathbb{E}_{\textit{worst case}}[C] + (1 - \alpha) \mathbb{E}_{\textit{best case}}[C]$$



Underlying structure

Two categories of accidents

- Core Damage Accident without releases (CDA)
- Large-Release Accident (LRA)

Figure: A simplified event-tree structure for nuclear accidents

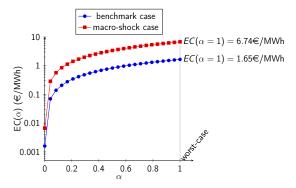

Hypotheses concerning nuclear accidents

Table: Hypotheses regarding damage and probabilities

	Probability	(per r.y)	Damage (10 ⁹ €)	
	best-case	worst-case	benchmark	macro
Core-damage Large-release	$10^{-6} \\ 10^{-7}$	$10^{-3} \\ 10^{-4}$	2, 6 170	52 359
Source	AREVA (HSE PSA)	Past events	Sovacool (08) Jap. Gvt.	IRSN (13) Rabl (13)

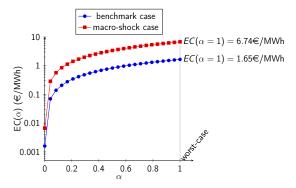

The expected-cost of nuclear accidents

Figure: Expected-cost in \in /MWh as a function of α

The expected-cost of nuclear accidents

Figure: Expected-cost in \in /MWh as a function of α

- worst case scenario 1.7€/MWh
- worst scenario with macro consequences 7€/MWh

Motivation and challenges

- Uncertainty and economic theory of decision
- 3 An application to nuclear power accidents
- 4 Limits and policy implications

Policy implications

Policy Assessments of the costs of technologies should account for public perceptions as well as experts analyses

Nuclear Our result is *small* when compared to the LCOE of nuclear power new builds (~ 100 \in /MWh)

Method Other uses to assess the cost of other rare disasters (oil spills, dam failures, nuclear safety standards or accident mitigation plans...)

Limits

Damage are also prone to uncertainties

Completeness All states of the world not known ex ante

Flexibility Decisions are good *ex ante*What happens when new information is obtained?

Is *ex post* flexibility valuable? (Kreps (1979))

Social choice Implicit assumption: decision-maker is a rational individual (firm CEO, banker, median voter...)

No aggregation of preferences (equity concerns)

Thank you for your attention!

More information and references:

- www.cerna.mines-paristech.fr/leveque/
- www.cerna.mines-paristech.fr/bizet/
- www.cerna.mines-paristech.fr/nuclearpower/

Appendix 1: Decision rules

General form of decision criteria in economic theory

 \Leftrightarrow

Rationality = conditions on preferences (or axioms)

Decisions maximize an index I:

$$d_1 \leq d_2 \Leftrightarrow I(d_1) \leq I(d_2)$$

Appendix 1: Decision rules

General form of decision criteria in economic theory

 \Leftrightarrow

 $\begin{aligned} \text{Rationality} &= \text{conditions on} \\ \text{preferences (or axioms)} \end{aligned}$

Decisions maximize an index I:

 $d_1 \leq d_2 \Leftrightarrow I(d_1) \leq I(d_2)$

Decisions under risk

Expected utility:
$$I(d) = \sum_{S} p(s)u(d(s))$$

Decision and ambiguity

Maxmin Expected Utility:
$$I(d) = \min_{\pi \in \Pi} E_{\pi}[U(d)]$$

Many other criteria

Appendix 2: References I

- Crès, H., Gilboa, I., and Vieille, N. (2011). Aggregation of multiple prior opinions. Journal of Economic Theory, (146):2563–2582.
- Eeckhoudt, L., Schieber, C., and Schneider, T. (2000). Risk aversion and the external cost of a nuclear accident. Journal of Environmental Management, pages 109–117.
- Gajdos, T., Tallon, J.-M., and Vergneaud, J.-C. (2008). Representation and aggregation of preferences under uncertainty. Journal of Economic Theory, (141):68–99.
- Ghirardato, P., Maccheroni, F., and Marinacci, M. (2004). Differentiating ambiguity and ambiguity attitude. Journal of Economic Theory, 118:133–173.
- Henry, C. and Henry, M. (2002). Formalization and applications of the precautionary principles. Columbia Discussion Papers Series.

Appendix 2: References II

- Hofert, M. and Wüthrich, M. V. (2011). Statistical review of nuclear power accidents. *Asia-Pacific Journal of Risk and Insurance*, 7:1–13.
- Kreps, D. M. (1979). Preference for flexibility. *Econometrica*, 47(3):565–577.
- Rangel, L. E. and Lévêque, F. (2014). How fukushima dai-ichi core meltdown changed the probability of nuclear accidents? *Safety Science*, 64:90–98.
- Wheatley, S., Sovacool, B. K., and Sornette, D. (2016a). Of disasters and dragon kings: a statistical analysis of nuclear power incidents and accidents. *Risk analysis*.
- Wheatley, S., Sovacool, B. K., and Sornette, D. (2016b). Reassessing the safety of nuclear power. *Energy Research & Social Science*, 15:96–100.

Mines ParisTech (CERNA)